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Meiotic recombination is necessary for successful gametogenesis in most

sexually reproducing organisms and is a fundamental genomic parameter,

influencing the efficacy of selection and the fate of new mutations. The molecu-

lar and evolutionary functions of recombination should impose strong

selective constraints on the range of recombination rates. Yet, variation in

recombination rate is observed on a variety of genomic and evolutionary

scales. In the past decade, empirical studies have described variation in recom-

bination rate within genomes, between individuals, between sexes, between

populations and between species. At the same time, theoretical work has

provided an increasingly detailed picture of the evolutionary advantages

to recombination. Perhaps surprisingly, the causes of natural variation in

recombination rate remain poorly understood. We argue that empirical and

theoretical approaches to understand the evolution of recombination have

proceeded largely independently of each other. Most models that address

the evolution of recombination rate were created to explain the evolutionary

advantage of recombination rather than quantitative differences in rate

among individuals. Conversely, most empirical studies aim to describe vari-

ation in recombination rate, rather than to test evolutionary hypotheses. In

this Perspective, we argue that efforts to integrate the rich bodies of empirical

and theoretical work on recombination rate are crucial to moving this field for-

ward. We provide new directions for the development of theory and the

production of data that will jointly close this gap.

This article is part of the themed issue ‘Evolutionary causes and

consequences of recombination rate variation in sexual organisms’.
1. Introduction
During meiosis, germ cells generate DNA double-strand breaks. A minority of

these breaks are repaired as crossovers between homologous chromosomes.

This process of recombination diversifies offspring genomes, interacting with

other evolutionary forces to shape major features of the genome landscape,

including nucleotide diversity [1–4], codon bias [5], base composition [6] and

repetitive element density [7,8]. The number and placement of crossovers along

chromosomes are tightly controlled, with aberrations reducing fertility and off-

spring viability [9]. Owing to the significance of recombination for evolution

and reproduction, the rate at which this process occurs has long been of interest

to biologists.

The observation that the recombination rate varies among individuals, among

populations and among species (reviewed by [10–12]) raises the questions of how

and why this fundamental genomic characteristic evolves. In this Perspective, we

suggest that despite decades of research relevant to these questions, evolutionary

biologists remain surprisingly far away from answering them. We argue that an

important barrier to progress has been a lack of coordination between theoretical

and empirical studies. Successes at documenting variation in recombination rate

often proceed without an underlying theoretical framework, challenging the

ability to test hypotheses and convert observed patterns into inferences about

evolutionary process. Theoretical advances that reveal the population genetic

conditions under which recombination is predicted to evolve ignore key
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biological aspects of recombination rate variation, including

genetic complexity and genomic scale.

Our goal is to catalyse alignment and integration of theor-

etical and empirical efforts to understand recombination rate

evolution. We begin with a short overview of existing theory

on the evolution of recombination rate, highlighting the key

predictions and ingredients of existing models. Next, we

describe how empirical work can better evaluate theoretical

predictions and we motivate the data-based examination of

the role of natural selection in recombination rate evolution.

Finally, we suggest new directions for theory that capture

observed patterns of recombination rate variation.
 il.Trans.R.Soc.B
372:20160469
2. General features of theoretical models of
recombination rate evolution

Like other phenotypes, recombination rate has the potential

to affect individual fitness and experience direct selection, in

this case by impacting gamete viability (direct selection—

table 1). In contrast with most other traits, recombination

rate itself shapes offspring genotype frequencies, raising the

possibility of indirect selection. This type of indirect selection

on recombination rate can be mediated by short-term or

long-term advantages [13]. Short-term benefits occur when

recombination breaks apart deleterious gene combinations

and immediately increases the mean fitness in the next

generation. Long-term benefits accrue when recombination

increases the additive genetic variance in a population, enabling

selection (on other traits) to act more efficiently [13]. Under-

standing how recombination rate evolves requires knowledge

of the magnitude and direction of direct selection, short-

term indirect selection and long-term indirect selection. The

sum of these effects determines whether alleles that modify

recombination rate spread through a population [13,14].

