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Abstract A high-fibre diet and one rich in fruit and vegetables have long been associated

with lower risk of chronic disease. There are several possible mechanisms

underpinning these associations, but one likely important factor is the production

of bioactive molecules from plant-based foods by the bacteria in the colon. This

links to our growing understanding of the role of the gut microbiome in

promoting health. Polyphenolic-rich plant foods have been associated with

potential health effects in many studies, but the bioavailability of polyphenol

compounds, as eaten, is often very low. Most of the ingested molecules enter the

large intestine where they are catabolised to smaller phenolic acids that may be

the key bioactive effectors. Dietary fibres, present in plant foods, are also

fermented by the bacteria to short-chain fatty acids, compounds associated with

several beneficial effects on cell turnover, metabolism and eating behaviour.

Polyphenols and fibre are often eaten together, but there is a lack of research

investigating the interaction between these two groups of key substrates for the

colonic bacteria. In a project funded by the Biotechnology and Biological

Sciences Research Council Diet and Health Research Industry Club, we are

investigating whether combining different fibres and polyphenol sources can

enhance the production of bioactive phenolic acids to promote health. This could

lead to improved dietary recommendations and to new products with enhanced

potential health-promoting actions.
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Introduction

There has been intense interest in the role of the gut

microbiome in human health over the last decade. The

ability to describe the genetic repertoire of bacterial

populations without the need to isolate, culture and
characterise each organism has revolutionised our abil-

ity to understand the complexity of this important

ecosystem. It is becoming increasingly evident that our
gut bacteria have important influences on several func-

tions of the human body. The diversity and composi-

tion of the gut microbiota has been associated with a
wide variety of disorders and pathologies including

obesity (Turnbaugh et al. 2006; Khan et al. 2016),

inflammatory bowel disease (Quince et al. 2015),
autoimmune diseases (Maeda & Takeda 2017), allergy
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(Lynch & Boushey 2016) and neurological disorders

(Wang & Kasper 2014). Our understanding of the
mechanisms underpinning interactions between the gut

microbiota and human systems is, however, still lim-

ited. It is becoming clear that many host-microbe
effects are mediated through the release of bioactive

molecules by bacteria in the gut and absorption of

these metabolites into the circulation. Two key groups
of such metabolites are phenolic acids (from a wide

variety of plant polyphenols) and short-chain fatty

acids (SCFA), from the fermentation of non-digestible
carbohydrates, a major component of dietary fibre.

Fibre itself can be an important source of non-

extractible polyphenols (Saura-Calixto et al. 2010).
While we understand well how dietary polyphenols

and non-digestible carbohydrates are metabolised by

the gut microbiota at substrate level, curiously, very
little attention has been paid to how these two key

groups of microbial substrate interact, given that they

are often consumed together and that the catabolism
of one may affect the catabolism of the other.

Gut bacteria and polyphenols

Polyphenols are complex compounds in fruit and veg-
etables that help protect the plant from damage, for

example from UV radiation and pathogens; they often

confer the vibrant colours associated with fruit and
vegetables. Polyphenols have chemical structures based

on hydroxylated phenolic rings. They are usually eaten

in plant-based foods in a glycosylated form – with a
sugar attached to the main polyphenolic structure.

Polyphenols are classified into a range of structurally

related groups, with over 9000 different structures
described in the flavonoid group alone. Average intake

is approximately 1 g/day (P�erez-Jim�enez et al. 2011).

Zamora-Ros et al. (2016) reported details of dietary
polyphenol intakes from the European Prospective
Investigation into Cancer and Nutrition (EPIC) study.
In Mediterranean countries, flavonoids were the main
polyphenolic contributors but were only the second

contributor in non-Mediterranean Europe where phe-

nolic acids were the main contributor. In Mediter-
ranean countries, the main food sources were coffee,

fruit and then wine. In non-Mediterranean countries,

the order of contribution was coffee, tea and then fruit.
Fruit was the main source of flavonoids in Mediter-

ranean countries, whereas tea was the main source in

the non-Mediterranean countries. Flavonoids include
flavonols, flavones, flavanones, isoflavones, flavanols

and anthocyanins. However, most of these parent
polyphenols are not well absorbed in the small

intestine (Williamson & Manach 2005) and over 90%

enter the large intestine where they are catabolised by
the colonic microbiota (Ozdal et al. 2016). Thus, the
bioavailability of the parent compounds is very low.

The microbiota degrades the parent polyphenolics to a
range of intermediates and end products including phe-

nolic acids, such as 3-hydroxyphenylacetic acid, from

the metabolism of the flavonol rutin (found in toma-
toes, for example). Evidence is emerging regarding the

health benefits of these intermediates and end products,

with the realisation that their high bioavailability (rela-
tive to that of the parent compounds) may explain

many of the biological effects previously attributed to

the polyphenolics (Russell & Duthie 2011). Phenolic
acids can be detected in both plasma and urine after a

meal, but some also result from mammalian processes

(e.g. protein catabolism) thus complicating the inter-
pretation of plasma and urine phenolic acid measure-

ments. One of the main intermediate metabolites of

rutin catabolism, 3,4–dihydroxy phenyl acetic acid
(3,4DHPAA), exhibited greater inhibition of anti-platelet

aggregation (Kim et al. 1998) and secretion of proin-

flammatory cytokines TNF-a and IL-6 in monocytes
(Monagas et al. 2009) than the parent compound.

Phenolic acids have also been shown to inhibit protein
glycation (Pashikanti et al. 2010; Vlassopoulos et al.
2015). Most studies assessing phenolic acid bioactivity,

however, are still based on in vitro models and more
in vivo evidence is needed.

