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There is growing interest in quantitative analysis
of in vivo genetic toxicity dose-response data,
and use of point-of-departure (PoD) metrics such
as the benchmark dose (BMD) for human health
risk assessment (HHRA). Currently, multiple
transgenic rodent (TGR) assay variants, employ-
ing different rodent strains and reporter trans-
genes, are used for the assessment of
chemically-induced genotoxic effects in vivo.
However, regulatory issues arise when different
PoD values (e.g., lower BMD confidence inter-
vals or BMDLs) are obtained for the same com-
pound across different TGR assay variants. This
study therefore employed the BMD approach to
examine the ability of different TGR variants to
yield comparable genotoxic potency estimates.
Review of over 2000 dose-response datasets
identified suitably-matched dose-response data
for three compounds (ethyl methanesulfonate or
EMS, N-ethyl-N-nitrosourea or ENU, and

dimethylnitrosamine or DMN) across four
commonly-used murine TGR variants (Muta-
TMMouse lacZ, MutaTMMouse cII, gpt delta and
BigBlueVR lacI). Dose-response analyses provided
no conclusive evidence that TGR variant choice
significantly influences the derived genotoxic
potency estimate. This conclusion was reliant
upon taking into account the importance of
comparing BMD confidence intervals as
opposed to directly comparing PoD values
(e.g., comparing BMDLs). Comparisons with
earlier works suggested that with respect to
potency determination, tissue choice is poten-
tially more important than choice of TGR assay
variant. Scoring multiple tissues selected on the
basis of supporting toxicokinetic information is
therefore recommended. Finally, we used typical
within-group variances to estimate preliminary
endpoint-specific benchmark response (BMR) val-
ues across several TGR variants/tissues. We
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discuss why such values are required for routine
use of genetic toxicity PoDs for HHRA. Environ.

Mol. Mutagen. 58:632–643, 2017. VC 2017 Her Majesty

the Queen in Right of Canada. Environmental and Molecu-

lar Mutagenesis Published by Wiley Periodicals, Inc.
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INTRODUCTION

Genetic toxicity testing is an essential component of

safety assessments for new and existing substances (e.g.,

food additives, therapeutic products, pesticides, industrial

chemicals). Its goal is to identify genotoxic substances

and/or assess genotoxic potency, thus permitting regula-

tory decisions that minimize the risk of adverse human

health effects (e.g., cancer and heritable genetic disorders)

mediated by genetic damage. Traditionally, genetic toxic-

ity tests have been interpreted qualitatively, with yes-or-

no calls used to merely identify agents that have the

ability to cause genetic damage (e.g., mutations and/or

chromosomal aberrations). Increasingly however, there is

growing interest in moving beyond binary categorizations

that fail to acknowledge and appreciate variations in the

genotoxic potency of tested agents (i.e., variations in the

magnitude of the effect associated with a given dose).

The alternative quantitative methods employ statistical

analyses of genotoxicity dose-response data to determine

a point-of-departure (PoD) that provides quantitative

information regarding genotoxic potency. Resultant PoDs,

such as the lower confidence interval of the benchmark

dose (i.e., the BMDL), can be used as a basis for quanti-

tative risk assessments, including the derivation of human

exposure limits and/or margins of exposure (MOEs).

Thus, employment of quantitative methods, which

acknowledge the relevance of genetic toxicity as a bona
fide regulatory endpoint, permit the determination of val-

ues that can be used for human health risk assessment

(HHRA) and regulatory decision-making. Indeed, recent

evaluations by several expert working groups have

acknowledged the regulatory utility of quantitative dose-

response analyses of genetic toxicity data [Johnson et al.,

2015; MacGregor et al., 2015a,b; White and Johnson,

2016].

The transgenic rodent (TGR) gene mutation assays are

well-established in vivo assays for the assessment of

chemically-induced genetic toxicity. Critically, they pro-

vide reliable measurements of dose-related inductions of

gene mutations in practically any tissue. Briefly, TGR

assays employ transgenic rodents (e.g., rats or mice) har-

boring multiple copies of stable, chromosomally inte-

grated plasmids or bacteriophage shuttle vectors to

determine a test article’s ability to induce mutations at a

transgenic target locus (e.g., lacI, lacZ, cII, and gpt). Fol-

lowing exposure to the test article, transgene mutations in

selected tissues are detected by retrieving the vector and

determining the phenotype of the reporter gene in a bac-

terial host [Douglas, 2010; Lambert et al., 2005].

In 2011, the Organisation for Economic Co-operation

and Development (OECD) published a test guideline (i.e.,

TG 488) for estimating the induction of in vivo somatic

and germ cell gene mutations using TGR assays, thus

contributing to the harmonization of TGR protocols

employed to assess chemically-induced, in vivo genetic

damage [OECD, 2011]. The detailed review paper that

preceded TG 488 noted that multiple variants of the TGR

assay, which employ different rodent species and/or

reporter transgenes, are available for regulatory evalua-

tions of test articles [Lambert et al., 2005]. More specifi-

cally, when TG 488 was released there was considered

sufficient information to demonstrate the utility of the fol-

lowing TGR assay variants: MutaTMMouse (lacZ and cII
transgenes), Big Blue

VR

mouse and rat (lacI and cII trans-

gene), plasmid mouse (lacZ), and gpt delta mouse and rat

(gpt) [Douglas, 2010]. The results generated using these

TGR assays constitute a useful follow-up of in vitro posi-

tives; moreover, TGR results can augment regulatory

decision-making when cancer bioassay results are absent,

marginal or inconclusive [Douglas, 2010; Lambert et al.,

2005; OECD, 2011; Soeteman-Hern�andez et al., 2016].

