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It is commonly assumed that the geographical distributions of plants are

governed mainly by abiotic variables. However, interactions with other

organisms, such as pollinators, also have the potential to influence plant distri-

butions. To investigate this, we developed niche models for 32 plant taxa that

have specialized pollination systems and which are native to a biodiversity

hotspot (South Africa). We found that the distributions of these taxa are best

explained by a combination of biotic (pollinators) and abiotic factors, rather

than by abiotic factors alone. For approximately 66% of these plant taxa, polli-

nator distributions were the factor that provided the best predictor of their

niches. Furthermore, co-occurrence of these plants and their pollinators was

generally not explained solely by shared abiotic niches, and thus probably

reflects broad-scale positive ecological interactions. These results are consistent

with the proposal that pollinator distributions may constrain plant distri-

butions and highlight the general potential for species distributions to be

shaped by positive interactions with other species. This has important conse-

quences for predicting how distributions of species might change in the face of

loss of their key mutualists.
1. Introduction
Owing to accelerating anthropogenic impacts on the natural environment, there

has been increased emphasis on understanding the limits to the distributions of

species [1,2]. For instance, current climate-based models generally assume that

the range of individual species varies according to their particular physiological

tolerances [3–5]. Yet, both abiotic and biotic factors can potentially influence the

geographical range of species. The role of ecological interactions in determining

species distributions across broad geographical scales is an issue that is increas-

ingly seen as being important [1,6–9]. Positive biotic interactions, such as plant

pollination by animals, have been shown to be important for fecundity and abun-

dance of organisms at local scales [10–12], and here, we explore their role in

governing distributions for multiple species at larger spatial scales.

Given their importance for seed production, pollinators can reasonably be

considered a component of the ecological niche of plants [13,14]. The geographical

distribution of pollinator-dependent plants may therefore be shaped, not only

by abiotic factors, but also by the distributions of particular mutualists, such as

pollinators [7]. While generalized pollination systems are typical of plant commu-

nities in temperate regions of the Northern Hemisphere [15], plant species in

biodiversity hotspots, such as South Africa and the tropics, often rely on one or

a few pollinator species [16,17]. This dependence is usually asymmetric because

most pollinators are generalists that do not depend on particular plant species

for rewards. Examples of pairwise reciprocal dependence of plant and pollinator

species are rare and mostly confined to brood-site mutualisms. We therefore

focused this study on the influence of nectar and oil-collecting pollinators on

plant distributions on the assumption that the distributions of these pollinators

are unlikely to be shaped by the distributions of any single plant species.
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To explore the role of pollinators in shaping plant distri-

butions, we developed environmental niche models (ENMs)

for a total of 32 plant taxa, representing 15 genera and five

families, in the biodiversity hotspot of South Africa (electronic

supplementary material, table S1). The plant species belong to

eight different plant ‘pollination guilds’ [18], of which four are

associated with particular bee species and four with particular

long-proboscid fly species. The distributions of these eight pol-

linator species vary from highly restricted to widespread and

therefore represent a variety of potential geographical scales

of influence on plant distributions. We asked: (i) whether the

extent to which the geographical distribution of pollinators

influences the estimation of plant ranges, and (ii) whether

shared physiological tolerances can fully account for co-

occurrence of plants and pollinators, or whether there is an

additional component of their co-occurrence that is probably

owing to ecological interactions influencing pollination.
:20171841
2. Material and methods
(a) Taxon selection
We based our selection of study plant taxa on the following cri-

teria: (i) they are reliant primarily on a single pollinator species

for reproduction, (ii) their distributions are well described, and

(iii) their pollinator distributions are well described. Using these

criteria, we selected a total of 32 South African angiosperms,

mainly belonging to the Orchidaceae and Iridaceae (electronic

supplementary material, table S1), and that represent a total of

eight well-studied pollinator guilds, involving four oil-collecting

bee pollinators and four long-proboscid fly pollinators. For each

plant taxon, we collated presence records from the South African

National Biodiversity Institute SIBIS (now POSA) database.

These presence data are available in quarter degree square (QDS)

resolution (25 � 27 km area) in South Africa; hence, we developed

our niche models at the QDS level. We then used Quantum GIS

[19] to create a binary categorical raster of the distribution of

QDSs occupied by each pollinator, by mapping all of the QDSs

where the pollinator species has been reported to occur, and

then by considering all remaining QDSs as being where the species

is absent within South Africa [20–25].

