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Abstract

Risky decision making is prominent during adolescence, perhaps contributed to by heightened 

sensation seeking and ongoing maturation of reward and dopamine systems in the brain, which 

are, in part, modulated by sex hormones. In this study, we examined sex differences in the neural 

substrates of reward sensitivity during a risky decision-making task and hypothesized that 

compared with girls, boys would show heightened brain activation in reward-relevant regions, 

particularly the nucleus accumbens, during reward receipt. Further, we hypothesized that 

testosterone and estradiol levels would mediate this sex difference. Moreover, we predicted boys 

would make more risky choices on the task. While boys showed increased nucleus accumbens 

blood oxygen level-dependent (BOLD) response relative to girls, sex hormones did not mediate 

this effect. As predicted, boys made a higher percentage of risky decisions during the task. 

Interestingly, boys also self-reported more motivation to perform well and earn money on the task, 

while girls self-reported higher state anxiety prior to the scan session. Motivation to earn money 

partially mediated the effect of sex on nucleus accumbens activity during reward. Previous 

research shows that increased motivation and salience of reinforcers is linked with more robust 

striatal BOLD response, therefore psychosocial factors, in addition to sex, may play an important 

role in reward sensitivity. Elucidating neurobiological mechanisms that support adolescent sex 

differences in risky decision making has important implications for understanding individual 

differences that lead to advantageous and adverse behaviors that affect health outcomes.
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1. Introduction

Following perinatal neural organization, adolescence marks a second wave of plasticity, 

during which numerous behavioral, social, and physiological changes occur that act to re-
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organize and activate the brain (Spear, 2013). This extended brain plasticity can be viewed 

as a double-edged sword, serving to augment vulnerability to biological and psychological 

insult, as well as support healthy neurodevelopment (Telzer, 2016). Processing of rewarding 

stimuli is particularly relevant during the adolescent period, given the rise in sensation 

seeking, which may contribute to increased reward sensitivity and risk taking in some youth 

(Romer & Hennessy, 2007). Dysregulated reward processing has been linked with affective 

and substance use disorders, the incidence of which increase substantially during 

adolescence (Davey, Yucel, & Allen, 2008; Ernst, Pine, & Hardin, 2006; Fairchild, 2011; 

MacPherson, Magidson, Reynolds, Kahler, & Lejuez, 2010). As such, elucidating the neural 

mechanisms underlying adolescent reward sensitivity may help in promoting beneficial, 

rather than adverse, neuroplastic change.

Psychobiological models of adolescent risk taking posit an imbalance between reward 

processing and self-control, mirrored by enhanced functional activation of reward-sensitive 

regions (i.e. striatum, including nucleus accumbens) and diminished activation of self-

regulatory brain regions (i.e. medial prefrontal cortex), which drives risk taking via 

inefficient regulation of reward-sensitive brain regions by self-regulatory regions (Casey, 

2015; Ernst, 2014; Smith, Chein, & Steinberg, 2013; Somerville, Jones, & Casey, 2010). 

However, there is a paucity of data showing a direct relationship between reward sensitivity 

and risk taking (Braams, Peper, van der Heide, Peters, & Crone, 2016; Braams, van 

Duijvenvoorde, Peper, & Crone, 2015; Galvan et al., 2006; van Duijvenvoorde et al., 2014, 

2015; Vorobyev, Kwon, Moe, Parkkola, & Hamalainen, 2015), likely because there is 

substantial individual variability in reward sensitivity (Bjork & Pardini, 2015; Braams et al., 

2015; Chick, 2015; Cservenka, Herting, Seghete, Hudson, & Nagel, 2012). Some of this 

variability may be due to individual differences in personality traits, such as sensation 

seeking (Cservenka et al., 2012; van Duijvenvoorde et al., 2014) and impulsivity (Forbes et 

al., 2009; Piray, den Ouden, van der Schaaf, Toni, & Cools, 2015). Moreover, the link 

between reward sensitivity and risk taking may be partly explained by pubertal influences 

(Forbes et al., 2010; Urosevic, Collins, Muetzel, Lim, & Luciana, 2014), given that puberty 

has been shown to correlate with sensation seeking (Forbes & Dahl, 2010; Martin et al., 

2002, 2006; Steinberg, 2004; Steinberg et al., 2008), reward sensitivity (Urosevic et al., 

2014) and nucleus accumbens activity in response to rewards (Braams et al., 2015). Indeed, 

there is evidence that pubertal increases in sensation seeking predict real-world risky 

behavior, such as substance use (Kirillova, Vanyukov, Gavaler, Pajer, & Tarter, 2001; Martin 

et al., 2002).

