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ABSTRACT
Background: Variations in intestinal antioxidant membrane trans-
porters are implicated in the initiation and progression of inflam-

matory bowel disease (IBD). Facilitated glucose transporter member 14

(GLUT14), encoded by the solute carrier family 2 member 14

(SLC2A14) gene, is a putative transporter for dehydroascorbic acid and

glucose. Although information on the gene is limited, shorter and longer

GLUT14 isoforms have been identified. We hypothesized that GLUT14

mediates glucose and dehydroascorbic acid uptake. If this function could

be validated, then genetic variations may associate with IBD.
Objective: This study aimed to determine the substrate(s) for the
GLUT14 protein and interrogated genetic associations of SLC2A14

with IBD.
Design: The uptake of radiolabeled substrates into Xenopus laevis
oocytes expressing the 2 GLUT14 isoforms was assessed. Examina-

tion of gene-targeted genetic association in the Manitoba Inflamma-

tory Bowel Disease Cohort Study was conducted through the genotyping

of single nucleotide polymorphisms (SNPs) representing linkage

blocks of the SLC2A14 gene.
Results: Both GLUT14 isoforms mediated the uptake of dehydroas-
corbic acid and glucose into X. laevis oocytes. Three alleles in the

SLC2A14 gene associated independently with IBD. The odds of having

ulcerative colitis (UC) or Crohn disease (CD) were elevated in carriers of

the SLC2A14 SNP rs2889504-T allele (OR: 3.60; 95% CI: 1.95, 6.64 and

OR: 4.68; 95% CI: 2.78, 8.50, respectively). Similarly, the SNP

rs10846086-G allele was associated with an increased risk of both UC

and CD (OR: 2.91; 95% CI: 1.49, 5.68 and OR: 3.00; 95% CI: 1.55,

5.78, respectively). Moreover, the SNP rs12815313-T allele associated

with increased susceptibility to CD and UC (OR: 2.12; 95% CI: 1.33,

3.36 and OR: 1.61; 95% CI: 1.01, 2.57, respectively).
Conclusion: These findings strengthen the hypothesis that genetically
determined local dysregulation of dietary vitamin C or antioxidants

transport contributes to IBD development. These transporter proteins

are targetable by dietary interventions, opening the avenue to a pre-

cision intervention for patients of specific genotypes with IBD. This

trial was registered at clinicaltrials.gov as NCT03262649. Am J

Clin Nutr 2017;106:1508–13.
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INTRODUCTION

Inflammatory bowel disease (IBD), including ulcerative colitis
(UC) and Crohn disease (CD), are chronic, relapsing, immune-
mediated intestinal inflammatory diseases of complex etiology
(1–4), found predominantly in white people (1, 3) and incurring
substantial socioeconomic costs; in excess of $1.7 billion/y in Canada
(5). The exact contributions of environmental factors (6), immune
dysregulations (7), and genetics (8) are unknown, which im-
pairs therapeutic success. Current research efforts, therefore, aim to
derive genetic markers to guide diagnostic and treatment decisions.

Variations in the solute carrier family 2 (SLC) genes SLC23A1
(9), SLC22A23 (10, 11), and SLC22A4/SLC22A5 (12–15), and
ATP binding cassette subfamily B member 1 (ABCB1) (16–18)
have been associated with IBD. They encode for intestinal mem-
brane transporters of antioxidants, and it was hypothesized that
genetically determined dysregulation of dietary antioxidants,
prominently vitamin C, may contribute to IBD (9, 19, 20).

Vitamin C exists in 2 stable forms, reduced ascorbic acid and
oxidized dehydroascorbic acid, each utilizing distinct pathways
of transmembrane transport. The uptake of dehydroascorbic
acid is mediated by selected facilitated hexose transporters
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(GLUT1–3, 8) (19); however, several genes in this family re-
main orphaned and need to be investigated in regard to function
and disease association.

The primate-specific SLC2A14 gene encodes facilitated glu-
cose transporter member 14 (GLUT14) (21), consists of 20
exons, and shows tissue-specific exon utilization in the 5# portion
(where the first 4 exons are neuron specific); and exons 5–9 are used
exclusively in extraneural tissues, most prominently testis. Expres-
sion is limited to the testis, small intestine, colon, lung, ovaries, brain,
skeletal muscle, heart, kidney, liver, blood, and placenta. Two major
splice variants exist, and the resulting 2 protein isoforms have dis-
tinct N-termini; the longer form (L-GLUT14) has 29 amino
acids and the shorter form (S-GLUT14) has 6 (22). Both
isoforms locate to the cell membrane; however, no substrates
are identified (21, 22). Because of its high similarity to GLUT3
it may be hypothesized that both mediate the transmembrane
transport of glucose and dehydroascorbic acid (21, 22).