Identifying the conditions under which indirect selection

favours increases in recombination has been a particularempha-

sis of theory treating the evolution of recombination rate. A first

class of models, called optimality [15] or intrinsic models [16],

examines how recombination rate optimizes group-level traits,

such as equilibrium mean fitness [17–25] or mutational load

[23,26–30]. This set of models compares populations that vary

in recombination rate [15], but does not explicitly consider gen-

etic modifiers of the trait. The second class of models, termed

modifier [15] or extrinsic models [16], examines how various

forms of individual-level selection change recombination rate

[31,32]. In this group of models, a genetic modifierof recombina-

tion rate is treated as a single, Mendelian locus at which different

alleles confer different recombination rates to individuals.

The frequency of crossing-over in a specific genomic interval

between two additional loci is considered. By varying selection

pressures and tracking the change in frequency of modifier

alleles, these models explicitly analyse the expected change

in recombination rate within a single population. Modifier

models have been favoured over optimality arguments because

they invoke individual-level, rather than group-level, selection

and they tend to reveal complex, short-term dynamics [15].

The opportunity for indirect selection on recombination rate

depends on the degree and form of non-random associations

between alleles at different loci, or linkage disequilibrium

(LD). LD between two loci harbouring alleles A, a and B, b
(respectively) can be measured as the deviation (DAB) of the

haplotype’s frequency ( pAB) from its expected frequency,
given individual allele frequencies ( pA and pB) and free

recombination:

DAB ¼ pAB � pApB: ð2:1Þ

When the population is at linkage equilibrium (DAB ¼ 0),

recombination does not affect offspring genotype frequencies

because the association between alleles cannot be further ran-

domized and indirect selection on recombination rate cannot

be generated. As a result, most population genetic theory

on the evolution of recombination focuses on understand-

ing how evolutionary processes generate and/or maintain

LD.

Two potentially important determinants of LD that have

received considerable attention from theoreticians are epistasis

and genetic drift [14]. In this context, epistasis is usually defined

as non-additive allelic effects across loci, such that the mean phe-

notype for a given multi-locus genotype does not match its

expected value, given the mean phenotypes of the individual

alleles [33–35]. Epistasis for fitness results in selection for ben-

eficial combinations of alleles, increasing their frequency

within a population and generating LD [36]. Epistatic scenarios

range from pairwise interactions between alleles to nonlinear

cumulative effects of new mutations; both are featured in the

theory of recombination rate evolution [37,38]. In finite popu-

lations, genetic drift leads to non-random associations

between beneficial and deleterious alleles, thereby delaying

the response to selection [39].

Even when epistasis and/or genetic drift generate LD, it

remains unclear whether more recombination should be gener-

ally beneficial. Reducing LD can increase ‘recombination load’

by breaking apart beneficial combinations of alleles that have

accumulated due to selection [13,40,41]. Thus, recombination

may impede adaptation and eventually be eliminated, as

recombination-reducing modifiers become associated with

beneficial allelic combinations and spread through the popu-

lation [13,40]. This concept is formalized in the ‘Reduction

Principle’, which states that only modifiers that reduce recom-

bination rate can invade a population under equilibrium

conditions (reduction principle—table 1) [15,41–43]. The wide-

spread persistence of crossing-over despite these theoretical

constraints is referred to as the paradox of recombination

[41]. However, equilibrium conditions require idealized large

populations with no mutation, no migration, random mating

and constant viability selection [15]. Such populations are

likely rare in nature. By identifying conditions under which

sets of these assumptions are routinely violated, theoreticians

have generated a rich body of work that describes sources of

indirect selection on recombination rate. Eight of these theoreti-

cal models are outlined in table 1. Here, we briefly describe

three main categories of hypotheses that predict indirect

selection for increased recombination rate.