Below, we describe three approaches used to quantify whether

the extent of pollinator distributions may affect the ranges of

plants: (i) ENMs were used to estimate the range of each plant

taxon based on abiotic variables and we tested the importance of

pollinator distribution on the range of these plants by comparing

models with and without pollinator distribution as a predictor

variable, (ii) x2-tests were used to test whether plants are more

likely to occur within the range of their pollinator, and (iii) joint

species distribution models (JSDMs) were used to test whether

plant taxa and their pollinators co-occur mainly because of

their shared environmental responses, or whether there are

co-occurrence patterns beyond those that arise from shared

environmental tolerances.
(b) Environmental niche modelling
To construct the ENMs, we used MAXENT [26], a widely used

machine-learning algorithm to estimate the environmental niche

of taxa based on presence-only data. MAXENT performs well

when compared with other environmental niche modelling

approaches that use presence-only data, particularly with smaller

sample sizes [27]. We used the average of 50 bootstrapped repli-

cates of each model to build a consensus model for each taxon,

both with and without pollinator distribution included as an

explanatory variable.
MAXENT compares the distribution of environmental variables

at sites occupied by focal taxa with the distribution of rando-

mly drawn background locations. The majority of the plants

investigated in this study are orchids and irises that have wind-

dispersed seeds and are not considered to be dispersal limited,

and hence could potentially occur over large geographical ranges

within South Africa. Therefore, we assumed the background

area potentially available for colonization to be the entire area of

South Africa (greater than 1.2 million km2). This area consists of

2041 QDSs.

To quantify the physiological niche for each plant taxon, we

selected 10 ecologically relevant abiotic variables from the BIO-

CLIM database [28] at the 30 arc-sec (approx. 1 km) resolution.

These were: (i) altitude, (ii) annual mean precipitation, (iii) maxi-

mum temperature in the warmest month, (iv) minimum

temperature in the coldest month, (v) precipitation in the driest

quarter, (vi) precipitation in the wettest quarter, (vii) precipitation

seasonality, (viii) mean annual precipitation, (ix) temperature

annual range, and (x) temperature seasonality. We used the aver-

age of each variable for each QDS, converted to WGS84

longitude–latitude format, as an estimate of local environmental

conditions. To avoid multi-collinearity in our MAXENT models,

we performed principal component analysis (PCA) on these

environmental variables [8]. The first three axes in the PCA

explained approximately 99% of the variation in these continuous

abiotic variables in South Africa. The first axis is associated with a

broad cline of all environmental variables, with increasing temp-

erature seasonality. The second axis is associated with increased

temperature seasonality with increasing altitude. The third axis

is associated with decreased annual mean temperature with

increasing altitude and annual precipitation. We used these three

PCA axes as continuous predictor variables, along with the gener-

alized geological substrate for South Africa (data from the South

African Department of Agriculture, Directorate Land Use and

Soil Management) as a single categorical predictor. MAXENT

models were developed with 25% of occurrence data used for

model training and 75% of occurrence data used for model testing.

The equal training specificity and sensitivity (ETSS) logistic

threshold was used to identify suitable QDS where taxa could

occur, but currently do not, for each model. This threshold is

useful to determine which QDSs have an equal probability in pre-

dicting the presence of a taxon in a particular QDS, given the

available data [29]. We examined three different threshold

measures and calculated the correlation between each of them

based on models that did not include pollinator distributions.

ETSS was positively correlated with three other commonly used

logistic thresholds—minimum training presence, ten percentile

training presence, and maximum training specificity and sensi-

tivity; hence, ETSS represents a useful objective measure to

quantify suitable habitat where each taxon could potentially

occur (electronic supplementary material, figure S1).

(i) Jackknife model validation
As 20 of the taxa investigated in this study had less than 25 QDS

records (electronic supplementary material, table S1), we used

the jackknife procedure developed by Pearson et al. [30] to test

whether the predictive ability of models is negatively affected by

their small sample sizes. We re-ran our ENMs for all taxa with

less than 25 records using cross-validated replicate runs in

MAXENT to calculate the test statistic, D, which ranks possible

values of success, i.e. a value of 1, where a location (QDS) was

included in the predicted geographical range for each taxon, and

0 if it was not. This jackknife test is a ‘leave-one-out’, n 2 1 cross-

validated model, with each QDS removed once from the dataset

and a model built using the remaining QDSs. This was tested

against H, a completely random assignment of potential successes.

