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Abstract

Objective—Alzheimer’s disease (AD) is a neurodegenerative disorder for which more than 20 

genetic loci have been implicated to date. However, studies demonstrate not all genetic factors 

have been identified. Therefore, in this study we seek to identify additional rare variants and novel 

genes potentially contributing to AD.

Methods—Whole exome sequencing was performed on 23 multi-generational families with an 

average of eight affected subjects. Exome sequencing was filtered for rare, nonsynonymous and 

loss-of-function variants. Alterations predicted to have a functional consequence and located 

within either a previously reported AD gene, a linkage peak (LOD>2), or clustering in the same 

gene across multiple families, were prioritized.

Results—Rare variants were found in known AD risk genes including AKAP9, CD33, CR1, 
EPHA1, INPP5D, NME8, PSEN1, SORL1, TREM2 and UNC5C. Three families had five variants 

of interest in linkage regions with LOD>2. Genes with segregating alterations in these peaks 

include CD163L1 and CLECL1, two genes that have both been implicated in immunity, CTNNA1, 
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which encodes a catenin in the cerebral cortex and MIEF1, a gene that may induce mitochondrial 

dysfunction and has the potential to damage neurons. Four genes were identified with alterations 

in more than one family include PLEKHG5, a gene that causes Charcot-Marie-Tooth disease and 

THBS2, which promotes synaptogenesis.

Conclusion—Utilizing large families with a heavy burden of disease allowed for the 

identification of rare variants co-segregating with disease. Variants were identified in both known 

AD risk genes and in novel genes.
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Introduction

Alzheimer’s disease (AD) is the leading cause of dementia in the elderly [1]. The majority 

of individuals present with late-onset AD (≥ 65 years), but early-onset (<65 years) has also 

been reported in ~5% of cases. Both common genetic variants, such as the APOE ε4 allele, 

and rare variants, have been found to impact the risk for both early- and late-onset AD [2–5]. 

While more than 20 genetic loci have been connected with late-onset AD to date, the 

underlying genetic architecture is complex and new risk genes are still being identified [6].

While genome-wide association studies (GWAS) have been key in identifying a majority of 

the novel regions of genetic risk in the past ten years, by design, GWAS are unlikely to 

recognize risk variants with rare frequencies in the population and necessitate the use of 

large cohorts of hundreds or even thousands of individuals to reach statistically significant 

conclusions [6]. In contrast, whole exome sequencing (WES) provides an alternative and 

complementary method to locate rare alterations in genes which may have medium to large 

effects on disease risk and require far fewer participants [6–8]. WES studies have identified 

new mutations in both known AD genes and novel risk genes, including AKAP9, PLD3, 
TREM2 and UNC5C, as well as protective variants, such as those in TREML2 [7–17]. 

Moreover, studying families with a heavy burden of AD and searching for genetic changes 

that segregate with disease can provide a unique opportunity to locate rare variants in novel 

risk genes such as NOTCH3, PLD3 and TTC3 [9,13,18]. These large AD families can reveal 

how multiple genetic variants may act in concert to influence risk [19–21]. For example, the 

APOE ε2 allele was found to delay the age of onset by ~12 years in carriers of the E280A 

mutation in the PSEN1 gene in the early-onset ‘Paisa’ pedigree [19]. In addition, genetic 

linkage can assist in narrowing genomic regions of interest potentially related to disease in 

large families [22]. In an effort to discover novel genes that may contribute to late-onset AD 

risk, we performed WES in 23 multiplex families that present with dominant inheritance 

patterns and prioritized variants that were inherited from common ancestors.

Materials and Methods

Patient ascertainment of extended AD families

240 individuals (77 AD subjects, 4 individuals with mild cognitive impairment (MCI) and 

159 unaffected relatives) from 23 families of European ancestry heavily affected with late-
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onset AD were utilized in this study (Supplementary Table 1). All family members were 

recruited after providing informed consent and with approval by the relevant institutional 

review boards. Affected individuals meet the standard NINCDS-ADRDA criteria for AD 

and MCI [23–25]. In addition, cognitive and neuropsychiatric data were collected on all 

affected indivduals using the NCRAC LOAD battery, the Geriatric Depression Scale 

(GDS15), the Cornell Scale for Depression in Dementia (CSDD) and the Neuropsychiatric 

Inventory Questionnaire (NPIQ).