Gonadal hormones, which are re-activated at the onset of puberty, have also been linked to 

reward processing. Previous work in adolescents showed a positive association between 

striatal activity in response to reward and endogenous levels of testosterone (Braams et al., 

2015; Op de Macks et al., 2011) and estradiol (Op de Macks et al., 2011) in both males and 

females. Moreover, sex hormone levels have been positively associated with risk-taking 

behavior in adolescence (de Water, Braams, Crone, & Peper, 2013; Martin, Mainous, Curry, 

& Martin, 1999; Peper, Mandl, et al., 2013; Peters, Jolles, Van Duijvenvoorde, Crone, & 

Peper, 2015; Vermeersch, T’Sjoen, Kaufman, & Vincke, 2008a, 2008b). In studies that 

compared boys and girls directly, there is more evidence of a positive relationship between 

sex hormones and risky behavior in boys relative to girls (de Water et al., 2013; Peper, de 
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Reus, van den Heuvel, & Schutter, 2015; Peters et al., 2015), or compared to evidence 

indicating no sex difference (Peper, Koolschijn, & Crone, 2013). In young adults, sex 

hormone levels have been shown to predict risky behavior in both sexes to the same degree 

(Braams et al., 2016; Mehta, Welker, Zilioli, & Carre, 2015; Nguyen et al., 2016; Stanton, 

Liening, & Schultheiss, 2011). The majority of this research supports a link between 

testosterone and risk taking (Braams et al., 2016; de Water et al., 2013; Martin et al., 1999; 

Mehta et al., 2015; Nguyen et al., 2016; Peper et al., 2015; Peper, Koolschijn, et al., 2013; 

Peters et al., 2015; Stanton et al., 2011; Vermeersch et al., 2008b), while a subset of studies 

also support a positive association between estradiol and risk taking (de Water et al., 2013; 

Martin et al., 1999; Peper et al., 2015; Vermeersch et al., 2008a). Only two studies have 

examined the relationship between reward sensitivity, as indexed by nucleus accumbens 

activity, sex hormones and risk taking (Braams et al., 2015, 2016). One of these studies 

reported that puberty, testosterone and risk taking explained nucleus accumbens activation 

during a gambling game in both males and females (Braams et al., 2015). The second study 

indicated that testosterone levels, but not nucleus accumbens activation during the same 

gambling task, predicted risky behavior, as indexed by self-reported alcohol use, two years 

later in males and females (Braams et al., 2016). The mechanism linking sex hormones, 

reward sensitivity and risk taking remains to be fully elucidated; however, the extant 

literature suggests that both testosterone and estradiol may be important in explaining risk-

taking behavior during adolescence, particularly in boys.

Intriguingly, sex differences in striatal reactivity during reward processing have not been 

reported or examined in previous studies of adolescents (Braams et al., 2015, 2016; Forbes 

et al., 2010; Op de Macks et al., 2011). This is somewhat surprising, given the presence of 

sex differences in pubertal maturation, sex hormone levels (Tanner & Whitehouse, 1976), 

prefrontal cortical maturation (on average, girls mature approximately two years earlier than 

boys) (Lenroot et al., 2007) and sensation seeking (on average, boys report more sensation 

seeking than girls) (Romer & Hennessy, 2007; Steinberg et al., 2008; Zuckerman & 

Kuhlman, 2000). Thus, sex may be an important variable to consider for understanding 

individual differences in reward sensitivity and risk taking during adolescence. Indeed, one 

of the primary neurotransmitters involved in reward processing - dopamine (Berridge & 

Kringelbach, 2008) - develops in a sexually dimorphic manner during adolescence. Studies 

in rodents demonstrate enhanced dopamine release in females compared to males due to 

elevations in estradiol levels during puberty (Di Paolo, Rouillard, & Bedard, 1985; Sarvari et 

al., 2014; Xiao & Becker, 1994). In contrast, testosterone metabolites have been shown to 

mediate reward response following direct administration into the nucleus accumbens, which 

may be mediated by binding at γ-Aminobutyric acid (GABA) (Frye, Park, Tanaka, 

Rosellini, & Svare, 2001) and dopamine (Mhillaj et al., 2015) receptors. Additionally, both 

sex hormones have been shown to influence sensation seeking in adolescence (Kerschbaum, 

Ruemer, Weisshuhn, & Klimesch, 2006; Vermeersch, T’Sjoen, Kaufman, & Vincke, 2009), 

indicating a role for sex hormones in dopamine activity and sensation seeking. Thus, 

examining the influence of sensation seeking and sex hormones on potential sex differences 

in reward sensitivity may inform psychobiological models of risk taking in adolescence.