(a) Negative epistasis
Negative epistasis describes genetic interactions in which

two beneficial alleles, when present in the same individual,

increase fitness less than expected based upon their separate

effects or conversely, when two deleterious alleles decrease fit-

ness more than expected based upon their separate effects. As

a result, negative epistasis maintains LD, characterized by a pau-

city of genotypes with the most extreme fitness values and an

excess of individuals near the mean fitness value [44]. By redu-

cing LD, recombination generates more extreme phenotypes,

increasing the genetic variance in the population. Greater genetic
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variance allows populations to purge recurrent deleterious

mutations more efficiently and respond to directional selection

more rapidly (negative epistasis—table 1) [40,44,45]. As a

result of these long-term benefits, genetic modifiers that increase

the recombination rate may become associated with beneficial

allele combinations and spread through the population

[13,29,42,44,46].

(b) Heterogeneity in selection
Heterogeneity in selection pressure over time, across space,

or between the sexes can generate LD (table 1). Fluctuating

environments can favour increased recombination rate when

allelic combinations that are advantageous at one time point

become disadvantageous at another time point, resulting in

an overabundance of deleterious allelic combinations when

environmental conditions change (temporal heterogeneity—

table 1) [13,37,40,47–49]. In this scenario, recombination

produces short-term benefits by breaking up maladaptive

allelic combinations and immediately increasing mean fitness

among offspring [13]. However, the degree to which recombi-

nation is favoured is highly sensitive to the frequency of

environmental fluctuation. To account for the high levels

of recombination that are observed, fluctuations must

occur every 2–5 generations and cycle with a period of 4–10

generations [13,47].

Whereas abiotic factors are unlikely to produce such rapid,

consistent changes in the sign of epistasis, biotic factors offer

clear potential [13,50]. In particular, coevolution between

hosts and parasites can generate epistatic fluctuations of the

form needed to favour recombination (host–parasite inter-

actions—table 1) [48,51]. This occurs when under-represented

combinations of alleles offer increased resistance to sufficien-

tly virulent parasites, which adapt to the most abundant

genotypes within a population [37,48]. In this scenario, recom-

bination produces rare combinations of alleles that are less

susceptible to parasites [37,48]. Inter-locus sexual conflict can

also generate disadvantageous allelic combinations due

to antagonistic coevolution between the sexes (inter-locus

sexual conflict—table 1) [52]. In addition to varying over

time, selection can also vary over space. Spatial variation in

the strength or direction of selection among populations can

generate differences in local allele frequencies. With migration,

these differences produce LD among offspring (spatial hetero-

geneity—table 1) [14]. The direction and magnitude of the

indirect selection on recombination rate produced by migration

are determined by the similarity in selection pressures between

the two populations [14,53,54]. For example, recombination

modifiers that reduce the recombination rate are expected to

frequently, but not always, spread in the face of maladaptive

gene flow, potentially playing an important role in the process

of speciation [53,54].

(c) Genetic drift
Within finite populations, the interaction between genetic drift

and selection results in the build-up of LD [39,55,56]. Genetic

drift generates positive LD, when a beneficial mutation arises

on the background of another beneficial allele, and negative

LD, when a beneficial mutation arises on the background of a

deleterious allele. Haplotypes with double beneficial alleles

can quickly fix, thereby eliminating positive LD. In contrast,

the association between beneficial and deleterious alleles may

persist and slow the response to selection [39,57]. The net

effect is an accumulation of negative LD, referred to as the
Hill–Robertson effect [55,58]. By breaking down LD, recombi-

nation modifiers can free beneficial mutations from their

backgrounds and increase in frequency within populations

due to their association with advantageous haplotypes

(Hill–Robertson effect—table 1) [39,55–57].
3. Generating data that address existing theory
Theoretical work has provided an increasingly detailed picture

of the evolutionary advantages to recombination, but the

causes of natural variation in recombination rate remain

poorly understood. Here, we highlight some empirical find-

ings on the evolution of recombination rate, describe their

current disconnect with existing theory and recommend

empirical approaches to bridge this divide.