Whole exome sequencing and variant detection

99 individuals (77 AD patients, 4 individuals with MCI, and 18 unaffected relatives) from 23 

AD extended families underwent WES (Supplementary Table 1). Three micrograms of DNA 

from each sample were prepared using the SureSelect Human All Exon 50Mb Kit (Agilent 

Technologies) and the Paired-End Multiplexed Sequencing library kit (Illumina). Exome 

capture and sequence library construction was performed on a Sciclone G3 NGS 

Workstation (Caliper Life Sciences) and DNA was tested for uniform enrichment of targets 

with qPCR following established protocols provided by Agilent. Two exome sample 

libraries were sequenced per lane on a HiSeq 2000 Sequencing System (Illumina) in paired-

end 2 × 100 bp runs. Sequencing data was processed using the Illumina RTA base calling 

pipeline v1.8. Reads were aligned to the human reference genome (hg19) with the Burrows- 

Wheeler Aligner (BWA) and variant calling performed with the Genome Analysis Toolkit 

(GATK) version 2.8 [26,27]. GATK parameters for variant quality control included duplicate 

sequence read removal, minimum read depth of 5, genotype quality (GQ) ≥ 20, variant 

quality score recalibration (VQSR, VQSLOD>0) and Genome Mappability Scores equal to 

1 for the 35 base pair (bp) track and greater than or equal to 0.5 for the 20 bp track from the 

Duke Uniqueness Track [28]. The Duke uniqueness scores, generated for the ENCODE 

project and available as tracks in the University of California, Santa Cruz (UCSC) Genome 

Browser, report how unique a sequence is, where scores of 1 represent a completely unique 

sequence, a score of 0.5 indicates the sequence occurs exactly twice, and 0 represents the 

sequence occurs >4 times in the genome [29,30]. Small insertions and deletions were 

recognized by aligning the data with Bowtie2 and analyzing with the Pindel program 

[31,32].

Genotyping and variant filtering

234 individuals, including all 99 samples that had WES, were evaluated by genome-wide 

SNP (single nucleotide polymorphism) arrays including the Human 1Mv1 BeadChip, the 

1M-DuoV3 BeadChip, the HumanOmniExpress-12 v1.0 BeadChip, and the 

HumanOmni2.5-4v1 BeadChip. All chips were processed using the Tecan EVO-1 robot and 

BeadChips were scanned with either the Illumina BeadArray Reader or iScan. Data was 

extracted by the Genome Studio software and a GenCall cutoff score of 0.15 was used. 

Samples were required to have a genotyping call rate of 98% or higher, and SNPs a call rate 

of 95% or greater, to pass quality control. SNPs were only included in the analysis if they 

were present in at least 60% of samples across all platforms. Checks for relatedness, 

Mendelian inconsistencies, gender based on X-chromosome heterozygosity, and 

concordance between the genotypes of the variants identified through exome sequencing and 
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genotyping were evaluated with PLINK version 1.07 [33]. All samples passed the quality 

control metrics.

Genotyping information was further used to delineate identical by descent (IBD) regions 

within each multiplex AD family. IBD filtering was implemented through the extended 

haplotype procedure in MERLIN version 1.1.2 [34]. Regions shared across all available AD 

individuals within a family were used to determine the IBD sharing segments and were, 

therefore, unique within each family. To determine the start and stop positions of IBD 

sharing regions within each family, the MERLIN output was evaluated in a sliding window 

of ten SNPs, defining IBD as sharing at each location with a threshold >50%.

Linkage analysis

Nonparametric and parametric two-point and multipoint linkage analyses were performed 

using MERLIN [32]. A disease allele frequency of 0.0001 was used in an affecteds-only 

model for parametric analysis. PLINK was employed for LD pruning in the multipoint 

analysis, with CEU HapMap data as the reference population and the following settings: the 

indep-pairwise option with a window size of 50, a step of 5 and an r2 threshold of 0.5 

[33,34].

Variant annotation and prioritization

Alterations passing quality measurements were annotated with the KGGSeq and ANNOVAR 

programs [35,36]. Variants were normalized prior to annotation [37]. Ensembl, RefSeq, and 

Gencode transcripts were all annotated, and the top consequence per gene was used for 

prioritization. CADD v1.3 scores were downloaded from the CADD server (http://

cadd.gs.washington.edu/home) [38]. Figure 1 is an overview of the filtering and 

prioritization strategies used in this study. Brief descriptions of our three prioritization 

strategies are described below.

Variants in reported AD genes or loci—For all of the families, we evaluated whether 

variants were located in known AD risk genes; this includes genes identified in both early 

(APP, PSEN1, PSEN2, GRN and TREM2) and late-onset AD (Supplemental Table 2) [3,4]. 

Variants of interest were restricted to those with a minor allele frequency (MAF) ≤ 2% in the 

Kaviar Genomic Variant Database (version 160204-Public, 77,781 individuals) since these 

genes are known loci for AD [39]. The top variants of interest were validated by traditional 

Sanger sequencing.