The current study adds to this literature by examining sex differences in reward processing 

in a large sample of healthy adolescents, as well as the potentially mediating influence of sex 
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hormones on observed sex differences. We hypothesized boys would show increased blood 

oxygen level-dependent (BOLD) response in the striatum, including nucleus accumbens, 

during reward receipt feedback, as well as heightened risky behavior during a risky decision-

making task, compared to girls. These hypotheses were based on research showing higher 

sensation seeking in adolescent boys (Romer & Hennessy, 2007; Steinberg et al., 2008) and 

delayed prefrontal gray matter maturation in boys, compared to age-matched girls (Lenroot 

et al., 2007). We also predicted testosterone and estradiol would mediate sex differences in 

nucleus accumbens BOLD response, given their important role in pubertal development, 

sensation seeking and in modulating reward-relevant brain regions (Braams et al., 2015; Di 

Paolo et al., 1985; Frye et al., 2001; Op de Macks et al., 2011; Sarvari et al., 2014; Xiao & 

Becker, 1994).

2. Material and methods

2.1. Participant screening and exclusionary criteria

Participants underwent comprehensive structured interviews by trained research assistants to 

determine eligibility. Youth and parents completed separate structured telephone interviews 

that included the Diagnostic Interview Schedule for Children Predictive Scales (Lucas et al., 

2001), the Family History Assessment Module (Rice et al., 1995), and the Brief Lifetime 

version of the Customary Drinking and Drug Use Record (Brown et al., 1998). Exclusionary 

criteria included current diagnosis of DSM-IV disorders (lifetime history of DSM-IV 

disorders was not assessed), significant substance use (>10 lifetime alcoholic drinks or >2 

drinks/occasion, >5 uses of marijuana, any other drug use, or >4 cigarettes per day), 

neurological illness/head trauma, serious medical problems, prenatal exposure to drugs or 

alcohol, reported history of psychotic disorders in biological parents, current medication that 

may affect neural (e.g. psychoactive medication) or endocrine (e.g. birth control) function, 

the inability of a parent to provide family history information, left-handedness (Edinburgh 

Handedness Inventory, Oldfield, 1971), pregnancy, and MRI contraindications. This study 

was reviewed and approved by the Oregon Health & Science University’s (OHSU) 

Institutional Review Board. Written assent and consent was obtained from all children and 

their parents, respectively.

Two-hundred one participants from an ongoing longitudinal study of adolescent 

neurodevelopment completed a reward processing task (see Section 2.4). From this sample, 

21 were excluded due to missing sex hormone data or values that exceeded normal ranges 

based on sex, age, and pubertal status (see Section 2.3). An additional 5 participants were 

excluded for excessive head motion during scanning (see Section 2.6) and 8 participants 

were excluded for taking birth control or other endocrine-disrupting medication. The data 

for the remaining 167 participants were used in subsequent data analyses.

2.2. Participant characteristics and questionnaires

Eligible youth were administered the following: a 2-subtest (Vocabulary and Matrix 

Reasoning) version of the Wechsler Abbreviated Scale of Intelligence (Wechsler, 1999), the 

Pubertal Development Scale (PDS) (Petersen, Crockett, Richards, & Boxer, 1988), the 

Children’s Sleep Habits Questionnaire (CSHQ) (Owens, Spirito, & McGuinn, 2000) and the 
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Impulsive Sensation Seeking scale from the Zuckerman-Kuhlman Personality Questionnaire 

(Zuckerman, Kuhlman, Joireman, Teta, & Kraft, 1993). In addition, parents completed the 

Hollingshead Index of Social Position to determine family socioeconomic status (SES) 

(Hollingshead, 1975). Prior to the scan session, participants filled out the state anxiety sub-

scale from the State-Trait Anxiety Inventory (STAI) (Spielberger, Gorsuch, Lushene, Vagg, 

& Jacobs, 1983). Measures on sleep habits, SES and state anxiety were collected because 

they have been shown to impact reward processing (Forbes et al., 2012; Gianaros et al., 

2011; Hasler et al., 2012; Hasler, Sitnick, Shaw, & Forbes, 2013; Holm et al., 2009; Kumar 

et al., 2014; Mullin et al., 2013; Telzer, Fuligni, Lieberman, & Galvan, 2013). At the 

conclusion of the scan, participants completed an Exit Questionnaire assessing their 

motivation to perform well on the task (i.e. “How important was it for you to do well?” rated 

on a scale from 1 to 5, or “Not important at all” to “Very important”) and earn money (i.e. 

