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Recombination promotes genomic integrity among cells and tissues through

double-strand break repair, and is critical for gamete formation and fertility

through a strict regulation of the molecular mechanisms associated with

proper chromosomal disjunction. In humans, congenital defects and recurrent

structural abnormalities can be attributed to aberrant meiotic recombination.

Moreover, mutations affecting genes involved in recombination pathways

are directly linked to pathologies including infertility and cancer. Recombina-

tion is among the most prominent mechanism shaping genome variation, and

is associated with not only the structuring of genomic variability, but is also

tightly linked with the purging of deleterious mutations from populations.

Together, these observations highlight the multiple roles of recombination in

human genetics: its ability to act as a major force of evolution, its molecular

potential to maintain genome repair and integrity in cell division and its

mutagenic cost impacting disease evolution.

This article is part of the themed issue ‘Evolutionary causes and

consequences of recombination rate variation in sexual organisms’.
1. Introduction
Majoradvances in human population genetics in the past decade include the charac-

terization of the primary genomic forces generating and shaping human variation:

mutation [1–4] and recombination [5–11]. Recombination is a key mechanism

shaping mutational variation across genomes and its impact is critical in evolution-

ary biology and human disease. Recombination can be simply defined as the

process by which chromosomes exchange genetic material. In meiosis, new combi-

nations of the parental genetic material are created to be transmitted to offspring. In

mitosis, recombination-related processes ensure a conservative repair of double-

strand breaks (DSBs) to minimize altered transmission of DNA to daughter cells.

From the early 1930s until the end of the 1970s, theoretical research [12–17]

focused on models identifying conditions necessary for recombination (sexual

reproduction) to evolve. In the 1980s, recombination was discovered to be critical

in stabilizing homologous chromosomes and ensuring accurate chromosomal

disjunction during meiosis in eukaryotes, as abnormal crossover frequencies

were found to correlate with aneuploidy frequencies [18–20]. Additionally,

recombination was found to be involved in the repair machinery of damaged

DNA, which otherwise would accumulate lesions inflicted spontaneously or

induced by the surrounding cell environment [21,22]. More recently, advances

in statistical methods coupled with large collections of genomic variation have

resulted in a better understanding of the distribution of recombination rates

along the human genome and in the discovery that recombination frequencies

are driven by genetic and epigenetic factors [5–11].

In this review, we focus on the impact of recombination on mutation accumu-

lation and disease in humans by describing the interplay between molecular and
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evolutionary mechanisms associated with the localization and

regulation of meiotic and mitotic recombination. Specifically,

we concentrate on the mechanisms underlying chromosome

pairing and crossover establishment as well as on downstream

pathways associated with DNA repair known to result in geno-

mic disorders in the event of their disruption. We start by

describing the association between recombination hotspots

and its major regulator, PRDM9, as well as recent evidence

for the role of PRDM9 in infertility and speciation. We also

discuss the impact of dysregulated recombination-related path-

ways on fertility and how aberrant recombination affects

structural genetic abnormalities, congenital defects and dis-

ease. We then examine the role of mitotic recombination on

disease, particularly in cancer, by reviewing current evidence

for the implication of homologous recombination mechanisms

in DNA repair and tumorigenesis and finally, the potential of

mitotic recombination as a mutagenic agent. To conclude, we

present the current evidence for the impact of chromosomal

linkage and GC-biased gene conversion on the accrual of

deleterious mutations in human populations.
0465
2. Meiotic recombination and infertility
Meiotic recombination is essential for accurate chromosomal

disjunction and maintenance of genomic stability during meio-

sis in eukaryotes. During meiosis, the recombination process

is initiated by the introduction of DSBs at specific locations

across the genome, and their successful positioning, repair

and resolution into crossovers depend upon many molecular

processes that are essential to ensure genome integrity. Substan-

tial variation in the rate and distribution of crossovers has been

found within and among species, genders, populations and

individuals. Within genomes, recombination rates and locations

vary among chromosomes, at megabase and kilobase scales. In

mammals, the distribution of crossovers along the genome is

known to vary, and substantial regions of DNA with unusually

low recombination are observed, known as coldspots, while

highly localized peaks of recombination, known as hotspots,

are also seen. In this section, we describe the evolutionary and

molecular mechanisms of such variation in recombination rate

and their implications for fertility in mammals.

(a) Meiotic recombination hotspots, PRDM9 and
infertility

The first insights on the distribution of meiotic crossover events

in humans emerged from the analysis of patterns of genetic

inheritance among families focusing on a few specific regions

of the genome [23,24]. Later, with genome-wide markers

genotyped in families, genetic maps were constructed first at

the megabase scale [25,26] and later at higher resolution

[4,7,8,27]. High-resolution recombination maps revealed the

presence of heterogeneous rates of recombination across the

genome and sex-specific genetic map lengths [27,28], whereas

molecular characterization of recombination events through

single and pooled sperm genotyping led to the identification

and characterization of individual hotspots [29–31]. With

sperm genotyping, such areas were shown to correspond to

clusters of recombination breakpoints spanning 1–2 kb [29].