The value of the TGR assay for the evaluation of

human health risks resultant from exposure to genotoxic

substances was recently demonstrated in a landmark case

involving human exposure to ethyl methanesulfonate

(EMS), a potent mutagenic carcinogen. More specifically,

between March and June 2007 a batch of Viracept
VR

(i.e.,

nelfinavir mesylate), an antiretroviral protease inhibitor,

was accidently contaminated with EMS, resulting in a

global recall of the drug [Pozniak et al., 2009]. Since

existing data was considered inadequate for effective

patient risk management, a comprehensive MutaTMMouse

study of EMS was carried out. The analyses scored

micronucleus frequency in bone marrow and lacZ muta-

tions in selected tissues (e.g., small intestine, liver, bone

marrow) following 28-day repeat dose oral exposure. The

results were used to demonstrate that the minimal dose

required to elicit a significant increase in the

MutaTMMouse response (i.e., 25 mg/kg/day) is approxi-

mately �450-fold greater than the maximum amount

ingested by patients receiving the product (i.e., 0.055 mg/

kg/day). These analyses were used to conclude that the

risk of adverse health effects in individual patients receiv-

ing the contaminated product were negligible [Muller and

Gocke, 2009; Muller, et al. 2009; Pozniak et al., 2009)].
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The Viracept
VR

contamination incident stimulated the

formation of several international working-groups that

evaluated different statistical approaches for quantitative

analysis of genetic toxicity dose-response data [Gollapudi

et al., 2013; Johnson et al., 2014, 2015; MacGregor et al.,

2015a,b]. These works led to general agreement that the

benchmark dose (BMD) approach, which is increasingly

used for the evaluation of other toxicity dose-response

data, also provides the most appropriate method for the

quantitative interpretation of genetic toxicity dose-

response data [Gollapudi et al., 2013; Johnson et al.,

2014; MacGregor et al., 2015a,b]. The BMD approach

involves statistical analysis of the dose-response relation-

ships to define the dose (i.e., the BMD) required to elicit

a pre-specified small increase in response (i.e., the BMR

or Benchmark Response) [Crump, 1984; EFSA, 2009,

2017; Slob, 2002]. Figure 1 schematically illustrates the

BMD approach, and how the BMD can be used to quanti-

tatively define genotoxic potency. As data are always lim-

ited (i.e., limited number of doses and replicates) the true

BMD can never be defined exactly, and hence reporting a

BMD confidence interval that can be expected to include

the true BMD with a defined level of confidence is pref-

erable over reporting of a single point estimate of the

BMD. The lower and upper bounds of the BMD confi-

dence interval are called BMDL and BMDU, respec-

tively. The ratio of BMDU-to-BMDL thus reflects the

uncertainty (i.e., imprecision) in the BMD estimate in

accordance with the quality of the underlying data [Wills

et al., 2016a].

More recent advances of the BMD methodology permit

simultaneous analyses of multiple dose-response datasets

for a common endpoint and study design (Fig. 1) in one

combined analysis. This approach, which is known as the

combined BMD covariate method, uses inclusion of a

covariate (e.g., compound, sex, species, etc.) to identify

constituent dose-response sub-groupings [Slob, 2002;

Slob and Setzer, 2014]. Critically, it has been shown that

this combined approach can improve the precision of

each individual BMD estimate (i.e., bring about a reduc-

tion in BMDU-to-BMDL ratios) as all dose-response

datasets included in a combined analysis contribute infor-

mation to any individual BMD estimate under consider-

ation [Slob and Setzer, 2014; Wills et al., 2016a,b].

Fig. 1. Schematic overview of the BMD combined covariate approach.

The benchmark dose approach (BMD) provides an estimate of the dose

that will elicit a small, pre-specified effect-size called the benchmark

response (BMR). The best-fitting BMD model (solid curve) will result in

the best estimate of the BMD. Importantly however, the uncertainty in

the dose-response data needs to be accounted for through calculation of a

BMD confidence interval. The process can be conceptually visualized by

imagining that, through variation of the model parameters, other curves,

and BMDs that plausibly describe the data (e.g., schematically repre-

sented by the dashed curves) may be established. Together these values

comprise the BMD confidence interval (solid line). In turn, this process

provides estimations of the BMDL (L) and BMDU (U), the lower and

upper 90% confidence bounds of the BMD estimate, respectively.

Therefore, the ratio of the BMDU to BMDL represents the precision to

which the true BMD can be estimated based on the available dose-

response data. A newer method termed the combined, BMD-covariate

approach allows BMDs for multiple dose-response curves to be defined in

one combined analysis employing a covariate such as compound, expo-

sure regime, time, sex, or species to identify the constituent dose-response

relationships. The major advantage of this approach is that any model

parameters that are determined to be similar across covariate subgroup-

ings may be held constant during an analysis; thus their estimation is

based on all the dose-response curves included in the combined analysis.