To perform the jackknife tests, we used the ‘p-value compute’ soft-

ware provided by Pearson et al. [30]. Using this approach, we
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found that the predictions of all models with sample sizes of

less than 25 in our study can be considered reliable (electronic

supplementary material, table S2).

(ii) Model performance and true skill statistics
To test whether model performance differs when pollinator distri-

butions are included as an explanatory variable in our ENMs, we

used the true skill statistic (TSS) proposed by Allouche et al. [31].

For each plant taxon, we used the average occurrence generated

by the MAXENT models and tested the average sample predic-

tion of these models using the mean ETSS threshold (electronic

supplementary material, table S3).

(iii) Generalized estimating equations
To compare whether the proportion of QDSs occupied within the

estimated range of each plant taxon (range fit) differed between

models that included the pollinator distribution as an explanatory

variable and those that did not, we used generalized estimating

equations (GEEs) [32]. For this, we calculated the proportion of

QDSs that each plant taxon occupied within its estimated range

and tested for differences between the two models. The GEE

analysis was conducted using a binomial error distribution, an

exchangeable correlation matrix and plant genus as a grouping

variable to control for phylogenetic relationships using the

‘geepack’ package [33] in R.

(c) Patterns of co-occurrence of plants and pollinators
We tested whether plants in the distribution range predicted by

their abiotic niche are more likely to occur in QDS cells occupied

by pollinators than in cells that are not occupied by pollinators.

For this, we used the distribution generated by the models that

excluded pollinator distributions. For each species, we calculated

the proportion of QDSs where the plant taxon is present and the pol-

linator is also present and compared it to the proportion of QDSs

where the plant is present but the pollinator is absent. To assess

the difference between these proportions for each plant taxon, we

used a x2-contingency test, as implemented in the ‘prop.test’ com-

mand in R. To calculate the significance value for all plant taxa

combined, we used the formula 22Sln(P) provided by Sokal &

Rohlf [34] to generate an overall x2-value and its associated p-value.

The geographical distribution of taxa can be influenced by

both environmental tolerances and interactions with other organ-

isms. However, adding species distributions as explanatory

variables directly in ENMs may result in multi-collinearity when

the distribution of the predictor species is governed by a set of abio-

tic variables that are autocorrelated with each plant and pollinator

[35]. We applied an approach that dissects species co-occurrence

patterns into shared environmental responses and residual pat-

terns of co-occurrence (i.e. co-occurrence patterns beyond those

that arise from shared environmental tolerance) [36]. For each

plant–pollinator pair, we constructed a binary presence–absence

matrix for each QDS based on the output from the consensus boot-

strapped MAXENT model for each taxon excluding their pollinator

distribution as an explanatory variable. We adopted the JSDM

approach outlined by Pollock et al. [36] in preference to other

co-occurrence indices (e.g. Schoener’s and Dice’s Indices) that are

used to infer ecological processes, as these are not able to disentan-

gle the influence of shared environmental responses and residual

correlations on co-occurrence. The JSDM approach uses multi-

variate probit regression to determine the probability of taxa

co-occurring within a site (in this case, a QDS). This model is para-

meterized indirectly using a latent variable formulation, rather

than a probit link. Latent (unobserved) variables are similar to

link functions in that both are used to relate a continuous linear

predictor to discrete binary response data. If latent variables are

independent among sites and taxa, then standard probit regression

is used to model these latent variables. However, as latent
variables are often correlated (i.e. non-independent), then the

JSDM uses a multivariate normal distribution (a generalization

of a univariate normal distribution) to model these latent variables.