Linkage disequilibrium (LD), the non-random association

of alleles among different loci, is mainly driven by local

rates of recombination: the smaller the rate, the higher the
covariation of alleles between loci. As distance between pairs

of polymorphic sites increases, the probability of a recombina-

tion event occurring between them increases, and covariation

is reduced. Across the human genome, LD can be mainly

described by large blocks of close associations that are intermit-

tently broken [30,32]. Population genetic-based statistical

methods [7,33–37] exploiting distributions of associations

allow for the characterization of recombination rate variation

at relatively fine resolution. For instance, LD-based analyses

confirmed that meiotic crossovers are non-randomly distribu-

ted in the human genome, with the largest number of them

occurring only in 10% of the genome and preferentially not

within genes [7]. Furthermore, LD-based methods led to the

identification of thousands of recombination hotspots

genome-wide, whose location is associated with the distri-

bution of a degenerate 13-mer sequence motif [8,38] crucial

in recruiting crossover activity in at least 40% of the human

recombination hotspots, regardless of the population ancestry

background and sex, and associated with genomic instability

and disease-causing breakpoints [38]. The 13-mer motif was

inferred to be the binding site of a zinc-finger (ZnF) protein

[38]—the PR domain-containing 9 (PRDM9), a histone methyl-

transferase [9–11]. Molecular experiments and bioinformatics

analyses confirmed the binding affinity of multiple PRDM9

ZnF alleles to specific motifs including the previously ident-

ified degenerate hotspot motif [9]. Polymorphisms in the ZnF

domain of PRDM9 were shown to be associated with alterna-

tive sequence motifs and underlie differences in the location

of hotspots in human populations [39]. The epigenetic modifi-

cation H3K4me3 (the tri-methylation of histone H3 on lysine 4)

has been reported to mark the activity of meiotic recombination

hotspots [40], and recent studies in mice [41] and human cell

lines [42] have also associated recombination initiation sites

with the H3K36me3 (the tri-methylation of histone H3 on

lysine 36) mark. Interestingly, PRDM9 was found to catalyse

both of these epigenetic marks [41–43]. Together, these find-

ings indicate that the binding sites of PRDM9 specify the

genome-wide location of hotspots and control the distribu-

tion of recombination events, probably by promoting

recombination initiation through DSBs [44].

In chimpanzees, the PRDM9 homologue does not recognize

the human PRDM9 13-mer sequence binding motif, while

appearing to bind to different sequence motifs [10]. Further-

more, the PRDM9 ZnF array appears to have diverged more

from the human counterpart than any other homologous ZnF

protein [10]. These observations are consistent with the hypo-

thesis that recombination hotspot locations are evolving at a

rapid rate [8,45,46], explaining the differences in recombina-

tion hotspot distributions between humans and chimpanzees

[47–50] and differences between current (sperm genotyping)

and historical (LD-based) hotspot locations [29,45,51]. The

rapid evolution of PRDM9 may be driven by the quick turn-

over of DNA motifs at sites of recombination [10]. During

DSB repair at heterozygous sites, the homologous chromosome

containing the non-recombinogenic allele will be used to repair

the broken DNA sequence, a mechanism known as gene

conversion, and will drive the extinction of the PRDM9

binding motif [51,52]. As the extinction of hotspots challen-

ges requirements for proper chromosomal segregation in

meiosis, new PRDM9 variants may emerge that are able to

recognize new motifs and thus ensure the proper functioning

of recombination. PRDM9 includes a ZnF minisatellite-like

structure vulnerable to sequence rearrangements during DNA
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replication and likely to explain high levels of polymorphism of

the PRDM9 ZnF array [10]. Additionally, single-nucleotide

polymorphisms within PRDM9 concentrate at the DNA-

binding amino acids of the array not only in humans but also

in primates and rodents [53]. Together, the evidence suggests

that high mutation rate and positive selection may jointly

contribute to fast rates of evolution at PRDM9. A ‘Red-Queen’

dynamic has been proposed to model the motif erosion,

via biased gene conversion, and the fast generation of new

forms of PRDM9 to recognize new binding sites and thus

maintain chromosomal crossover rates has been suggested to

follow [46,54–57]. Under such a model of evolution, the

13-mer sequence motif, the current target of the most

common human allele, might be condemned to extinction in

the next 3 million years [55]. Interestingly, while PRDM9

plays a unique role in rapidly changing the location of recombi-

nation hotspots in primates and rodents, taxonomic groups

lacking PRDM9 homologues appear to have conserved stable

recombination landscapes [46,58,59].