Concomitantly, the precision of the BMD estimate is improved (i.e.,

reduced BMDU-to-BMDL ratio) for any individual dataset under

consideration.
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Following on from the aforementioned MutaTMMouse

(lacZ) study of EMS (i.e., analyses related to the

ViraceptVR contamination incident), a 2014 study repeated

the work using a matching study design, but, instead

employed the gpt delta mouse (gpt transgene) TGR assay

[Cao et al., 2014]. The specific aim of this work was to

utilize quantitative methods to compare genotoxic potency

estimates for two TGR assay variants with well character-

ized differences in spontaneous mutant frequency (i.e.,

background). The authors noted that the tissue-specific

BMDL10 values associated with the gpt delta mouse data

were lower than those calculated from MutaTMMouse

data. Subsequently, these divergent results triggered an

international response from multiple working groups

regarding the regulatory issues associated with differences

in BMDL values obtained across different TGR assay

variants.

In response to these concerns about cross-study differ-

ences in the transgenic rodent BMDL values for EMS,

the Quantitative Analysis Workgroup of the International

Life Sciences Institute (ILSI) Health and Environmental

Sciences Institute (HESI) Genetic Toxicology Technical

Committee (GTTC) prioritized quantitative examination

of published TGR dose-response data. More specifically,

quantitative analyses assessing the ability of different

TGR assay variants to yield comparable estimates of gen-

otoxic potency were established as a priority. This work

required an initial meta-analysis of all available TGR data

to identify compounds, including EMS, that have been

tested using two or more TGR assay variants. To ensure

robust comparisons, datasets were screened to identify

those that are also suitably matched with respect to tissue,

route of administration, application schedule, and sam-

pling time. Herein, we thus use the BMD approach to

evaluate the quantitative agreement in genotoxic potency

estimates resulting from employment of different TGR

assay variants. We also assess and discuss the importance

of appropriately defining benchmark response values

(BMRs), also known as critical effect sizes (CES).

MATERIALS ANDMETHODS

Data Collection

TGR assay dose-response data were obtained from the latest version

of the Transgenic Rodent Assay Information Database (TRAID). TRAID

is a database containing dose-response data for all publicly available

TGR studies published as of August 31, 2016. The current version,

which was updated by screening PubMed and Scopus using the search

string ((“MutaMouse” OR “Big Blue” OR “lacZ” OR “lacI” OR “gpt”

OR “cII”) AND (mutation OR mutant OR mutagen OR mutagenesis))

AND (mouse OR rat OR rodent OR mice OR rats OR rodents), is an

updated version of the original database compiled by Lambert et al.

(2005). Briefly, the database contains 9716 records representing 2127

dose-response datasets from 406 studies on 307 test articles, including

dose-response data for five transgenes (e.g., lacZ, lacI, cII, gpt, and red/

gam), 31 tissues, and 25 administration routes. The complete dataset

was screened using SAS v9.4 to identify suitably matched dose-response

data for compounds that have been examined using more than one TGR

assay. For the purposes of this study, compound-specific dose-response

data were only retained if data were available in two or more TGR assay

variants, if the studies used three or more dose-groups (i.e., suitable for

BMD modeling), and if the datasets could be matched for tissue, route

of administration, exposure duration, and sampling time. This stringent

screening criteria revealed only five compounds that have been tested in

two or more TGR assays using analogous study design (i.e., EMS,

N-ethyl-N-nitrosourea or ENU, chlorambucil, dimethylnitrosamine or

DMN, and diethylnitrosamine or DEN). Of these, 14 dose-response data-

sets across three of the compounds (i.e., EMS, ENU, and DMN) utilized

a sufficient number of dose groups (31) to be suitable for BMD analy-

sis. The full extent of dataset matching in terms of study covariates for

each presented analysis is presented in Supporting Information Table SI,

alongside the data-source citations.

BMDAnalysis

BMD analyses (i.e., statistical analysis of the dose-response data)

were conducted using PROAST software version 63.6 in the R comput-

ing environment (Dutch National Institute for Public Health and the

Environment (RIVM)). PROAST v38.9 is available for free download at

http://www.proast.nl. More recent versions (e.g., 63.6) can be obtained

from one of the authors (i.e., Wout Slob). Datasets were analyzed using

both the exponential and the Hill model families as recommended by

the European Food Safety Authority (EFSA) for the assessment of con-

tinuous data [EFSA, 2009, 2017]. Where the combined BMD-covariate

approach was used, the factor discriminating the dose-response sub-

groupings was included as covariate (e.g., study or transgene). For the

combined BMD-covariate approach, the model parameters that require

estimation for each subgroup, alongside those that can be considered

constants across subgroups, are determined. Combined analyses typically

assumed that model ‘shape’ parameters ‘c’ and ‘d’ (i.e., maximum

response and log-steepness after axis scaling) were constant across sub-

groups, whilst the parameters ‘a’, ‘b’, and ‘var’ (background response,

potency, and within-group variation, respectively) were tested for sub-

grouping dependency. BMD analyses and model fits for each subgroup-

ing are presented in Supporting Information Figures S1-S4, with the

model fits used to visually assess the validity of the conserved shape

assumption. This approach was preferred to statistical testing as statisti-

cal tests on the BMD model shape parameters (i.e., c, d) have been

shown to be extremely sensitive to the non-random errors that are ubiq-

uitously present in experimental dose-response data since it is not practi-

cally feasible to randomize all experimental conditions and concomitant

treatments. Critically, due to the statistical power arising in a combined

dataset, even small non-random errors in the data can result in rejection

of shape parameter consistency. In reality however, such small differ-

ences in shape parameters can only, at most, have a very minor effect

on the coverage of the calculated confidence intervals [Slob and Setzer,

2014].