Families with LOD scores >2—For each of the families, variants that segregated in all 

sequenced, affected individuals within areas LOD>2 were evaluated. Variants with a global 

MAF ≤ 1% in the Kaviar Database were prioritized. A MAF cutoff of ≤ 1% was 

implemented because variants with a MAF>1% in any ethnic population are unlikely to be a 

highly penetrant risk variant for AD [39–41]. This stricter MAF criteria was utilized to 

attempt to identify novel risk genes as opposed to variants in known AD genes. Variants 

were also prioritized based on their potential pathogenicity with the Combined Annotation-

Dependent Depletion (CADD) score; scores ≥ 15 are predicted to be more likely to 
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contribute to a disease risk as this score represents “the median value for all possible 

canonical splice site changes and non-synonymous variants” [38].

Variants and genes shared across families—Analysis across all 23 families was 

performed to identify if there were any genes with rare, nonsynonymous or loss-of-function 

(LOF) variants in more than one family. Variants were selected that had a MAF ≤ 1% in the 

Kaviar Database and CADD scores ≥ 15 to try to identify potentially damaging alterations 

[39].

Association testing of top candidates

All top variants and genes from the three separate analyses described above were evaluated 

as potential risk variants using genome-wide association statistics for two family study 

cohorts (NIA-LOAD and MIRAGE) in the Alzheimer Disease Genetics Consortium [42,43]. 

Both gene and SNP-based tests were adjusted for age, sex and principal components (PCs). 

SNP-based logistic regression tests in each study were performed in the SNPTest program, 

and meta-analysis of these results was conducted using METAL [21,44]. Gene-based tests 

were conducted on meta-analysis summary statistics using VEGAS [44]. Variants tested in 

the gene-based analysis included all variants with a MAF<5%.

Results

Variants identified in known AD genes

Each sequenced family contained between 4 and 16 individuals diagnosed with AD. Mean 

age-at-onset across all families was 74.3 years. We identified 14 potentially damaging 

variants in 10 known AD genes and GWAS implicated loci (Table 1). Seven of the variants 

were observed in multiple affected individuals in the same family, while the remaining 

variants were observed only once. All alterations were single nucleotide changes with the 

exception of a four base pair deletion in CD33. This deletion is potentially the most 

deleterious as it is predicted to causes a frameshift that encodes two incorrect amino acids 

before terminating prematurely, thus failing to generate over 40% of the protein. In addition, 

multiple variants were observed in four genes: AKAP9, INPP5D, SORL1 and UNC5C. Each 

gene had at least two families with a variant identified in it, while family 191 have a single 

affected individual with two alterations in UNC5. One of the variants in UNC5C, 

Ala860Thr, was identified in two different families; this alteration has a CADD score of 33, 

the highest score in this category.

Segregating variants in linkage regions

Linkage scans aggregating all families identified one primary linkage region, a parametric 

multipoint peak on chromosome 1q23 (161.9–165.6 MB). Two families had strong linkage 

in this region (family specific LOD>2). However, no variants met our filtering criteria for 

these two families, suggesting the causal variant(s) may be non-coding changes either 

removed from by our filtering criteria or not present in our WES. Three of the 23 families 

also have family-specific parametric LOD scores >2; rare, potentially damaging alterations 

in five genes occurred within these regions and may potentially be the strongest novel AD 
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candidate genes (Table 2). The five alterations were all missense changes in CD163L1, 
CLECL1, CTNNA1, GALR3 and MIEF1.

Genes with variants in more than one family

We identified four genes that had rare (MAF ≤ 1%), segregating, and potentially deleterious 

variants in at least two families (Table 3). Three of these genes had the same missense 

alteration identified in distinct families: MKL2, PLEKHG5 and THBS2.

Association testing of variants and genes

From our prioritized sets, a total of 9 SNPs and 14 genes were available for testing in the 

ADGC family-based meta-analysis datasets (NIA-LOAD and Mirage). None of the variants 

tested were significantly associated with disease (Supplemental Table 3). The gene MIEF1, 

identified as a candidate gene in a family 1201 with rare, potentially damaging segregating 

variants in a region with a LOD score of 2.22, reached nominal significance (p=0.049, 

Supplemental Table 4).

Discussion

Through WES of large families with a heavy burden of AD, variants in both known and 

novel loci were identified that could contribute to risk. Filtering for rare, segregating, and 

potentially damaging variants identified five novel candidate genes (Table 2). These genes 

encompass a variety of functions that are suggestive of a link to AD. For example, two of 

these genes are involved in regulating immunity: CD163L1 and CLECL1 [45–47]. 