Importantly, PRDM9 has been implicated in infertility due

to abnormal placement of meiotic DSBs and early pachytene

arrest and is the first (and only) ‘speciation’ gene to be

described in vertebrates. Although PRDM9 knockouts in

mice cause sterility in both sexes [43], allelic incompatibility

between Mus musculus musculus and Mus musculus domesticus
[60] causes hybrid sterility only in males. Recent findings have

established the connection between hybrid male sterility, allelic

variation at PRDM9 and chromosomal asynapsis during

meiosis [61–63]. A compelling model for the mechanistic

basis of hybrid sterility and chromosomal asynapsis was

proposed, based on analyses of DSB maps in transgenic mice

[63]. The erosion of PRDM9 motifs leads to asymmetric

PRDM9 binding in hybrids, which is associated with high asy-

napsis rates in pachytene and downregulation of autosomal

genes [64], potentially leading to major meiotic defects and

sterility. It is therefore plausible that these newly discovered

mechanisms affect levels of hybrid fertility in other mamma-

lian species with PRDM9, and possibly play a broader role

in speciation.
(b) Meiosis, recombination and infertility
Meiosis is a complex developmental process of two cell div-

isions, transforming one diploid cell into four haploid cells.

The first division (meiosis I) is characterized by an extended

prophase, which includes steps governing the movement and

organization of meiotic chromosomes. Our understanding of

the genetic control of meiosis comes from different experimen-

tal systems [65], with genomic and functional information

defining a ‘core meiotic recombination machinery’ that exhibits

strong conservation across eukaryotes [66]. Successful meiosis

completion depends upon proper positioning of crossover

events between paired homologues that provide temporary

connections between homologues, called chiasmata. Chiasma

formation is well described by the Szostak model [67], which

predicts that the central intermediate of crossover formation

is a four-way DNA junction structure, known as double

Holliday junction, that physically connects the two recombin-

ing DNA molecules and allows them to orient and segregate

towards opposite poles of the spindle in metaphase I [68].

The synaptonemal complex spans the gap between paired

chromosomes during meiosis and may regulate chromo-

some-wide crossover distribution [69]. Errors in meiotic
recombination are often a source of harmful mutations, aber-

rant chromosomes and defective gametes, with important

clinical consequences.

Severe genetic defects in prophase I key players generally

lead to infertility owing to gametocyte apoptosis. For instance,

in mice, null alleles in genes involved in chromosome synapsis

(e.g. SMC1, REC8, SYCP2 and SYCP3) and DSB repair result in

elevated aneuploidy rates by meiotic arrest, highly reduced fer-

tility or even infertility [70–74]. Also in mice, sensitivity to

meiotic disruption is often sexually dimorphic. Some genetic

defects affecting prophase I progression will lead to sterile

males as a result of apoptosis of spermatocytes, whereas females

remain fully fertile or subfertile (e.g. FKBP6, PRDM9). In other

cases, meiotic progression stops at different stages in females

and males, revealing distinct molecular functions of key meiotic

players, or altered checkpoints on recombination-linked pheno-

types in the two sexes (SPO11, RAD51C) [75,76]. Whether the

sexually dimorphic nature of meiotic genes involved in both

recombination and infertility is recapitulated in humans is

unclear, but important sex differences in recombination rates

are widely established [27,28,77–79]. For instance, genome-

wide crossover rates in humans correlate with polymorphisms

in RNF212 [80], with haplotypes increasing recombination rate

in one sex associated with reduced recombination rate in the

other [81].

In humans, infertility is a relatively common problem but

infertility-causing mutations in meiotic genes have remained

largely elusive, with the exception of SPO11, SYCP3, PRDM9
and CDK2 mutations [82–86]. Even when novel associations

are reported, the identification of causative polymorphisms

and mechanisms remains problematic. However, a CRISPR/

Cas9 genome editing strategy has been successful in modelling

putatively deleterious variants in mouse orthologues of human

fertility genes [85]. Alternatively, generating primordial germ

cells using induced pluripotent stem cells from infertile

patients is likely to provide valuable in vitro genetic models

to improve our understanding of meiotic mechanisms causing

infertility in humans [87].
3. Meiotic and mitotic genomic disorders
(a) Aberrant recombination promotes genomic

instability
In humans, altered meiotic recombination is associated with

large structural rearrangements, aneuploidies and infertility.

These instabilities are mostly caused by disturbances at differ-

ent steps of the molecular process as briefly summarized in

table 1. Indeed, altered meiotic recombination is the first corre-

late associated with abnormal chromosome segregation

occurring in at least 5% of clinically recognized human preg-

nancies, making aneuploidy the leading cause of pregnancy

loss [88]. More than 20% of human oocytes are estimated to

be aneuploid, compared to only 2% of spermatocytes [88]

even though human males have lower recombination rates,

highlighting a dramatic difference between female and male

regulation of chromosome segregation. The molecular factors

of this sexually dimorphic error-prone process remain largely

unknown, except for disturbances in crossover pathways,

which are associated with non-disjunction. In humans, a sig-

nificant reduction in the number of crossover events is a

feature of all trisomies studied [88] and suboptimally



Table 1. Diseases associated with dysfunctional recombination mechanisms.