(a) Measuring recombination rate
Multiple methods can be used to measure recombination

rate, depending on the genomic scale of interest (figure 1).

The total number of crossovers in a genome can be estimated

by counting chiasmata (the physical bridges formed between

homologous chromosomes) or in some species, by counting

foci of the MLH1 mismatch repair protein (which localize to

crossover sites and can be visualized with immunofluores-

cence) in meiotic cells [59]. These approaches characterize

recombination in single cells; the recombination rate of an indi-

vidual is estimated as the average number of crossovers among

cells. A second method for estimating recombination rate is to

examine the transmission of polymorphic DNA markers on

the same chromosome in crosses or pedigrees. By comparing

parent and offspring genotypes, the frequency of recombination

between a pair of markers can be calculated and converted to a

genetic distance. One centiMorgan (cM) is defined as the

expected number of crossovers between markers in 100 meioses

[60]. This linkage mapping approach enables the profiling of

recombination rate variation along chromosomes. The genomic

level of resolution depends on the number of meioses surveyed

and is typically on the scale of megabases (Mb). Two methods

enable estimation of recombination rate on finer (kilobase; kb)

scales. The frequencies of marker haplotypes in very large num-

bers of sperm reveal recombination rates for individual males in

targeted genomic regions [61]. Alternatively, patterns of LD

among single nucleotide polymorphisms (SNPs) in samples

of unrelated individuals can be converted to recombination

rates using population genetic models [62]. This approach,

which yields time- and sex-averaged recombination rate esti-

mates for populations, can be applied to the entire genome. In

all methods, the recombination rate between markers is typi-

cally standardized across interval sizes by dividing by the

number of base pairs separating markers.

(b) Towards hypothesis-based empirical studies
Empirical studies using methods described above have begun

to describe how recombination rate varies along multiple evol-

utionary timescales. Individuals from the same species differ in

the number and/or placement of crossovers [11,63–78].

Species pairs display divergent recombination rates in specific

genomic intervals or across the genome [79–85]. Across the

phylogeny of eutherian mammals, more closely related species

tend to show more similar genome-wide recombination rates

[10,86–88]. Nevertheless, these patterns remain disconnected

from the theoretical hypotheses reviewed above, and few
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inferences about the underlying evolutionary processes have

been reported.

Among existing theoretical hypotheses for the evolution of

recombination rate, long-term indirect selection has received

the most empirical attention (negative epistasis—table 1). The

results of these studies have been largely inconclusive. Recombi-

nation rate increases in response to artificial selection targeting

unrelated phenotypes in some experiments (reviewed by

[41,57]). Although similar patterns might be expected to be

associated with domestication [89], domesticated plants and

animals show little to no evidence for expanded genetic maps

compared to their wild relatives [90–92]. Another empirical

approach that has been employed is to determine whether the

conditions required for different theoretical hypotheses about

the evolution of recombination rate exist. For example, theoreti-

cal models have clearly demonstrated that if indirect selection

drives recombination rate evolution, the magnitude and sign

of LD and epistasis must play key roles [14]. Although some

empirical studies have attempted to quantify these variables

(at least in experimental populations; reviewed in [93]), a con-

nection to variation in recombination rate itself is still missing.

We encourage empirical work that goes beyond evaluating

the assumptions of existing models to directly testing their

predictions.