Genetic variations of SLC2A14 are associated with diseases of
the central nervous system (23, 24), lymphatic cancer (25),
rheumatoid arthritis (26), and intraocular pressure in primary
open-angle glaucoma (27). These diseases are consistent with
tissue expression, and by virtue of expression in the intestinal
tract, it can be hypothesized that variations in SLC2A14 could be
associated with IBD.

Taken together, if dehydroascorbic acid could be confirmed
as a GLUT14 substrate, SLC2A14 would be a candidate gene for
an association with IBD. Here, we report on both hypotheses.

METHODS

Participants

The Manitoba Inflammatory Bowel Disease Cohort Study
(clinicaltrials.gov; NCT03262649), initiated in 2002, included
388 individuals drawn from a population-based registry. Par-
ticipants were required to be between 18 and 80 y old and di-
agnosed within the previous 7 y. The diagnosis and extent of IBD
was determined based on surgical, endoscopic, radiologic, and

histologic data, and participating individuals were phenotyped
through use of the Montreal classification (28). Controls, drawn
from the general population, included healthy individuals with no
personal or first-degree relatives with chronic immune diseases.
Of the 388 individuals in the cohort, 311 patients with IBD (162
with CD and 149 with UC) were white and 142 age- and sex-
matched healthy white controls were included in the study.
More details on the study design and creation of this study
population are provided elsewhere (29). The Manitoba In-
flammatory Bowel Disease Cohort Study was approved by the
Research Ethics Board of the University of Manitoba.

Substrate transport

As previously described elsewhere, the 2 major GLUT14 iso-
forms were subcloned (21). [14C]Fructose was purchased from
Amersham Biosciences. Radiolabeled [14C]dehydroascorbic acid
was prepared from crystalline [14C]ascorbic acid (6.6 mCi/mmol;
PerkinElmer Life Sciences) (30). Total conversion of [14C]ascorbic
acid to DHA was confirmed through the use of HPLC with
electrocoulometric detection (31). Radiolabeled deoxy-D-glucose,2-
[1,2-3H(N)] (25–50 Ci/mmol; PerkinElmer Life Sciences) was
adjusted to required concentrations in the transport buffer. Pre-
viously described Xenopus laevis oocyte isolation and injection
techniques were used to express the GLUT14 isoforms (32).

The transport of radiolabeled substrates was determined with
groups of 10–20 oocytes in OR2 buffer at 218C. Individual
oocytes were dissolved in 500 mL 10% SDS, and internalized
radioactivity was determined with scintillation spectrometry.
Transport was analyzed and plotted with Microsoft Excel, and
Student’s t test was used to determine statistical differences.
Data are expressed as the arithmetic means 6 SDs of 10–20
oocytes analyzed at each data point.

Single nucleotide polymorphism selection, genotyping, and
association analyses

A haplotype-based tag-single nucleotide polymorphism (SNP)
(33) approach was implemented through the use of the 8 tagging

FIGURE 1 GLUT14 isoforms mediate DHA and deoxyglucose uptake. Xenopus laevis oocytes expressing S-GLUT14 and L-GLUT14 isoforms and
exhibit uptake of radiolabeled deoxyglucose (A) and dehydroascorbic acid (B). Incubations were performed with 300 mM [14C]DHA or 300 mM deoxy-D-
glucose,2-[1,2-3H(N)] on 20 oocytes in each group in 3 independent experiments. Data are expressed as means 6 SDs. Lowercase letters indicate statistically
significant differences determined through 1-factor ANOVA, P , 0.05. GLUT14, facilitated glucose transporter 14; L-GLUT14, long GLUT14 isoform;
S-GLUT, short GLUT14 isoform.
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SNPs rs10846086, rs12815313, rs2889504, rs10845990,
rs11612319, rs7132415, rs2376904, and rs73007730. These 7
intronic and 1 noncoding exonic SNPs (5# untranslated region)
captured all of the common variations with a minor allelic fre-
quency .5% in SLC2A14 (Supplemental Table 1).