recombination mechanism implicated type of disorder

chromosome synapsis and recombination initiation infertility [71,72,74]

maintenance of physical connections between

chromosomes

Holliday junction resolution

aneuploidies [88]:

trisomy 13, 15, 16, 18, 21

mosaic variegated aneuploidy

non-allelic homologous recombination genomic disorders [89]: (e.g. Charcot – Marie – Tooth disease type 1A, neurofibromatosis type

1, Williams – Beuren syndrome, Smith – Magenis syndrome, hereditary neuropathy with

liability to pressure palsies, DiGeorge syndrome, Prader – Willi syndrome, childhood spinal

muscular atrophy, 17q21.31 microdel syndrome, etc.)

mitotic non-allelic homologous recombination autism, 8p23.1 deletion, 16p11.2 deletion, 17q11.2 deletion [90], neurofibromin-1 [91]

Holliday junction resolution Fanconi anaemia [92], squamous cell carcinomas [93]

illegitimate immunoglobulin recombination severe combined immunodeficiencies [94]

recognition of double-strand breaks ataxia telangiectasia [95]

Nijmegen’s breakage syndrome [96]

excessive homologous recombination Bloom syndrome [97]

DNA repair by homologous recombination

acquired chromosomal translocations

cancers [98]

chromoplexis, chromothripsis cancers, congenital disorders [97,99,100,101]

acquired chromosomal translocations

illegitimate immunoglobulin recombination

leukaemias [102] and lymphomas [103]
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positioned chiasmata are frequently observed, such that

exchanges occurring too close to the centromere, as well as

too far, are risk factors for non-disjunction [104–108].

Furthermore, aneuploidy rates increase with age in females.

This ‘maternal age effect’ is particularly pronounced: under the

age of 25, a woman has a 2% chance of having a trisomic preg-

nancy, but over the age of 40, this chance rises to 35%. This effect

is thought to be due to age-related insults to the meiotic system

at each stage of the oocyte development [109]. A number of

studies have analysed different cohorts to determine if there

is a similar age-related relationship with recombination

[110–114], with either positive, negative or no relationship of

chiasma number and age being observed. Nonetheless, the

effect sizes and variance explained by age on chiasma frequency

are either small or insignificant genome-wide, and recombina-

tion alone is unlikely to be responsible for maternal age effects

on aneuploidies.

Aberrant gametogenesis leading to recurrent structural

genetic abnormalities is a major cause of congenital birth

defects. DSBs at sites of recombination will sometimes be

aberrantly repaired with non-homologous loci, in a process

called non-allelic homologous recombination (NAHR,

table 1), which results in structural rearrangements. In most

cases, rearrangements are flanked by low copy repeats that

typically share sequence similarity greater than 98%. Gener-

ally, repeated DNA sequences play an important role in

mediating disease-causing recombination errors. Pairing and

homologous recombination between misaligned repetitive

elements have been observed at rearrangement breakpoints

related to disease and are thought to be the main mechanism

of NAHR [89]. NAHR can result in chromosomal inversions

and translocations or in local duplications and deletions.

These rearrangements are likely to dramatically disrupt
genes, possibly creating fusion genes, and are for the most

part deleterious. Genomic disorders associated with NAHR

include: Charcot–Marie–Tooth disease type 1A, neurofibro-

matosis type 1, Williams–Beuren syndrome, Smith–Magenis

syndrome, hereditary neuropathy with liability to pressure pal-

sies, DiGeorge syndrome, Prader–Willi syndrome, childhood

spinal muscular atrophy and the 17q21.31 microdeletion

syndrome (table 1). Many of them result from megabase-

scale duplications, as in Charcot–Marie–Tooth disease

[115], or deletions, as in Smith–Magenis, Williams–Beuren,

DiGeorge and Prader–Willi syndromes. Disease-causing and

other NAHR breakpoints are not distributed evenly along the

low copy repeats and cluster in narrow hotspots [116] that are

often found at strikingly similar positions to those of hotspots

resulting from allelic recombination [117,118]. Furthermore,

NAHR hotspots and recombination hotspots share similar

properties of distribution of strand exchange [118], suggesting

that they are functionally related. Many lines of evidence also

suggested that PRDM9 variation correlates with instability

in minisatellite repeats [38] and with recurrent pathological

rearrangements, such as 17p11.2 deletions/duplication events

[119] and 7q11.23 microdeletions [120]. Recurrent duplications

or deletions at 17p11.2 are implicated in Charcot–Marie–

Tooth disease and hereditary neuropathy with liability to

pressure palsies, whereas 7q11.23 microdeletions cause

Williams–Beuren syndrome. PRDM9 thus appears to be

involved in meiotic instabilities leading to genomic disorders.

There appears to be a sex-dependent component to some

rearrangements, which do not arise at the same frequencies in

paternal and maternal meioses. For example, the duplication

or deletion at 17p11.2, associated with Charcot–Marie–Tooth

disease or hereditary neuropathy with liability to pressure

palsies, respectively, arises from two distinct sex-dependent
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mechanisms [121]. Most de novo rearrangements are from

paternal origin and arise by NAHR between the two chromo-

some 17 homologues, whereas the rare rearrangements of

maternal origin result from an intra-chromosomal process.