We ran the JSDMs according to the approach outlined by Pollock

et al. [36] (see the electronic supplementary material). All JSDM

models were fit with the Markov chain Monte Carlo Bayesian

modelling software JAGS v. 3.4.0 run through R v. 3.1.1 via the

package R2jags v. 0.03-11 [37]. From these models, we calcula-

ted the mean environmental correlation and the residual species

correlation for each plant and pollinator pair.
3. Results
(a) Environmental niche modelling
Jackknife tests of the importance of variables in MAXENT

revealed that pollinator distributions contributed the most

useful information, based on the highest gain (a likelihood

statistic that maximizes the probability of the presences in

relation to the background area) when used in isolation,

in models for 21 of the 32 plant species (approx. 66%,

figure 1; electronic supplementary material, table S1 and

figures S2–S9). We found that models containing pollinator

distribution had a significantly better fit than did those lacking

pollinator distribution as an explanatory variable (paired t-test:

t31 ¼ 3.103; p ¼ 0.004).

GEEs revealed that the inclusion of pollinator distribution

as an explanatory variable in ENMs improved the predicted

presence (Wald x2 ¼ 5.38; p ¼ 0.020), compared with models

with abiotic variables alone, and hence generally creates a

better fit of the observed distribution to the predicted distri-

bution of each plant taxon. There was no difference in the

proportion of QDSs occupied in bee or fly pollinators (Wald

x2 ¼ 1.86; p ¼ 0.173), indicating that both types of pollina-

tor had a similar constraining effect on the distribution of

these plants.

(b) Patterns of co-occurrence of plants and pollinators
Based on the proportion of cells actually occupied by plants

in the range predicted by their abiotic niche, they are much

more likely to occur in QDSs with their pollinators than in

QDSs where their pollinator is absent (overall x2 ¼ 415.85;

p , 0.001; see the electronic supplementary material, table

S1 for results of each separate test).

JSDMs revealed that plant and pollinator co-occurrence is

often not accounted for solely by shared abiotic conditions

and that, on average, the residual correlation between plants

and their pollinators (i.e. co-occurrence pattern beyond that

arising from shared environmental tolerance) was higher

than the correlation owing to environmental variables for 24

out of 32 plant taxa investigated (10 out of 14 bee-pollinated

taxa and 11 out of 16 fly-pollinated taxa; figure 2; electronic

supplementary material, table S1).
4. Discussion
The results of this study support the hypothesis that pollina-

tors can have a strong influence on the distribution of plant

species with specialized pollination systems. One important

implication is that niche models that include only abiotic fac-

tors may not accurately estimate the potential distribution of

plants with specialized pollination systems. In this study,
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Figure 1. Examples of how mutualists can impact the estimated niche of plants (strong effects observed in (a,c,d) and no effect in b). Estimated niches with
pollinator distributions included in models are represented in yellow, while the estimated niches with pollinators excluded from the models are represented in
blue. Green areas represent where models with and without the pollinator distribution overlap. Dots represent the actual plant distribution. Pollinator distributions
are shown in inset. (a) Disa draconis and its pollinator Moegistorynchus longirostris, (b) Watsonia lepida and Philoliche aethiopica, (c) Pterygodium pentheranium and
Rediviva longimaunus, and (d ) Disperis purpurata subsp. purpurata and Rediviva macgregori. Photo credits: (a,b) Steven D Johnson; (c,d) Herbert Stärker ( flowers)
and Michael Kuhlmann (bees).
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models based solely on abiotic variables were seldom con-

gruent with the actual distributions of plants, whereas

models that incorporated pollinator distributions more

accurately defined the ranges. While these analyses were

conducted on a coarse scale, these results are consistent

with the idea that specialized biotic interactions may have a

‘top-down’ effect governing species distributions. These find-

ings are also consistent with the results of translocation

experiments, which have shown that some of the present

study species do indeed experience strongly reduced pollina-

tion success when they are moved outside of their natural

range [23,24]. We therefore argue that mutualists, such as

pollinators and frugivores, that are responsible for key

stages of plant reproduction, i.e. pollination and seed dis-

persal, should be considered to be components of the

fundamental niche of specialized plant species (sensu, [38]).

This is a departure from the conventional logic (based largely

on a focus on competition) which decrees that biotic inter-

actions shape only the realized niche of species [39].

Indeed, recent theoretical work has shown that plant

co-existence is enhanced when they have specialized pollina-

tion systems [14,40,41]. In the light of recent concerns

regarding pollinator declines and shifting plant and pollina-

tor distributions [42,43], our results suggest that quantifying

such interactions is vital for understanding how species
distributions may change. For example, contraction or expan-

sions in the distribution of a mutualist can be predicted to

result in the local extinction of populations of its partner

or their expansion into novel environments [44]. Without

accounting for the ecological dependency of species on mutu-

alists, ENMs would lack the information to accurately predict

how species with ecologically specialized reproductive

systems will respond to changing environments.