Bioactive molecules from dietary fibre

Another major component of many plant-based foods is

dietary fibre. The current definition of dietary fibre
includes carbohydrate polymers and oligosaccharides

that are not hydrolysed by the endogenous enzymes in

the small intestine of humans (Jones 2013). These
carbohydrates are available for fermentation by the colo-

nic microbiota. The main products of colonic fermenta-

tion are SCFA: mainly acetic, propionic and butyric
acids and gases (carbon dioxide, hydrogen, methane

and, in some individuals, hydrogen sulphide). Some

SCFA can be produced by bacteria from protein degrada-
tion, while acetate is also produced bymammalian meta-

bolism. This complicates the interpretation of plasma

SCFA and makes measurement of colonic production of
SCFA from non-digestible carbohydrates in vivo prob-

lematic. Stable isotope methods, feeding isotopically

labelled compounds (Verbeke et al. 2010) or measuring
the dilution of isotopically labelled SCFA infused into

the blood (Boets et al. 2017), have begun to make in vivo
colonic SCFA productionmeasurements possible.
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SCFA have been associated with a range of poten-

tial health benefits and act as the natural ligands for
free fatty acid receptors (FFAR 2/3), which are

expressed on a wide array of cell types (Nøhr et al.
2013). This has led to renewed interest in the link
between dietary fibre and health, mediated by SCFA

(reviewed in Morrison & Preston 2016). Of the

SCFA, butyrate has been shown to be the preferred
fuel of colonocytes (Roediger 1982) but also stimu-

lates apoptosis and cell differentiation of cancer cells

in vitro (Hague & Paraskeva 1995) and promotes
mucosal healing from inflammation (Vernia et al.
2003). Propionate has been shown to stimulate the

release of satiety hormones, such as PYY and GLP-
1, influencing appetite regulation (Chambers et al.
2015) and glucose metabolism (Pingitore et al.
2017).

Interactions between polyphenols and
dietary fibre

Fibre could influence the bacterial catabolism of
polyphenols by several mechanisms, depending on the

nature of the fibre. Some fibres may entrap polyphe-

nols in the lumen of the gut; this could be physical
sequestration in a viscous environment or physico-

chemical binding in a plant cell matrix reducing their

absorption in the small intestine and increasing their
bioavailability for bacterial catabolism (Perez-Jimenez

et al. 2013; Renard et al. 2017). Fibres themselves are

fermented and may selectively increase the activity of
bacteria that positively or negatively influence those

responsible for polyphenol catabolism (Tzounis et al.
2008). The supply of fermentable fibre may alter bac-
terial activity away from polyphenol catabolism, a

phenomenon observed with protein catabolism; fibre

fermentation appears to lead to a reduction in pro-
tein–amino acid catabolism (Franc�ois et al. 2012),

probably resulting in greater incorporation of dietary

protein derived amino acids into bacterial biomass
(Windey et al. 2015). The production of SCFA from

fermentable carbohydrates may reduce the colonic

luminal pH to below 5 (Florent et al. 1985) depending
on the speed of fermentation and the buffering capac-

ity in the colon. This pH may in turn inhibit bacteria

responsible for some metabolic activities. The impact
of fibre on gut motility and transit time could also

influence the site of phenolic acid production and

absorption, changing the rate of absorption. This has
been shown for different types of fibre and SCFA pro-

duction (Govers et al. 1999; Morita et al. 1999) but
not yet for polyphenols. Much of the evidence for

colonic metabolism of polyphenols has been produced

using in vitro batch cultures with human stool samples.
However, the medium used in these models was usu-

ally free from fermentable carbohydrate, leaving the

polyphenols as the sole source of carbon (an unusual
scenario in vivo). In previous pilot studies, we have

shown that combining fermentable carbohydrates and

polyphenols in an in vitro model of colonic fermenta-
tion speeded up the breakdown of the polyphenol

rutin (Jaganath et al. 2006), but had no effect on phe-

nolic acid production from hesperidin (Hou et al.
2015). Moreover, a range of fermentable fibres inhib-

ited phenolic acid production from rutin (Mansoorian

et al. 2015).
In turn, polyphenols could influence the fermenta-

tion of the fibre carbohydrates as several polyphenols

have been shown to have both anti-bacterial (Taguri
et al. 2004) and prebiotic actions (Tuohy et al. 2012).

In our project Manipulating the activity of the gut
microbiota with fermentable carbohydrates to max-
imise the bioavailability of bioactive phenolic acids for
health funded as part of the Biotechnology and Biolog-

ical Sciences Research Council (BBSRC) Diet and
Health Research Industry Club (DRINC) initiative, we

are exploring the interactions between dietary fibres
and colonic polyphenol catabolism in a systematic

fashion. Starting with in vitro fermentation models,

using human faecal bacteria, a range of fibres has been
combined at different doses with a range of polyphe-

nols, so that the relative effects of (1) fibre on individ-

ual polyphenol catabolism and (2) the polyphenols on
SCFA production can be estimated. The results of these

fermentations will then inform the choice of two fibre-

polyphenol mixtures to be studied in acute bioavail-
ability studies in humans. Phenolic acid production

will be measured in urine over 24 hours after a test

meal. Finally, a 6-week feeding study will explore the
longer term interactive effects of the fibre and polyphe-

nol mixture on phenolic acids and also biomarkers of

inflammation and health. We are using stable isotope-
labelled polyphenols and foods to confirm the source

of phenolic acids in these studies. Thus, the results of

this project should inform clearer dietary recommenda-
tions and may lead to new product designs for enhanc-

ing the positive actions of the dietary polyphenols.
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