Interestingly, this region of chromosome 17 appears to have

higher recombination rates in females than in males, suggesting

that oogenesis may afford greater protection from misalignment

during synapsis, or that male-specific factors may operate

during spermatogenesis to help stabilize the rearrangements.

Alternatively, sex-specific differences might reflect different

selection bias against the rearranged alleles in male and

female germ lines. Differences in NAHR frequency between

male and female were also found at other loci, with childhood

spinal muscular atrophy deletions originating mainly in sper-

matogenesis [122], whereas 80% of de novo neurofibromatosis

type 1 deletions are of maternal origin [123].
.B
372:20160465
(b) Mitotic homologous recombination and disease
Parallels appear to exist between meiotic recombination and

tumorigenesis in somatic cells: in addition to the role of hom-

ologous recombination in promoting genomic stability by

repairing DSBs in cells undergoing mitosis [124,125] and the

overlapping molecular machinery involved [98,126,127], aber-

rant expression of proteins exclusively expressed in healthy

adult testis, and associated with meiosis-specific functions,

has recently been observed in tumours originating from

non-germline tissues [128]. Moreover, PRDM9 and the inter-

sister chromatid cohesion protein RAD21 L were found to be

expressed in some cancer cell lines [129]. Owing to the meiotic

recombination-specific functions of these proteins, it has been

hypothesized that they might interfere with mitotic genome

regulation [128].

Genome integrity in mitotic cells greatly relies on recombi-

nation, required for accurate repair of DSBs incurred either by

exogenous (e.g. ultraviolet light) or endogenous processes (e.g.

damage incurred during replication) during the life of the cell

[130]. Owing to the essential role of mitotic recombination in

genome integrity, the dysregulation of molecular mechanisms

involved can often lead to diseases, including cancer (table 1).

Research on the effect of mitotic recombination on the

progression of tumorigenesis has largely focused on under-

standing the impact of loss of function mutations in tumour

suppressor genes that are part of the homologous recombina-

tion repair (HRR) pathway, such as those included in the

recognition of the DSB by the MRE11A-NBS1-RAD50 complex,

the DNA resection guided by BRCA1 or the location of

the recombinase RAD51 by BRCA2 [98,131,132]. The loss of

function mutations in genes involved in the HRR pathway

often lead to its inactivation, rendering DSB repair entirely

dependent on the alternative non-homologous end-joining

pathway. The non-homologous end-joining pathway does

not involve homologous sequences as a template for repair,

resulting in small insertions and deletions at the breakpoint

locations [133] and therefore leaves a distinct mutational signa-

ture, characterized by increased genomic rearrangements and

small indels, in tumours with HRR-pathway inactivation [134].

Capturing the genomic signature underlying the inactivation of

the HRR pathway is important in cancer research, given the

therapeutic success of poly(ADP-ribose) polymerase inhibitors

that target HRR-pathway-deficient tumours [135,136]. By pre-

venting genomic rearrangements through the accurate repair

of highly damaging DSBs, mitotic recombination processes are
essential for ensuring genomic stability, although recombination

processes may also be mutagenic when they go awry.

Mutagenic mitotic recombination events can mainly be

identified through: (i) structural variation generated by

NAHR or (ii) loss of heterozygosity (LOH) driven by biased

gene conversion (figure 1). Structural variation detection algor-

ithms can be used naively to detect NAHR events [141].

However, because NAHR often involves repetitive loci sharing

a high homology, structural variation algorithms identify

NAHR events with high error rates. Parks et al. [141] developed

a Bayesian probabilistic model improving the detection of

NAHR from sequencing data by focusing on regions prone

to NAHR through their repetitive nature, which complements

structural variation detection algorithms by enhancing

their detection. Chromosomal microarray analysis of a cohort

of 25 144 disease patients has recently catalogued NAHR-

mediated copy number variants among numerous diseases

(table 1) [90]. Furthermore, mitotic NAHR, found in a mosaic

pattern across cells, appears to be associated with diseases

involving genes with a large number of repeats such as the

neurofibromin-1 loci [91] (table 1), further involving the

mutagenicity of mitotic recombination to disease.

Mitotic-biased gene conversion is generally thought to be

associated with tumorigenesis, as local LOH events are fre-

quent among tumour genomes [142,143]. Notably, LOH of

the wild-type allele of tumour suppressors is frequently and

recurrently observed. The detection of LOH is possible through

sequencing and identification of heterozygous loci in the germ-

line genome that are homozygous in the tumour genome

(figure 1c) [137]. Traditionally, LOH events were captured by

detecting karyotypic changes [144], while newer methods

leverage read counts from high throughput sequences [145]

and SNP array information [143]. Mitotic-biased gene conver-

sion events leading to LOH are identified once they have

reached fixation in the tumour population due to their high

selective advantage on tumour growth, whereas passenger

alleles generated by mitotic-biased gene conversion with

neutral effects will be much less likely to be found at high fre-

quency across tumour cells. Some LOH events likely originated

owing to general genome instability, making it challenging to

distinguish which LOH events are associated with causing

genomic instability, and which are a consequence of it. None-

theless, LOH inference has been used to identify candidate

cancer drivers, as it is likely that the loss of an allele throughout

cancer clonal populations confers a selective advantage for

cancer progression, such as the loss of function of wild-type

alleles of MLH1/MSH2 [146].