From a theoretical perspective, the best models are those

that make realistic assumptions and generate recombination

rate evolution across the broadest parameter space. Based on

these criteria, models that consider the combined action of

genetic drift and selection suggest that Hill–Robertson effects

may constitute a pervasive form of indirect selection on recom-

bination rate. The major assumptions of these models—that

populations are finite, are subject to recurrent mutation, and

experience pervasive selection—likely apply to most natural

populations [39]. But direct tests of predictions from this

model are needed. Comparing recombination rates in conspe-

cific pairs of populations with different effective population
sizes (Hill–Robertson effect—table 1) and little to no evidence

for gene flow would be one way to evaluate the importance of

Hill–Robertson effects for recombination rate evolution [39].
(c) The role of selection
Although theoretical work is strongly biased towards selective

explanations, there is limited empirical evidence for a role of

selection in the evolution of recombination rate [12]. Three

components must be present for the process of natural selection

to occur: variation, inheritance and fitness differences. As men-

tioned above, empirical studies have documented extensive

variation in recombination rate between individuals. Ample

evidence indicates that phenotypic variation in recombina-

tion rate has a heritable component. Recombination rate

shows resemblance among relatives in human pedigrees

[69,94,95], differs among lines raised in a common environ-

ment [66,74,76,87,96,97] and responds to artificial selection

in Drosophila melanogaster and other insects [63,65,98–113].

Broad-sense or narrow-sense heritability estimates from

humans, mice, insects and maize range from 0.08 to 0.69

[94,95,99,100, 102,112,114–116]. A few observations raise the

prospect that recombination rate could affect fitness. Fecundity

and recombination rate may be positively correlated in human

mothers [69,117,118]. Phylogenetic comparative methods

suggest that the genome-wide recombination rate has

increased during mammalian evolution [88]. PRDM9, a protein

that helps determine the position of crossovers in mice and

humans, possesses one of the most rapidly evolving (zinc-

finger) domains in mammals [119,120]. Finally, cellular needs

to avoid non-disjunction (by generating at least one crossover

per chromosome or chromosome arm) [117,121–124] and to

minimize costs of double-strand break repair should impose

selective bounds on the genome-wide recombination rate in

nature [9,10,121,122].
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A host of experiments using insects attempted to increase

and/or decrease the recombination rate by direct artificial

selection [63,65,98–113]. All but one study focused on cross-

over rates in individual genomic intervals monitored by

visible markers. Ten of 15 studies that tried to increase the

recombination rate were successful in at least one line; six of

15 studies were able to decrease crossing-over. Among the

subset of experiments that applied both selection for higher

and lower recombination rate, there was no obvious asymme-

try in results. Although these reports are restricted to a few

species of insects (mostly D. melanogaster) and results were

highly variable both between and within experiments, this

series at least demonstrates the potential for recombination

rate to respond to directional selection in nature.

This summary underscores a few notable barriers to under-

standing the role of selection in recombination rate evolution.

Whereas most models focus on indirect selection, patterns of

variation in recombination rate and the functional role of

recombination in meiosis suggest that direct selection may con-

tribute to the evolution of this trait. In addition, empirical

evidence for a relationship between recombination rate and

fitness in natural populations is lacking [12]. Measuring both

direct and indirect selection pressures on recombination

rate in nature is a necessary next step to connecting data with

existing theoretical predictions.

We offer several suggestions to elucidate the contributions

of selection to recombination rate evolution. First, we encou-

rage empirical work that better defines the lower and

(especially) the upper bounds on recombination rate that reflect

meiotic constraints. Widely cited lower bounds—one crossover

per chromosome or one crossover per chromosome arm—are

still based on data from a small number of species, and it is

possible that this limit itself evolves [122]. Potential ceilings

on the recombination rate remain poorly defined. Better charac-

terization of the bounds on recombination rate and their

meiotic causes would identify potential sources of purifying

and stabilizing selection. Second, researchers should strive

to connect variation in recombination rate with the natural

environment. The question of whether recombination rate

shows clines across gradients of geography and other environ-

mental variables remains to be addressed. Third, quantitative

genetic methods can be used to determine whether other pat-

terns of recombination rate variation are consistent with

neutral expectations. Genetic variance in recombination rate

can be partitioned between and within populations using lab-

oratory crosses. If recombination rate evolves neutrally, this

partitioning should match levels of population structure at

neutral molecular markers [125,126]; departures from this pre-

diction could indicate directional or stabilizing selection on

recombination rate. Finally, quantifying the distribution of

mutational effects on recombination rate (using mutation-

accumulation experiments and other approaches) ultimately

will be necessary in order to draw firm conclusions about the

role of selection in recombination rate evolution.
4. Developing models that address empirical
patterns