The BMDL and BMDU values represent the two-sided, lower and

upper 90% BMD confidence intervals, respectively, thus the BMDU-to-

BMDL ratio defines the BMD estimate precision. Confidence interval

plots were employed to visually compare differences in potency, in order

to take estimation uncertainty into account [Bemis et al,. 2016; Wills

et al., 2016a,b]. Dose-response relationships across subgroupings (e.g.,

different TGR assay variants) can only be termed significantly different

where confidence intervals do not overlap. Where employed, endpoint-

specific BMR values were calculated in the PROAST software as the

control-group mean plus one typical standard deviation. Briefly, this

typical value of the standard deviation, which was calculated on the log-

scale, was defined as the average within-group standard deviation calcu-

lated across all dose-groups and studies included in a combined BMD

analysis. The full rationale for this choice, and the importance of its
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calculation on the log-scale, is discussed at length in Slob (2017) and its

accompanying annexes. To facilitate comparisons to fixed percentage

effect sizes (e.g., BMR 5 10%), resultant endpoint-specific BMRs were

expressed as percentage increases relative to the control-group mean.

The calculated BMD values underlying the confidence interval plots

show in each analysis are provided in Supporting Information Table SII.

RESULTS ANDDISCUSSION

A Survey of TGR Studies to Identify Matched Dose-
Response Datasets

In order to compare genotoxic potency estimates

derived from dose-response data generated using different

variants of the TGR assay (i.e., different strains and/or

transgenes), a meta-analysis filtration of the TRAID data-

base was performed (see Methods) to identify suitably-

matched datasets (i.e., in terms of compound, species, tis-

sue, administration route, exposure duration, sampling

time) that are thus well-suited for potency estimate com-

parisons. Scrutiny of over 9700 records containing over

2000 dose-response datasets identified only 14 datasets

that fulfilled the screening criteria (detailed in Supporting

Information Table SI). The comparison of these matched

studies form the basis of the results presented herein.

In consideration of the findings of the meta-analysis,

the relatively low number of matching datasets is indica-

tive of the variability of study designs historically

employed within and between different TGR assay var-

iants. Thus, these findings alone suggest the importance

of global harmonization initiatives (e.g. OECD TG 488)

in facilitating the maximum utility of TGR dose-response

data. Cross-study comparisons are simplified when results

are generated using analogous methods and study design

as this dramatically reduces the number of potentially

influential covariates. In turn, consistent dose-response

data are also better-suited to support human health risk

assessments, whereby findings are often compared across

studies during the process of weight-of-evidence based

regulatory decision-making [Dearfield et al., 2017;

MacGregor et al., 2015a].

Use of the BMDApproach to Compare Potencies and
Assess Inter-Study Reproducibility

In previous publications, we showed that comparisons

of BMD confidence intervals (see Fig. 1), as opposed to

direct comparison of single metric (i.e., BMD, BMDL or

BMDU), constitutes a robust way to quantitatively exam-

ine differences in potency across dose-response relation-

ships [Bemis et al., 2016; Soeteman-Hern�andez et al.,

2016; Wills et al., 2016a,b]. Considering BMD confidence

intervals for the purposes of comparisons between studies

is critical, since they reflect the uncertainty in the potency

estimate as a result of the uncertainties in the underlying

dose-response data (e.g., due to random sampling errors

between replicates). Consequently, one can only conclude

that dose-response relationships and potency estimates

(e.g., BMDs) arising from, for example, assessments of

the same compound across different variants of the TGR

assay, are significantly different when their BMD confi-

dence intervals do not overlap [Wills et al., 2016a,b]. In

contrast, overlapping confidence intervals signify that any

potency differences cannot be resolved on the basis of the

available data (i.e., the true BMDs could be the same, or

could differ). Critically, when the range delineated by all

the confidence intervals examined is small enough to be

considered as biologically or practically insignificant, it

may be concluded that the potencies are sufficiently

similar to consider the associated studies reproducible

[Johnson et al., 2016; Wills et al., 2016a,b].

EMS: Comparisons of gpt-Delta Mouse (gpt) and
MutaTMMouse (lacZ) Dose-Response Data for Bone
Marrow, Small Intestine and Liver

In their analysis of EMS dose-response data across two

TGR variants (MutaTMMouse (lacZ) and gpt delta

mouse), Cao et al., (2014) noted lower BMDL10 values

associated with the gpt delta mouse data (see introduc-

tion). Critically however, this finding cannot be inter-

preted as evidence of poor potency estimate

comparability between the two TGR assay variants, since,

as noted, potency comparisons should not be based on

any single BMD or BMDL value, but rather on compari-

sons of complete BMD confidence intervals. In their com-

bined BMD analysis, Cao et al., (2014) also used ‘tissue’

as a dose-response covariate: this choice of covariate is

potentially problematic since any correlation between tis-

sues harvested from the same animals could give rise to

overly optimistic (i.e., narrow) BMD confidence intervals.

Thus, in the analyses presented below, we chose to carry

out pairwise combined BMD analyses tissue-by-tissue

using ‘TGR’ as covariate.