Genomic DNA was isolated from peripheral white blood
cells by absorption onto QIamp silica gel following QIAGEN
protease digestion. After column elution, the purity and con-
centration of DNA was determined by UV spectroscopy
with a NanoDrop 2000 Spectrophotometer (Thermo Fisher
Scientific).

Genotyping was performed on all of the subjects with TaqMan
Real-Time polymerase chain reaction assays (Applied Biosystems)
(Supplemental Table 1). The genotype concordance rate was 100%
in duplicate samples.

Statistical analysis

All of the data were initially processed with Microsoft Excel
2010. The functional data for uptake of the radiolabels in the
Xenopus oocyte system were processed in Microsoft Excel
2010, and the T.TEST function was used to interrogate the
probability associated with a Student’s t test.

Genetic data were analyzed through the use of SAS version 9.2
(SAS Institute Inc.); P , 0.05 was considered statistically sig-
nificant. The association of genotypes with CD or UC risks was
examined by logistic regression to estimate ORs and 95% CIs,
by the use of a 3-level genotypic model (2 homozygotes and 1
heterozygote). Overdominance was tested when the heterozy-
gote was not intermediate—in effect, between the 2 homozy-
gotes. The genotype-phenotype association for individuals with
CD and UC was determined with multinomial logistic regression.

TABLE 1

Genetic associations of SNPs in the SLC2A14 gene to UC and CD1

Controls, n = 142 UC, n = 149 UC vs. control, OR (95% CI) CD, n = 162 CD vs. control, OR (95% CI)

rs12815313

CC 73 (51.4) 59 (39.6) Ref 54 (33.4) Ref

CT 55 (38.7) 71 (47.6) 1.59 (0.98, 2.61) 83 (51.2) 2.04 (1.25, 3.33)*

TT 14 (9.9) 19 (12.7) 1.68 (0.78, 3.63) 25 (15.4) 2.41 (1.15, 5.07)*

T carrier 69 (48.59) 90 (60.4) 1.61 (1.01, 2.57)* 108 (66.7) 2.12 (1.33, 3.36)*

rs10845990

TT 34 (23.9) 29 (19.5) Ref 32 (19.7) Ref

GT 68 (47.9) 64 (42.9) 1.10 (0.60, 2.01) 76 (46.9) 1.19 (0.66, 2.13)

GG 40 (28.2) 56 (37.6) 1.64 (0.86, 3.11) 54 (33.4) 1.43 (0.76, 2.70)

G carrier 108 (76.1) 120 (80.5) 1.30 (0.74, 2.28) 130 (80.25) 1.28 (0.74, 2.21)

rs11612319

GG 66 (46.5) 65 (43.6) Ref 79 (48.8) Ref

GA 66 (46.5) 69 (46.3) 1.06 (0.66, 1.72) 65 (40.1) 0.82 (0.51, 1.32)

AA 10 (7.0) 15 (10.1) 1.52 (0.64, 3.64) 18 (11.1) 1.50 (0.65, 3.48)

A carrier 79 (53.5) 84 (56.4) 1.12 (0.71, 1.78) 83 (51.2) 0.91 (0.58, 1.43)

rs7132415

GG 37 (26.1) 36 (24.2) Ref 31 (19.1) Ref

GT 70 (49.3) 76 (51.0) 1.12 (0.64, 1.96) 72 (44.5) 1.23 (0.69, 2.19)

TT 35 (24.6) 37 (24.8) 1.09 (0.57, 2.08) 59 (36.4) 2.01 (1.07, 3.79)

T carrier 105 (73.9) 113 (75.8) 1.11 (0.65, 1.88) 131 (80.9) 1.49 (0.87, 2.56)

rs10846086

AA 128 (90.1) 113 (75.8) Ref 122 (75.4) Ref

AG 9 (6.3) 17 (11.4) 2.14 (0.92, 4.99) 20 (12.3) 2.33 (1.02, 5.32)*

GG 5 (3.5) 19 (12.8) 4.30 (1.56, 11.9)* 20 (12.3) 4.20 (1.53, 11.5)*

G carrier 14 (9.9) 36 (24.2) 2.91 (1.49, 5.68)* 40 (24.7) 3.00 (1.55, 5.78)*

rs2376904

GG 93 (65.5) 83 (55.7) Ref 113 (69.8) Ref

GA 43 (30.3) 58 (38.9) 1.51 (0.92, 2.47) 37 (22.8) 0.70 (0.42, 1.19)