Just as empirical approaches have largely failed to address

theory in the context of recombination rate evolution, existing

models have struggled to produce empirically testable

hypotheses. Here, we describe how to advance theoretical
studies of recombination rate evolution by grounding them

with established empirical knowledge.

(a) Recombination rate as a quantitative trait
Empirical evidence demonstrates that recombination rate is a

quantitative trait [12,113], with variance among individuals

reflecting the cumulative effects of many underlying mutations

and environmental influences. Sequence variants in or near 21

known genes are associated with recombination rate variation

within populations of humans [127–129], domesticated cattle

[130,131], or wild Soay sheep [116] . Variants in five of these

genes correlate with recombination rate in multiple species:

Rnf212 [116,127,128,130], Cplx1 [116,128,131], Rec8 [116,130,

131], Msh4 [128,131] and Prdm9 [128,131]. Repeated associa-

tion with a common set of genes raises the prospect that

recombination rate variation harbours moderate genetic

complexity [116]: a handful of variants have large enough effects

to be detected on top of a polygenic background. Furthermore,

suites of quantitative trait loci (QTL) confer differences in the

genome-wide recombination rate between inbred strains of

house mice belonging to different subspecies [132–134].

Although some alleles have appreciable phenotypic effects

[128,132], most variance in recombination rate remains unex-

plained in the examined populations and crosses, suggesting

an important role for environmental factors [116]. Taken

together, this empirical evidence strongly supports the

conclusion that recombination rate is a complex trait.

By contrast, existing theory focuses on population genetic

models, which either ignore the genetic architecture of

recombination rate (optimality arguments) or assume that

recombination rate is a simple Mendelian trait (modifier

models) [15,16]. While quantitative genetic theory has been

applied to understand how indirect selection on a recombina-

tion modifier can be generated by direct selection on a

complex trait [46], models that assume recombination rate

itself is a complex trait are missing. The disconnect between

the complex genetic underpinnings of recombination rate

and the simplicity of the genetic architecture assumed in theor-

etical models is striking. Modelling recombination rate as a

quantitative trait is likely to uncover novel evolutionary

dynamics and to produce predictions that are straightforward

to test.

(b) Genomic scale of recombination rate evolution
Another empirical observation is that distinct patterns of

variation in recombination rate are sometimes observed on

different genomic scales. Thus, the tempo and mode of recom-

bination rate evolution may depend on the genomic scale

on which it is measured [11,135,136] (figure 1). Patterns of

LD indicate that both humans [80,82,137] and bonobos [83]

share few recombination hotspots with chimpanzees,

implying rapid evolution of recombination rate on the fine

(kb) scale. By contrast, recombination rates calculated across

larger chromosomal regions (from linkage maps or patterns

of LD) usually show higher correlations among closely related

species or conspecific populations [11,81,83,135,136,138–140],

with statistically divergent intervals comprising a minority

of the genome [85]. Intriguingly, recombination hotspots and

double-strand break hotspots appear to be evolutionarily

stable in finches [141] and budding yeast (respectively)

[142], suggesting that the rapid divergence of recombina-

tion rate on the fine scale observed in mammals could be the
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exception [143]. Importantly, it is unclear how the evolution

of recombination rate—including the form and intensity of

selection—translates across genomic scales.