Applying this approach (i.e., confidence interval com-

parison and TGR as covariate), Figure 2 presents a

reanalysis of the EMS dose-response data for the gpt
delta mouse [Cao et al., 2014] and MutaTMMouse [Gocke

et al., 2009] TGR systems. Consideration of the bone

marrow and small intestine results shows that whereas the

gpt delta mouse BMDL10 values are consistently lower

than the matched MutaTMMouse values, the confidence

intervals show considerable overlap. This means that the

BMDs could, in fact, be identical and thus the available

data do not allow us to conclude that the assay results are

non-reproducible. In turn, the BMD confidence intervals

also give an indication of how large the differences

between the assays might be. In this example, the range

spanned by the confidence intervals for bone marrow and

small intestine indicate that, at most, the genotoxic

potency estimates may differ by �0.6 log units. Thus, on

the basis of the available data, it can only be concluded
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that the difference in potency estimates arising across

these two assays may be anywhere between zero and 0.6

log units (i.e., 0 to �4-fold).

Interestingly, comparison of the liver data shows an

infinite lower bound of the BMD (represented by the

dashed interval) for the gpt delta mouse data when the

BMD10 was calculated using the Hill model, whereas

the BMDL was calculable using the exponential model.

An infinite lower bound indicates a dose-response rela-

tionship whereby the data only allow us to conclude that

any dose greater than zero might elicit the specified BMR

(i.e., 10% for this analysis). Thus, such a finding typically

reflects uncertainty in the dose-response data within the

response region interpolated at the effect size (i.e. BMR).

Closer scrutiny of the liver datasets (Supporting Informa-

tion Figure S1) illustrates that the two TGR variants show

opposite dose-response patterns. More specifically, for the

gpt delta mouse, the mean response in the lowest dose-

group is higher than control, yet the response does not

subsequently increase further with increasing dose. In

contrast, for the MutaTMMouse dataset, only the mean

response in the highest dose-group indicates a response

that is marginally increased relative to background. Thus,

it seems likely that for the gpt delta mouse liver dataset,

the control-group response is an outlier and that no true

dose-response is established across the tested dose-range.

Similarly, for the MutaTMMouse liver data set, the highest

dose-group might represent an outlier. Thus, without fur-

ther (i.e., higher) dose-groups to clearly establish the

dose-response relationships in this tissue, these datasets

are not suitable for dose-response analysis. This uncer-

tainty is reflected in the aforementioned unbounded BMD

confidence interval for the gpt delta mouse data, whereas

the confidence interval established from the

MutaTMMouse liver data shows that, even if the apparent

response in the highest dose group is a true dose-related

effect, liver is less sensitive than the other two tissues. In

a wider context, the difference between the exponential

and Hill model confidence intervals arising from the gpt
delta mouse liver data exemplifies the importance of car-

rying out BMD analyses using both model families (i.e.,

exponential and Hill) to ensure the uncertainty in BMD

estimates is thoroughly characterized. This is particularly

important when a robust estimate of genotoxic potency is

essential for (e.g. for HHRA purposes), as has been

advocated previously [EFSA, 2016; Johnson et al., 2014;

MacGregor et al., 2015b; Slob and Setzer, 2014].

When carrying out BMD analyses on large combined

datasets, the choice of the BMR percentage has been

shown to be fairly unimportant for the purposes of objec-

tively comparing genotoxic potencies [Bemis et al.,

2016]. However, each combined analysis conducted

herein only involved a small number of datasets, thus the

precision of the BMD estimate decreases with choice of

smaller and thus more difficult-to-estimate effect sizes

(i.e., smaller BMRs). Indeed, in the above EMS analysis,

the BMR of 10% was more or less arbitrarily chosen on

the basis of no more than the fact that it is often used in

the analysis of toxicological dose-response data. On the

other hand, when the purpose of the analysis is to derive

BMD values for HHRA purposes, it becomes necessary

to define a defensible, meaningful small BMR size for

that can be utilized as a basis for the robust determination

of HHRA metrics (e.g., permitted daily exposure or PDE,

Fig. 2. Genotoxic potency of ethyl methanesulphonate (EMS) deter-

mined using the gpt delta Mouse (red) and MutaTMMouse (blue) trans-

genic rodent assays. BMD analyses, with TGR as covariate, were

conducted to compare potency values (i.e., BMDs) determined using two

different TGR assay variants. Two-sided 90% confidence intervals of the

BMD10 (i.e., BMR 5 10%) were calculated from mutant frequency (MF)

dose-response data (i.e., gpt or lacZ MF) for bone marrow, small

intestine, and liver tissues using two different BMD models: the exponen-

tial (upper interval per pair) or the Hill (lower interval per pair). Com-

bined analyses were performed, two datasets at a time by tissue, using

TGR as covariate. The dashed liver interval for the Hill model indicates

an unbounded lower confidence limit (i.e., BMDL 5 0). The underlying

dose-response data and fitted BMD models are presented in Supporting

Information Figure S1.
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MOE, tolerable daily intake or TDI, etc.). To this end,