Finally, some genomic regions are prone to mitotic recom-

bination events, including Alu transposable elements, which

are additionally found neighbouring leukaemia transloca-

tion events [147], suggesting a link of the mutagenic effect

of mitotic recombination to leukaemogenesis [103].
4. Evolution and functional impact of sex and
recombination

(a) Evolutionary advantages of recombination
Fisher [12] and Muller [13] proposed that sexual reproduction

and recombination are evolutionarily advantageous as they

accelerate the rate of fixation of beneficial mutations and

thereby the rate of adaptation by bringing beneficial alleles
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Figure 1. Gene conversion leading to LOH events in tumour cells. (a) A potential tumour cell that has incurred a LOH will increase in frequency as a subpopulation
within a tissue or tumour. (b) A cell repairing a DSB mediated via a crossover or non-crossover, giving rise to two daughter cells exhibiting LOH. The examples shown
correspond to a model in which the DSB repair pathway is followed by the resolution of a double Holliday junction, although other mechanisms may lead to gene
conversion (as described in [137 – 139]). Mismatched bases may originate via DNA synthesis when the sister chromatid is used as a template for repair, resulting in a
non-reciprocal exchange between both DNA strands [140]. LOH occurs during gene conversion when germline variants are heterozygous (as shown). If homologous
recombination occurs during a two-homologue chromatid invasion, as is more often the case, only a non-crossover model leads to LOH, whereas with a four
chromatid invasion, crossovers and non-crossovers lead to LOH only when recombinant chromatids segregate to the same daughter cell. (c) LOH events can be
captured by counting the number of sequencing reads from tumour samples carrying the alternative alleles at heterozygous sites identified in germline (or healthy
tissue). Nevertheless, challenges are associated with the detection of LOH events from sequencing data. Owing to cell mixture in the tumour, the signal for LOH
events can be lost, and may not distinguishable from sequencing errors and mapping bias effects.
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that arise initially on different genomic backgrounds together

on the same chromosome. Later, when assuming that most

mutations are deleterious, Muller proposed that in the absence

of recombination, disadvantageous mutations accumulate in

an irreversible manner such that a mutation-free state can

never be recovered (reverse mutations are rare), the so-called

Muller’s ratchet effect [14]. These initial theoretical models

were extended by the introduction of additional assumptions

on the role of random drift, selection and linkage. Such devel-

opments led to the emergence of concepts like Hill–Robertson

(HR) interference, which postulates that in the presence of drift

and linkage, linked loci subject to selection will interfere

with each other’s allelic frequency trajectories over time

[15,17]. Allele frequencies at one site will not only depend on

drift and their evolutionary fitness but will also depend

on the fitness of linked genotypes. The persistence of associ-

ations between loci generated by HR interference depends
on the recombination rate between them: the smaller the

recombination rate, the longer these associations will last.

Selection on beneficial mutations drives target mutations to

fixation, increasing LD and decreasing neutral diversity in

linked surrounding regions (figure 2a), commonly referred to

as selective sweeps. Positive selection was thought to be respon-

sible for genetic diversity troughs and elevated population

differentiation in or close to genic regions [149] as well as in

regions of low recombination [150]. However, complete selec-

tive sweep signatures across the genome were found to be

scarce [151] and instead, low levels of diversity in regions of

low recombination are more likely to have been generated by

background selection against deleterious mutations [152–154]

(figure 2b). Under a scenario of positive selection and in the

presence of HR interference [17,148,155], slightly deleterious

mutations may reach high frequencies when neighbouring the

target of positive selection (green diamond, figure 2a). In the
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Figure 2. Schematic of HR interference under alternative selection regimes: (a) advantageous mutations arise on different backgrounds (haplotypes), interfere with each other
and prevent each other’s fixation. Linked neutral and slightly deleterious variants will increase in frequency until recombination generates new haplotypes, which drive
beneficial mutations (now in the same haplotype) quickly to fixation while purging slightly deleterious alleles. (b) Deleterious alleles enter the population on different
haplotypes. Owing to drift and/or to interference with selective advantageous mutations, they remain at low frequencies in the population until recombination generates
a new haplotype resulting from the combination of the two deleterious alleles. Selection will remove this new haplotype more efficiently. However, an advantageous mutation
will be lost, given that there was not enough time for recombination to break its association with a deleterious background. (c) Negative selection on multiple linked slightly
deleterious mutations (referred to as a weak HR effect in Charlesworth et al. [148])—owing to the limited burden carried by such mutations, slightly deleterious variants tend
to remain and accumulate in populations. Haplotypes that carry a larger mutational burden can be successively removed from the population. Interference occurs when there is
little to no recombination, and selection at other loci on different haplotypes reduces the effective population size, impacting the rate at which they are lost from the population
by making it more difficult to remove haplotypes that carry these deleterious mutations. Recombination combines chromosomes to create haplotypes that are free of or are
loaded with deleterious mutations, increasing the efficacy of selection. Examples of mutations along the chromosomes (grey lines) are represented by different colours.
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case of background selection with HR interference, advan-