The role of biotic interactions in shaping species distri-

butions is starting to emerge as a key research theme in

ecology [7,8,45]. Recent studies that have included biotic inter-

actions as an explanatory variable in ENMs have reached

differing conclusions with respect to the effects of mutualists

on range limits. For example, the presence of a specific endo-

phytic fungal mutualist can broaden the range of a grass

species, by ameliorating drought stress [8], while there is also

some evidence that native plant distributions can potentially

constrain the distribution of an exotic pollinator [46]. Building

on experimental work which showed that pollinator distribu-

tions can have a constraining effect on plant distributions

[47], our work shows that such constraints can more generally

affect plants with specialized pollination systems. This result

is supported by our finding of improvement in model per-

formance and narrowing of the estimated niche when

pollinator distributions are included as a component of species
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environmental requirements. Importantly, our evidence was

obtained from a broad range of plant species covering a large

geographical range in a region of high biodiversity.

Nonetheless, there are likely to be factors in addition to the

variables examined in this study that would affect the esti-

mated range of flowering plants. For instance, recent work

has shown that population demographic and life-history

traits (e.g. whether plants are annual or perennial, their ability

to germinate from seed in a given habitat) impact on species

responses to shifting habitat suitability, and not accounting

for these variables may affect the estimation of plant ranges

based on presence-only data [48]. In addition, while our polli-

nator distribution data represented the entire extent of

occurrence of each pollinator taxon, further work using

approaches that quantify the population abundance and

demography of both plant and pollinator populations may

improve our understanding of the factors underlying the

limits to species distributions [49].

The plant and animal taxa investigated here belong to

specialized pollination mutualisms. Species involved in

more generalized pollination mutualisms are less likely to

have distributions shaped by mutualists. In studies of inva-

sive plant species, pollination system generalization and

reproductive assurance through selfing have emerged as

key traits that facilitate colonization and broad geographical

ranges [50]. Indeed, one of the underlying assumptions

behind Baker’s Rule [51] is that plants will frequently be lim-

ited by pollinator availability when colonizing regions

outside of their native range [52]. An evolutionary impli-

cation is that plants which disperse outside of the range of

their pollinators would experience strong selection to shift

to other pollinators [53,54] or to evolve selfing reproductive

strategies [55]. However, other biotic interactions (e.g. soil

fungi) may also influence the spread of plants outside of

their native range. The plant taxa least affected by pollinator
distributions in our models are the ones with pollinators that

have very broad distributions (electronic supplementary

material, table S1). Yet, for restricted plants with widespread

pollinators, it may be the case that while their environmental

correlation is low, as the pollinator can tolerate a much

broader range of environmental conditions than the plant,

the residual correlation between taxa is high, owing to the

plant co-occurring frequently with the pollinator within its

narrow range. In a very few cases, the distribution of plants

extends beyond the range of the pollinator. We believe that

these are exceptions that prove the rule—some South African

plants with specialized pollination systems show pollinator

shifts along their range margins, allowing their distributions

to be broader than the range of the core pollinator, e.g. [56].

There are also some well-documented instances of plants

being adapted for pollination by particular animals, yet

not ecologically reliant on these pollinators on account of

facultative selfing mechanisms [57].

The findings of this study should apply more broadly to

any cases involving ecological facilitation among specialized

species. Although we have emphasized the effect of the role

of mutualists, specifically pollinators, on species distributions,

we are also aware that some specialized interactions between

plants and flower-visiting animals, e.g. mimicry systems [58],

involve unilateral exploitation and are not true mutualisms.

However, even these interactions should still conform to

the general theory outlined in this paper, namely a role for pol-

linators in affecting the distributions of plant species with

specialized pollination systems.
5. Conclusion
That pollinators can shape the distribution of these special-

ized plants is an insight that has broad implications for the

understanding and prediction of plant geographical ranges,

evolutionary pollinator shifts and plant diversification. This

study provides support for the idea that pollinators are a

component of the fundamental niche for some plant species

and underlines the general importance of ecological inter-

actions between plants and pollinators for the maintenance

of biodiversity.
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