Slob (2017) recently outlined a statistical framework that

can be used to determine meaningful BMRs for toxico-

logical endpoints. The theory predicts a general relation-

ship between the maximum response (i.e., maximum fold

change in response relative to control) and within-group

variation (i.e., variability in response measurements

obtained between animals in a dose-group) for any toxi-

cological endpoint. Demonstrating this relationship using

dose-response data for �27 different endpoints, the work

thus provides a basis for setting BMRs appropriately in

context of each endpoint’s response maximum. Thus, the

theory supports the underlying rationale of the BMR 1-

standard deviation or BMD1SD approach (i.e., where the

control group mean plus one standard deviation is

employed to define the BMR; thus accounting for differ-

ences in the ‘natural variability’ across different end-

points) [Slob, 2017]. However, due to the ubiquitous

errors present in experimental measurements (e.g., due to

limited replications, differences between experimental

animals etc.), instead of using the observed within-group

standard deviation of a specific study as the effect size,

the theory demonstrates that it is better to use the typical
value of the standard deviation. In other words, averaged

across all dose-groups and across a large number of stud-

ies per endpoint. To this end, ongoing efforts are estab-

lishing large datasets that will permit robust estimation of

the within-group variation for selected endpoints (e.g.,

in vivo micronucleus, pigA, and tissue-specific transgenic

rodent assay tests). Since this work has yet to be com-

pleted, in applying the Slob (2017) approach herein, we

are limited to using a rough estimate of the typical

within-group variance based on the few datasets at hand

to define meaningful endpoint-specific BMRs. The values

employed in the below analyses should not yet, therefore,

be regarded as robust endpoint-specific BMR values that

can be used for regulatory purposes, but rather as a pre-

liminary estimate with the purpose of employing a more

reasoned choice for the BMR than just selecting an arbi-

trary value such as 10%.

Applying the aforementioned Slob (2017) approach to

the EMS gpt delta and MutaMouseTM (lacZ) datasets

yielded endpoint-specific BMRs of 45% and 31% for

bone marrow and small intestine, respectively (Fig. 3). In

comparison to the analyses using a BMR of 10% (Fig. 2),

these increases in effect-size (BMR) are seen to improve

the precision in the BMD estimates (i.e. reduce the

BMDU-to-BMDL ratios). This is as expected, since the

increased BMR results in interpolation of the data further
up the dose-response curve; closer to the range of experi-

mental observation where concomitantly, the dose-

response relationship is less uncertain (the reader is

referred to the introduction / Figure 1 for a full visual

explanation of the BMD approach and derivation of the

BMD confidence interval). For small intestine, genotoxic

potency estimates from the two TGR variants span only

�0.5 log units (i.e., factor of �3), and show considerable

overlap, suggesting good reproducibility. In contrast, the

bone marrow confidence intervals are now sufficiently

well-resolved to be distinct from one another, indicating a

slightly lower genotoxic potency estimate from the gpt
delta mouse data in comparison with MutaTMMouse.

However, before concluding that these non-overlapping

confidence intervals are indicative of poor TGR variant

Fig. 3. Genotoxic potency of ethyl methanesulphonate (EMS) deter-

mined using the gpt delta mouse (red) and MutaTMMouse (blue) trans-

genic rodent assays: endpoint-specific BMRs. BMD analysis, with

endpoint-specific BMR values, was conducted to compare BMDs deter-

mined across two TGR assay variants. Two-sided 90% confidence inter-

vals of the BMD, based on BMRs indicated beneath each tissue, were

calculated from mutant frequency (MF) dose-response data (i.e., gpt or

lacZ transgene) for bone marrow, small intestine, and liver tissues using

two different BMD models: the exponential (upper interval per pair) or

the Hill (lower interval per pair). Combined analyses were performed,

two datasets at a time by tissue, using TGR as covariate. The underlying

dose-response data and fitted BMD models are presented in Supporting

Information Figure S2.
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reproducibility, it is important to note that the ranges

encompassed by the BMD confidence intervals are only

�0.5 log units at most, so, the difference in BMDs is

somewhere between �0 and 0.5 log units (i.e., again, at

most, a factor of 3). BMD model fits to the data are

presented in Supporting Information Figure S2.

ENU: Comparisons of MutaTMMouse (lacZ or cII) and gpt
Delta Mouse Small Intestine Dose-Response Data

Moving to a different compound, ethyl nitrosourea

(ENU), Figure 4 presents a comparison of the potency

estimates derived from matched MutaTMMouse (cII and

lacZ transgenes) and gpt delta mouse datasets. Here,

matching data from two independent studies were further

available for each of the MutaTMMouse assessments.

BMD analyses were carried out by transgene using study

as covariate, with endpoint-specific BMR values esti-

mated from the typical within-group variances across the

available studies for each transgene (i.e., as outlined

above for EMS). When considering the resultant confi-

dence intervals, it is interesting that the two

MutaTMMouse (lacZ) studies show highly similar potency

estimates, whilst the data arising from the two

MutaTMMouse cII studies generated significantly different

(i.e., non-overlapping) confidence intervals. This shows

that even when the same TGR assay variant is employed,

differences in potency estimate can arise, presumably due

to a variety of different experimental factors (e.g., litter,

diets, housing, animal handling, etc.). In this specific

instance, consideration of the data (Supporting Informa-

tion Figure S3) shows that the major difference between

the two cII datasets is related to the control-group values,

with the mean control group (i.e., background) responses

differing by almost an order of magnitude. Interestingly,

above the control, the mean responses for the groups of

experimentally dosed animals are highly similar across

the two studies. This suggests that the control-group in

one of the two studies likely constitutes an outlier attrib-

utable to an unknown experimental factor. With respect

to the design of these studies, both were conducted using

three dose-groups plus control with six animals per dose-

group. The establishment of different potency estimates

as a result of differing control-group values therefore sug-

gests that a more effective study design could have uti-

lized a greater number of dose groups and fewer animals

per group. If this had been the case, the influence of one

outlying group on the calculated BMD confidence interval

may have been reduced [Slob, 2014a; Slob, 2014b].