Models that address the evolution of recombination rate

were generated to explain the evolutionary advantage of recom-

bination, rather than quantitative differences in rate among

individuals. One consequence of this motivation is that existing

theory does not directly address genomic scale, focusing

instead on single intervals of undefined physical size. It is diffi-

cult to use theoretical results for selection on a single interval to

understand genome-wide patterns of variation in recombina-

tion rate, which can be measured empirically. We encourage

the development of theory that parses and synthesizes the

evolution of recombination rate across genomic scales [144].

(c) Plasticity and recombination rate evolution
Temperature, nutrient availability, pheromones and other

environmental variables are known to modulate crossover

number [145–152]. Furthermore, D. melanogaster females pro-

duce a higher proportion of recombinant offspring after they

are infected by parasites [153]. Although the evolution of

recombination rate has not been directly tied to these factors,

natural variation in this phenotype is likely to be shaped by

the external environment.

Theoretical models have explored the evolutionary

dynamics of plastic genetic modifiers that only increase the

rate of recombination in low-fitness individuals (fitness-

associated recombination (FAR)—table 1) [154,155]. Among

haploid species, FAR generates selection for increased recombi-

nation over an expansive parameter space and does not require

epistasis, initial LD, or finite population size, suggesting that it

may be a powerful mechanism for the evolution of recombina-

tion rate [154]. By contrast, the evolution of FAR appears to be

extremely restricted in diploid organisms because it requires

that the modifier assess haplotype, rather than organismal, fit-

ness [155]. Thus, these models are unable to provide a general

adaptive explanation for the empirical observations described

above.

(d) Sex differences in recombination rate
Recombination rates can also experience discordant evolution-

ary trajectories in the two sexes. In some species, only one sex

recombines; the other (achiasmate) sex is the heterogametic

one [156–159]. In most species that recombine, crossing-over

happens in both sexes, but the degree of sexual dimorphism

in the total number of crossovers (heterochiasmy) varies sub-

stantially among species [160–162]. There is limited evidence

of higher genetic variance for recombination rate among

females than among males within species [116,128]. Both

genetic variants with sex-specific effects and variants with

sex-shared effects on recombination rate have been identified

[116,128,131]. Sexually dimorphic genomic patterns in crossover
positioning—including higher recombination near centromeres

in female vertebrates [67,72,116,131,161,163–167]—raise the

prospect that the decoupling of recombination rate evolution

in the two sexes could extend to finer genomic scales.

Theoretical models have also investigated the evolution of

sex differences in recombination rate [168,169]. While selection

for the suppression of recombination on sex chromosomes

can be generated rapidly, the evolution of sex differences in

recombination rate on autosomes has been more difficult to

explain [32]. Similar to FAR, it is unlikely that sex differences

in the strength of selection in diploid adults can generate selec-

tion for sex differences in recombination rate [32,168]. Selection

for heterochiasmy is more likely to be caused by sex differences

in the strength of haploid-level selection or in the strength of

selection on imprinted genes, which are effectively haploid

[160,168]. In such cases, it is expected that the sex experiencing

strong haploid selection will exhibit less recombination [168].

Nevertheless, theory that explains the major empirical

characteristics of heterochiasmy evolution is not yet available.
5. Conclusion
Forging stronger connections between theory and data in

recombination rate evolution holds considerable potential to

advance the field. The rich body of theory on the evolution of

recombination rate provides a strong framework for generating

hypothesis-driven empirical studies. We encourage biologists

to collect data that can be used to directly test these hypotheses.

Furthermore, established approaches from evolutionary

biology should be applied to answer the basic question of

whether recombination rate experiences selection in natural

populations. Likewise, empirical investigations uncovering

patterns of variation in recombination rate, as well as its genetic

underpinnings, are generating exciting new avenues for theor-

etical development. Models that treat recombination rate as a

quantitative trait and explicitly incorporate genomic scale are

likely to provide novel and increasingly realistic predic-

tions that will lend themselves to empirical examination.

A meaningful integration between theoretical and empirical

studies should be the next step towards understanding how

recombination rate evolves.
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