tageous mutations arising on a chromosome carrying several

deleterious mutations will have a lower, if not null, chance of

spreading in the population (grey star, figure 2b). Moreover,

in the presence of HR interference, selection against slightly

deleterious linked mutations will interfere with the elimination

of neighbouring harmful alleles of small effect onto alternative

haplotypes [156]. The impact of HR interference on the effec-

tiveness of selection can be described as a process associated

with a reduction in effective population size at a locus under

selection and surrounding loci, reducing variation and selection

efficacy. Recombination has the potential to elevate effective

population size locally by recombining selected alleles onto

other backgrounds, making natural selection more efficient.

(b) Impact of recombination on genomic diversity and
mutation load in humans

Exome variation among human populations has revealed

that humans carry a surprisingly large number of potentially
damaging or disease-causing mutations [157–159]. Under-

standing why mutational burden persists requires

understanding the role of population demographic and

recombination history in the accrual of deleterious mutations.

Several studies have shown that smaller human populations

harbour relatively more damaging functional variation, rela-

tive to the number of neutral variants, when compared with

their larger progenitor populations [157,160,161]. Elevated

mutational burden in small populations may be caused by

either inbreeding or decreased effectiveness of selection in

removing potentially damaging mutations. While studies

disagree with respect to the existence of significant differences

in total mutation load among populations with different demo-

graphic histories [162,163], none of the above studies evaluated

the impact of genomic heterogeneity in recombination frequen-

cies on mutation load. More recently, by comparing patterns of

accumulation of putative damaging mutations across regions

with low (coldspots) and high (hotspots) rates of recombina-

tion, Hussin et al. [164] showed that coding regions with low

rates of crossing over harbour relatively larger amounts of



rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

372:20160465

8
potentially damaging mutations than highly recombining

regions, consistent with reduced efficacy of purifying selection

in purging harmful variation in coldspots. Furthermore, the

efficiency of purifying selection was found to lessen as the

number of alleles being selected against on the same haplotype

increases, consistent with HR interference, with this effect

being amplified as the effective population size becomes

smaller (figure 2c).

While recombination rates have been found to shape

diversity along the human genome mainly by increasing the

efficacy of natural selection [164–166], evidence exists for

local impact of recombination on sequence evolution via

GC-biased gene conversion [46,138,167,168]. GC-biased gene

conversion results in the non-reciprocal transmission of geno-

mic content during the recombination process and increases

the transmission probability of GC alleles over AT. The

biased transmission of GC alleles may ultimately cause the

local fixation of GC alleles in hotspots [169], likely contributing

to the human mutation load [138,170]. Although genome-wide

GC-biased gene conversion is a relatively weak evolutionary

force [166,171], this process may lead to an increase in disease

burden when recessive derived alleles have a higher chance

of transmission due to GC-biased gene conversion [171].

In addition, it has been suggested that GC-biased gene con-

version has evolved to compensate for the mutational

burden directly associated with high mutation rates caused

by the deamination of methylated cytosines at recombination

hotspots [172].
5. Conclusion and future perspectives
In the past decade, our understanding of meiosis and the mol-

ecular regulation of recombination has greatly improved

[68,172]. We have learned that the genomic location of DSBs,

which promote meiotic recombination initiation, is non-

randomly distributed and controlled by genetic and epigenetic

factors such as PRDM9 [7,8,10,43,173–175] and potential

interactors [46,176,177]. While the processes catalysed by

PRDM9 binding are important, it is equally critical that we

characterize the molecular factors contributing to the initial

recruitment of PRDM9 to its binding sites (see the review by

Tiemann-Boege et al. in this issue [46]). Differences in the inten-

sity of DSB hotspots are only partially explained by genetic

variation at PRDM9 binding sites [44]. This suggests that not

all potential PRDM9 binding sites will incur a DSB and initiate

the process of recombination, with recent evidence for

additional levels of regulation implicating KRAB-ZNF genes

in meiotic recombination suppression [178]. Local chromatin

state influences the binding of PRDM9, but it remains to be

investigated how both wider sequence context and chromatin

accessibility are associated with differences in the intensity of

DSB hotspots in individuals carrying the same PRDM9 alleles.

An intriguing hypothesis is that fertility may be influenced by

the specific allele one carries, if it positively affects the

expression of important meiotic genes, such as CTCFL [178].