Regardless, consideration of the BMD confidence inter-

vals also shows that the uncertainty in the genotoxic

potency estimates caused by these different control-group

responses (i.e., lowest BMDL to highest BMDU across

the two studies) is at worst �0.8 log units (factor of �6),

and may in fact be considerably less. Applying the same

logic to the complete set of confidence intervals, includ-

ing those from the gpt delta mouse study, it can be seen

that the genotoxic potency estimates arising from the

three TGR variants could differ by up to �1 order of

magnitude; however, it might also be that they differ by

only �0.3 log units (i.e., a factor of �3: BMDU of gpt
delta mouse to BMDL MutaTMMouse cII study two).

DMN: Comparisons of BigBlueVR Mouse (lacI) and
MutaTMMouse (lacZ) Liver Dose-Response Data

The final matched datasets permit comparison of

MutaTMMouse lacZ and BigBlue
VR

mouse lacI DMN

Fig. 4. Genotoxic potency analysis of N-ethyl-N-nitrosourea (ENU)

determined using the MutaTMMouse (cII or lacZ transgenes) or gpt delta

Mouse (gpt transgene) transgenic rodent assays. BMD analysis, with

endpoint-specific BMR values, was conducted to compare BMDs deter-

mined using two TGR assay variants. Two-sided 90% confidence inter-

vals of the BMD, based on BMRs indicated beneath each tissue, were

calculated from mutant frequency (MF) dose-response data (i.e., gpt or

lacZ transgene) for bone marrow, small intestine, and liver tissues using

two different BMD models: the exponential (upper interval per pair) or

the Hill (lower interval per pair). Combined analyses were performed,

two datasets at a time by tissue, using study as covariate. The underlying

dose-response data and fitted BMD models are presented in Supporting

Information Figure S3.
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dose-response data for liver following exposures to

dimethylnitrosamine (DMN) (Fig. 5). Whereas both study

designs were two-dose plus control with four animals per

dose-group the confidence intervals show much greater

BMD estimate precision from the MutaTMMouse data in

comparison to that from BigBlue
VR

. The BMD analysis

(Supporting Information Figure S4) indicates that this is

related to the fact that the within-group variation (var
parameter) in the BigBlue

VR

data was �4-fold greater than

that associated with the MutaTMMouse data. Importantly,

this shows that questions related to the number of animals

required to suitably define a metric such as the BMD are

not easily addressed. The precision of the metric is

heavily influenced by the actual scatter in the experimen-

tal observations (i.e., response measurements) across ani-

mals. Thus, in this particular instance, the utility of the

lacI study to compare the two assays’ potency estimates

is limited. This is reflected in the confidence intervals,

which reveal that, based upon the available data, the dif-

ference between the BMDs could be up to �2 orders of

magnitude. However, due to confidence interval overlap,

it is also possible that the BMDs are in fact highly

similar.

CONCLUSIONS AND RECOMMENDATIONS

Despite considering the entire TRAID database, which

contains over 2000 dose-response datasets, the meta-

analysis only identified 14 suitably-matched datasets that

were thus ideally suited for purposes of comparing BMD-

derived potency estimates. The lack of suitably matched

data inevitably places limitations on what can be con-

cluded with regard to the question of potency estimate

reproducibility across different TGR assay variants. With

this in mind, none of the analyses presented herein across

four commonly used murine TGR variants (i.e.

MutaTMMouse lacZ, MutaTMMouse cII, gpt delta mouse,

and BigBlue
VR

mouse lacI) revealed significantly different

(i.e. non-overlapping) BMD confidence intervals when

assessing matched datasets for the same compound. This

finding was reliant however upon taking into account the

importance of comparing genotoxic potency estimates in

context of dose-response relationship uncertainty. More

specifically, similar to our earlier works [e.g., Bemis

et al. 2016; Wills et al. 2016a,b], we demonstrate that

comparing BMD confidence intervals, as opposed to the

comparison of any single metric (e.g. BMD, BMDL or

BMDU), is essential for robust comparisons of genotoxic

potency estimates.

With these findings in mind, it is useful to note that

our previous work comparing TGR-derived BMDs across

multiple tissues from MutaTMMouse specimens exposed

to the prototypical mutagenic polycyclic aromatic hydro-

carbon benzo[a]pyrene showed significant differences in

genotoxic potency across four out of the five tissues ana-

lyzed (i.e. small intestine, bone marrow, glandular stom-

ach, liver) [Wills et al., 2016b]. Moreover, the BMD

confidence intervals established across these different tis-

sues spanned a dose range of �1.5 orders of magnitude

(i.e., a factor of �30). From a biological perspective, this

seems hardly surprising given the differences in exposure

dosimetry that will be established across tissues by the

complex processes of adsorption, distribution and

compound-specific metabolism. Thus, for generation of

comparable TGR-derived potency estimates, questions

regarding the tissue(s) that should be collected, analyzed,

and subsequently used to derive a PoD, appear to be

equally or potentially more important than questions

related to the choice of TGR assay variant.