AA 6 (4.2) 8 (5.4) 1.49 (0.50, 4.48) 12 (7.4) 1.65 (0.59, 4.55)

A carrier 49 (34.5) 66 (44.3) 1.51 (0.94, 2.42) 49 (30.2) 0.82 (0.51, 1.33)

rs7300773

TT 50 (35.2) 47 (31.5) Ref 57 (35.2) Ref

CT 74 (52.1) 74 (49.7) 1.06 (0.64, 1.78) 76 (46.9) 0.90 (0.54, 1.48)

CC 18 (12.7) 28 (18.8) 1.65 (0.81, 3.37) 29 (17.9) 1.41 (0.70, 2.85)

CT + CC 92 (64.8) 102 (68.5) 1.18 (0.72, 1.92) 105 (64.8) 1.00 (0.62, 1.60)

rs2889504

GG 125 (88.0) 100 (67.1) Ref 99 (61.1) Ref

GT 7 (4.9) 30 (20.1) 5.36 (2.26, 12.71)* 36 (22.2) 6.49 (2.77, 15.2)*

TT 10 (7.1) 19 (12.8) 2.37 (1.06, 5.34)* 27 (16.7) 3.41 (1.57, 7.38)*

T carrier 17 (12.0) 49 (32.9) 3.60 (1.95, 6.64)* 63 (38.9) 4.68 (2.78, 8.50)*

1Values are n (%) unless otherwise indicated. Per-allele effects were derived from binary logistic regression performed with SAS version 9.2 (SAS

Institute Inc.) through the use of a 3-level genotypic model (2 homozygotes and 1 heterozygote). Overdominance was tested when the heterozygote was not

intermediate in effect between the 2 homozygotes. *Significant differences in the ORs to the reference SNPs. CD, Crohn disease; Ref, reference; SLC2, solute

carrier family 2; SNP, single nucleotide polymorphism; UC, ulcerative colitis.

1510 AMIR SHAGHAGHI ET AL.



Haploview 4.2 software (Broad Institute) applying default pa-
rameters was used to determine linkage disequilibrium and
haplotype blocks (34).

RESULTS

GLUT14 mediates cellular dehydroascorbic acid and
glucose uptake

The shorter and longer GLUT14 isoforms (S-GLUT14 and
L-GLUT14) locate to the plasma membrane in mammalian cells
(21). On expression in X. laevis oocytes, these 2 major GLUT14
isoforms mediate the uptake of radiolabeled deoxyglucose and
dehydroascorbic acid (Figure 1). Ascorbic acid and fructose did
not get transported by GLUT14 (Supplemental Figure 1).

SLC2A14 SNPs independently associate with IBD

The baseline characteristics of the study participants are
presented in Supplemental Table 2. Genetic variations in SNPs
rs10846086, rs2889504, and rs12815313 associated with UC
and CD (Table 1). No linkage was observed for the 8 tag-SNPs
in the SLC2A14 gene (Figure 2), and the pattern of inheritance
for the 3 SNPs associated with any disease phenotype differed
substantially (Table 1).

First, the susceptibility for CD and UC was elevated in in-
dividuals carrying the SNP rs12815313-T allele (ORs: 2.12 and
1.62 respectively; Table 1), with equal impact sizes for T ho-
mozygotes and CT heterozygotes. Elevated susceptibility for
CD was established for rs12815313 T homozygotes and CT
heterozygotes (OR: 2.04 for CT and OR: 2.41 for TT; Table 1).

Second, the rs10846086-G allele elevated risks for UC and
CD (ORs: 2.91 and 3.00, respectively; Table 1). An additive

allele dosage effect was demonstrated, wherein highest suscep-
tibility for UC and CD was observed for rs10846086-GG ho-
mozygotes (ORs: 4.30 and 4.20, respectively; Table 1), whereas
the impact size was w50% for rs10846086-AG heterozygotes
(ORs: 2.14 and 2.33, respectively; Table 1).

Third, the presence of the SNP rs2889504-T allele increased
susceptibility to UC and CD (ORs: 3.60 and 4.68, respectively;
Table 1). rs2889504-GT heterozygotes exhibited the highest risk
for UC and CD (ORs: 5.36 and 6.49, respectively; Table 1)
compared with T-allele homozygotes (ORs: 2.37, 3.41,
respectively; Table 1). The rs2889504-GT heterozygosity was
not overly dominant, however, indicating similar effect sizes of
the T allele in both genotypes. No significant correlations were
found to specific CD and UC subphenotypes as defined in the
Montreal Classification (data not shown).