CD163L1 is expressed in macrophages, upregulated in response to IL-10 and acts as an 

endocytic receptor [48]. CLECL1 is highly expressed in B cells and dendritic cells and may 

enhance the immune response through upregulation of IL-4 [46]. Neuroinflammation has 

been shown to occur in AD patients, possibly through misregulation of microglia and 

triggered by amyloid beta plaques [49]. Additionally, established AD risk genes, such as 

ABCA7, CD33 and TREM2, have also been linked to the immune system [4]. Another gene 

identified through this study, CTNNA1, encodes a catenin expressed at elevated levels in the 

nervous system [50]. GALR3 is a receptor for the neuropeptide galanin, which has been 

shown to modulate a variety of processes, including cognition and memory, functions 

disrupted in AD [51,52]. MIEF1 was nominally associated with late-onset AD in a meta-

analysis of two family datasets from the ADGC, thereby suggesting that it may play a wider 

role in AD that extends beyond a single multiplex AD family. MIEF1 may play a role in 

dysfunctional mitochondria and their potential to damage neurons [53,54]. Thus, each of the 

genes in the peak linkage regions are connected to known AD functions or neuronal 

pathways.

Four genes had rare, potentially damaging variants in more than one family (Table 3). When 

evaluating known functions of these genes, two are of particular interest, PLEKHG5 and 

THBS2. PLEKHG5 has been previously implicated in both Charcot-Marie-Tooth disease 

and spinal muscular atrophy [55,56]. PLEKHG5 is ubiquitously expressed throughout the 

nervous system and murine studies demonstrated lowered expression can alter the velocity 

of nerve conduction [55,56]. In addition, THBS2 is an intriguing novel AD candidate gene 
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due to its involvement in synaptogenesis in immature astrocytes [57]. Further investigation 

into each of these novel AD candidates and the variants identified in this study is required.

After evaluating our families for rare alterations in known AD genes and loci, variants were 

discovered in genes previously connected to both early and late-onset AD (Table 1). Four 

genes had multiple alterations: AKAP9, INPP5D, SORL1 and UNC5C. Some of these 

alterations have the potential to interfere with a protein’s function due to their location 

within specific domains. For example, a rare alteration in UNC5C identified in two distinct 

families, Ala860Thr, falls within the highly conserved DEATH domain, a region composed 

of alpha-helices and involved in apoptotic functions. Another study identified a different 

alteration in the same region in AD families and proposed that the alteration may increase 

the susceptibility of neurons to death [17]. A single affected individual in family 2349 was 

found to carry a frameshift deletion in CD33 predicted to remove over 40% of the protein. 

There is evidence that higher expression of CD33 in brains is associated with cognitive 

decline [58]. However, it may be that dysregulation of the protein, either through over or 

under expression, could contribute to AD risk. In addition, a rare alteration in SORL1, 

Thr588Ile, was identified within the vacuolar protein sorting 10 (VPS10) domain and may 

influence the processing of amyloid beta fragments, as has been shown for other AD 

associated variants in this gene [59]. Moreover, a potentially pathogenic alteration was 

identified in PSEN1 in a single individual, Glu318Gly; this variant was previously reported 

to result in higher tau and phosphorylated tau levels in cerebrospinal fluids [60]. Three 

affected individuals from family 1893 were found to share the Arg336His alteration in the 

NME8 gene, a change that fell within the first NDK domain of the protein. This gene has 

been associated with clinical features of AD including atrophy of the hippocampus and 

occipital gyrus [6,61]. These alterations, while not segregating within all affected individuals 

in the families, may play a contributing role in AD risk.

Conclusion

This study demonstrates how using large, extended families to evaluate exome data 

identifies segregating risk variants in potentially novel AD candidate genes. In contrast to 

GWAS studies that have grown from hundreds to thousands and tens of thousands of 

participants, this study design requires far fewer participants. Indeed, a single extended 

family may be sufficient to identify a novel AD candidate gene [18]. Moreover, WES has the 

sensitivity to directly detect both common and rare variants that may confer a risk to AD, 

while GWAS findings are limited to pinpointing a region of interest, but not necessarily the 

causative alterations. In the study presented here, rare changes potentially contributing to 

AD risk were found in genes implicated in the immune response, CD163L1 and CLECL1, 

and neuronal function, CTNNA1, GALR3, MIEF1, PLEKHG5 and THBS2. Variants were 

also identified in genes previously connected to both early and late-onset AD including 

AKAP9, INPP5D, SORL1 and UNC5C. Further investigation will be required to fully assess 

the cellular and molecular consequences of the alterations identified here as well as 

determine whether the novel genes found are involved in AD risk across larger datasets.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Study design. Strategy for processing the samples and prioritizing the variants that were 

resulting from whole exome sequencing.
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