With respect to the selection of tissues that can provide

data which are useful for regulatory evaluations of geno-

toxic substances, our results suggests that cryogenic

Fig. 5. Genotoxic potency analysis of dimethylnitrosamine (DMN) deter-

mined using the MutaTMMouse (blue) or BigBlue
VR

Mouse (orange) trans-

genic rodent assays. BMD analysis, with endpoint-specific BMR values,

was conducted to compare BMDs determined using two TGR assay var-

iants. Two-sided 90% confidence intervals of the BMD, based on BMRs

indicated beneath each tissue, were calculated from mutant frequency

(MF) dose-response data (i.e., lacZ or lacI transgene) in liver tissue using

two different BMD models: the exponential (upper interval per pair) or

the Hill (lower interval per pair). Datasets were analyzed individually.

The underlying dose-response data and fitted BMD models are presented

in Supporting Information Figure S4.
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storage of multiple tissues collected at necropsy is a rec-

ommended strategy to avoid the possible necessity of

repeating a costly in vivo study. Regarding tissue choice,

it is suggested that studying multiple tissues, ideally cho-

sen based on known or hypothesized mode of action

(MOA) information, inclusive of any knowledge of simi-

lar compounds’ ADME (adsorption, distribution, metabo-

lism, and excretion) kinetics, provides significantly

greater safeguarding than just studying a single tissue.

For example, despite metabolic competence, liver may

not be ideal due to lower cell proliferation rates and ele-

vated repair that may significantly reduce sensitivity to

mutation [Wills et al., 2016b].

Finally, it is clear that whilst fixed-percentage BMRs

are effective for potency comparisons across covariates,

the use of BMDs for HHRA requires specification of a

meaningful, small BMR size. Consequently, this work

argues that it is essential to tackle the determination of

endpoint-specific effect sizes (i.e. BMRs); especially now

that a statistical framework for understanding the relative

magnitude of effect sizes in dose-response relationships is

becoming established [Slob, 2017]. Use of this approach,

in conjunction with the employment of advanced BMD

methods such as the combined covariate approach, shows

that the BMD method improves the utility of genetic tox-

icity dose-response data by provision of robust, compara-

ble estimates of genotoxic potency.

To summarize, this work offers several conclusions and

recommendations. The first four relate to effective use of

the BMD approach for analysis of genetic toxicity dose-

response data. The last two, which have been identified

as priorities for the Health and Environmental Sciences

Institute Genetic Toxicology Technical Committee

(HESI-GTTC), relate to more specific issues regarding

the reproducibility of potency estimates across TGR assay

variants, and the utility of genetic toxicity PoD estimates

for risk assessment and regulatory decision-making.

1. As noted in the aforementioned earlier works, the
BMD approach provides robust estimates of genotoxic
potency; moreover, the combined covariate approach
can be used to investigate the influence of covariates
such as tissue and assay variant on the derived potency
estimates.

2. International guidelines that harmonize genotoxicity
assay study designs increase the utility of dose-
response data, and thus the use of experimental ani-
mals beyond that of the originating study. This is
achieved through a reduction in the number of influen-
tial covariates, which in turn facilitates subsequent
cross-study comparisons. However, it is suggested that
more routine adoption of study designs employing
fewer animals per dose group, alongside a greater
number of dose-groups, could further improve the
quantitative utility of dose-response data by reducing
the influence of any single outlying group on the calcu-
lated BMD confidence interval.

3. Determining BMDs and associated confidence intervals,
via both the exponential and the Hill model families, is a
recommended best-practice to ensure that the uncertainty
in the estimated BMD is appropriately defined. More-
over, comparisons of potency across covariates should
not be based on one single value such as the BMD,
BMDL or BMDU. Rather, effective comparisons across
covariates, such as assay variant or tissue, requires con-
sideration of BMD confidence intervals.

4. The relative strengths and weaknesses of the BMR%

(i.e., percentage increase above background) and
BMR1SD (i.e., BMR 5 control-group mean plus one
control-group standard deviation) approaches can be
reconciled via determination of endpoint-specific
BMR% values. These BMRs should be derived from
the typical endpoint-specific maximum response or the
typical endpoint-specific within-group variation values
i.e., based on a large number of studies for the same
endpoint. Efforts to achieve this for a range of genetic
toxicity endpoints are currently underway.

5. With respect to the reproducibility of genotoxic potency
estimates, we found no evidence that the choice of TGR
assay variant significantly influences compound-specific
BMD determination. Based on these and earlier results,
it might be hypothesized that the choice of tissue for a
given TGR assay variant is equally, or potentially more
important, than the choice of TGR variant itself. Thus,
cryogenic storage of numerous tissues is recommended,
as is genotoxic potency analyses in multiple tissues
selected in consideration of supporting information (e.g.
MOA, ADME kinetics).

6. There is currently no consensus regarding the most prag-
matic methodology to routinely employ in vivo genotox-
icity potency estimates for regulatory decision-making.
Thus, it will be necessary to scrutinize the results of the
current study, as well as our earlier studies and related
studies by other authors, to determine the most appropri-
ate approach. Indeed, some international advisory
groups are currently considering issues regarding the use
of BMD values for regulatory evaluation of genotoxic
test articles such as pharmaceutical impurities and food
contaminants [Benford, 2016; ICH, 2014, 2015].
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