DISCUSSION

The presented data establish GLUT14 as a membrane trans-
porter for glucose and dehydroascorbic acid. Moreover, 3
SLC2A14 SNPs associate independently with IBD in a well-
phenotyped white cohort of moderate size, in which major
genetic associations with IBD identified by a genome-wide as-
sociation study had been replicated (35). All SNPs interrogated
in this targeted genetic association study are noncoding and
were chosen based on their ability to tag haplotype blocks in the
SLC2A14 gene. This method of selection did not consider the
possible impact of the SNPs on the functions of the genes or
proteins, such as transcription, translation, or protein activity, but
on their ability to serve as markers for disease association. In this
regard, it was somewhat remarkable that 3 variations in distinct
linkage blocks strongly associated with IBD (ORs 2.1–4.3),

FIGURE 2 Genetic linkage across the SLC2A14 locus in individuals with Crohn disease (A) and ulcerative colitis (B). The degree of linkage (diamonds)
is given as a percentage, and the darker color indicates a higher degree of linkage. SNPs with relevant associations to any form of inflammatory bowel disease
are indicated by rectangles. The single nucleotide polymorphisms associated with inflammatory bowel disease are not in genetic linkage. SLC2, solute carrier
family 2; SNP, single nucleotide polymorphism.

THE SLC2A14 GENE AND IBD 1511



strengthening the validity of each association. This association,
however, does not indicate the causality of these SNPs, which is
unlikely for the intronic SNPs rs10846086 and rs2889504, which do
not fall into regions of high genetic conservation or known genetic
enhancers of transcription (36). Neither does SNP rs12815313
in the 5# untranslated region (NM_001286233.1:c.-171G . A)
affect any known transcription factors or enhancer binding
sites (36, 37). As such, future studies to identify causal SNPs
are warranted.

These findings strengthen the evidence that a local mucosal
vitamin C imbalance could contribute to IBD, because previously
SLC23A1, the gene encoding an intestinal trans-epithelial ascorbic
acid transporter, was also associated with CD (9). Low mu-
cosal tissue levels and lower plasma concentrations of vitamin
C have been reported in individuals with IBD, even when their
dietary intake was adequate (38–41), suggesting increased
consumption of antioxidants during the inflammation process.
Consequently, because genetic variations in the 2 intestinal
vitamin C transporters genes SLC23A1 (9) and SLC2A14 are
associated with IBD, we speculate that a localized vitamin C
deficiency caused by decreased transmembrane transport could
be a causative or contributing factor in the etiology of in-
testinal inflammation.

Although this study was not intended to define the underlying
mechanisms in how mutations in these transporter genes lead to
IBD, 2 scenarios could contribute to the weakening of the in-
testinal barrier function. First, variations in SLC2A14 could
decrease the capacity to provide dehydroascorbic acid to the
enterocytes during the inflammatory oxidative burst, where
dehydroascorbic acid is produced in the extracellular envi-
ronment, immediately transported into the cell and reduced to
ascorbic acid (30, 42, 43). This mechanism, called ascorbate
recycling or the bystander effect, greatly elevates the antioxi-
dant capacity of the cells (44, 45), and if compromised, it could
decrease the intestinal barrier function, leading to increased
bacterial invasion and inflammation. Second, a decrease in
vitamin C transport could affect the functioning of immune
cells themselves through the redox changes described above or
changes in gene expression, enhancing the severity of an ex-
isting inflammation (46–48).

In either case, the local vitamin C imbalance caused by im-
paired transport of ascorbic acid through SLC23A1 or dehy-
droascorbic acid through GLUT14 could be remedied by dietary
supplementation of the complementary forms. In the future, in-
dividuals who are suitable for such interventions could be identified
by their genotypes. Thismay be relevant for only a small number of
individuals affected by IBD; however, genotype-specific dietary
prevention and intervention strategies would likely be easy to
implement and less costly than the current treatments.

We emphasize the fact that the underlying mechanism for the
presented genetic associations ought to be validated through
biological and clinical intervention studies to devise precise
genotype-specific IBD intervention strategies.
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