Furthermore, while some missense PRDM9 mutations have

been associated with infertility in human males [84,86], a

loss of function variant of PRDM9 in a fertile human female

has recently been observed [179], raising the possible existence

of sexual dimorphism in recombination-associated infertility in

our species. Together this suggests that in humans, PRDM9

might not be imperative for the correct functioning of
recombination processes, as compensatory factors may exist,

at least in human females.

Despite such advances, key steps of the mammalian meiotic

programme are weakly understood, because meiosis remains

challenging to study due to the lack of appropriate in vitro
models. For example, cytological techniques require fetal ovar-

ian tissue or testicular biopsies, but more importantly, these

methods cannot be used for high-resolution analyses of DSBs

and crossovers (see [180] for exception). On the other hand,

sperm genotyping assays, which rely on PCR amplification of

DNA from single-sperm and pooled-sperm, can examine thou-

sands of meioses from a single individual at resolutions of less

than 0.5 kb [181], the trade-off being that it remains technically

challenging to study genomic regions larger than 300 kb at

high resolution.

More recently, novel techniques have been developed to

facilitate genome-wide identification of epigenetic marks,

sites of recombination and nucleosome organization in meiosis

[41,46,181–184]. These approaches generally map DSB sites

directly and while not directly mapping crossovers, DSB for-

mation is the prelude to recombination. One of these assays,

using chromatin immunoprecipitation followed by sequencing

(ChIP-seq) and sensitive detection of single-stranded DNA,

revealed that PRDM9 is not required for DSBs to occur in

mice, but rather, moves them away from H3K4me3-marked

promoter sites [185]. Furthermore, H3K36me3 and H3K4me3

ChIP-seq data in spermatocytes show that PRDM9 is able

to place the two epigenetic marks on the same histone

molecule in vivo, a signature that is exclusive to recombination

hotspots [41]. Finally, a newly developed nucleotide-resolution

technique, which sequences short oligonucleotides covalently

bound to SPO11, provides detailed description of DSB

hotspots, locating them among methylated nucleosomes,

and has highlighted the importance of the ATM kinase in

shaping sex-chromosome and the autosomal DSB landscape

[186]. Application of these new techniques has so far been

limited to studying male recombination, but new approa-

ches are emerging to study female meiosis directly, and to

provide precise information about meiosis in human oocytes.

For example, it is now possible to generate genome-wide

maps of crossovers and chromosome segregation patterns by

recovering all three products of a single female meiosis,

namely the two polar bodies and the activated oocyte,

allowing the analysis of human tetrads [185,187,188]. Similarly,

genomic analyses of single human oocytes using the polar

bodies and recovering the female pronucleus from zygotes

can be performed with multiple annealing and looping-

based amplification cycle-based sequencing technology [189].

These technologies supported the generation of genome-wide

oocytes’ crossover maps and offer improved detection of

chromosome abnormalities.

Finally, our understanding of the impact of GC-biased gene

conversion, meiotic drive and recombination-related muta-

genicity, beyond large-scale chromosomal rearrangements,

on individual mutational burden may benefit considerably

from single-cell sequencing by allowing the measurement of

de novo mutations in the germline [189–191]. Single-cell

sequencing of the gamete transcriptomes would specifically

allow a better understanding of the repeat instability occurring

in the PRDM9 ZnF coding sequence [192], and the rate at which

new alleles of PRDM9 are generated. As the costs of single-cell

sequencing technologies decrease, we will be able to dissect

complex and heterogeneous gametocyte populations, which
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will shed light on the extent to which individual-specific

hotspots differ from the expected hotspot distribution and

how these exceptions impact human health.
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56. Úbeda F, Wilkins JF. 2011 The Red Queen theory of
recombination hotspots. J. Evol. Biol. 24, 541 – 553.
(doi:10.1111/j.1420-9101.2010.02187.x)

57. Baker CLL, Kajita S, Walker M, Saxl RLL, Raghupathy
N, Choi K, Petkov PM, Paigen K. 2015 PRDM9 drives
evolutionary erosion of hotspots in Mus musculus
through haplotype-specific initiation of meiotic
recombination. PLoS Genet. 11, e1004916. (doi:10.
1371/journal.pgen.1004916)

58. Singhal S et al. 2015 Stable recombination hotspots
in birds. Science 350, 928 – 932. (doi:10.1126/
science.aad0843)

59. Auton A et al. 2013 Genetic recombination is
targeted towards gene promoter regions in dogs.
PLoS Genet. 9, e1003984. (doi:10.1371/journal.
pgen.1003984)

60. Mihola O, Trachtulec Z, Vlcek C, Schimenti JCJC,
Forejt J. 2009 A mouse speciation gene encodes a
meiotic histone H3 methyltransferase. Science 323,
373 – 375. (doi:10.1126/science.1163601)

61. Flachs P et al. 2012 Interallelic and intergenic
incompatibilities of the Prdm9 (Hst1) gene in
mouse hybrid sterility. PLoS Genet. 8, e1003044.
(doi:10.1371/journal.pgen.1003044)

62. Flachs P, Bhattacharyya T, Mihola O, Piálek J, Forejt
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