“How much did earning money motivate you?” rated on a scale from 1 to 4, or “Not at all” 

to “Very much”), as well as general feelings about winning (e.g. “On average, how did you 

feel when you won $7 on this wheel?” rated on a scale from 1 to 10 or “Very Sad” to “Very 

Happy”) and not winning (e.g. “On average, how did you feel when you did not win $1 on 

this wheel?” rated on a scale from 1 to 10 or “Very Sad” to “Very Happy”) during low- and 

high-risk trials (see Section 2.4).

2.3. Sex hormone assays

Serum sex hormone levels were measured within seven days of the scan procedure. Four mL 

of blood was collected via venipuncture from all subjects at the Oregon Clinical and 

Translational Research Institute. To reduce diurnal heterogeneity of hormone levels, blood 

was collected between 7:00 and 10:00 a.m. In addition, samples from post-menarche girls 

were drawn during the follicular phase of the menstrual cycle (days 1–10) to further 

minimize variability, as well as interactions with progesterone (Gillies & McArthur, 2010; 

Wallach, 2000). Menstrual cycle phase was determined by self-report. Testosterone levels 

were determined by Coat-A-Count radioimmunoassay (Diagnostic Product Corp., Los 

Angeles, CA). The intra-assay and inter-assay CVs were 7.0% and 7.4%, respectively, with a 

lower level of detection of 10 ng/dL. Normal levels of testosterone range from <7 to 75 and 

<7 to 1200 ng/dL, in pubertal girls and boys, respectively (Wallach, 2000). Estradiol levels 

were determined using the DSL-4800 Ultra-sensitive Estradiol Radioimmunoassay Kit 

(Beckman Coulter, Fullerton, CA). The intraassay and interassay CVs were 7.4% and 

12.6%, respectively, with a lower level of detection of >2.2 pg/mL. Normal levels of 

estradiol range from <2 to 350 pg/mL and <2 to 40 pg/mL in pubertal girls and boys, 

respectively (Wallach, 2000). Hormone levels were examined to ensure none exceeded 

expected levels, as determined by norms for age, sex, and pubertal status.

2.4. Reward processing task

A modified version of the Wheel of Fortune (WOF) Task (Cservenka & Nagel, 2012), 

adapted from the original WOF paradigm (Ernst et al., 2004), was used to assess neural 

response during reward processing. Details of the task have been described in depth 

previously (Cservenka & Nagel, 2012). Briefly, the WOF is a computerized decision-making 

task in which participants chose between two options associated with distinct probabilities 

of winning various monetary amounts, represented as portions of a wheel adding up to 100% 
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(10/90, 30/70, or 50/50%). Selection of the low probability/high magnitude option of the 

wheel (10% chance of winning $7 or 30% chance of winning $2) was considered a risky 

choice, while selection of the high probability/low magnitude option (90% or 70% chance of 

winning $1) represented a safe choice. Lastly, selection of a wheel with equal probabilities 

and magnitudes (50% of winning $2) was considered a chance or neutral choice. Seventy-

two trials were presented over two 10-min runs, with each run including 12 10/90, 14 30/70, 

and 10 50/50 probability wheels. In order to “Win” a trial, a participant’s selection had to 

match the computer’s choice, based on predefined probabilities, while a choice that did not 

match, resulted in a “No Win” trial. Participants were instructed to select the portion of the 

wheel they thought would win them money and to try to win as much money as possible 

because they would receive “a portion” of their total earnings at the end of the scan session. 

Each trial was 10.5 s and included a selection (3 s), anticipation (3.5 s) and feedback (4 s) 

phase, with intertrial fixation intervals jittered between 1 and 11 s. Trial numbers included in 

the decision making and anticipation phases of the task were determined by participant 

selections (safe, risky or neutral), while the number of trials for the reward receipt 

(feedback) phase included wins from all trial types. Only the feedback phase (combining 

wins across all types of trials) was analyzed in the present study, because it offers the most 

power for statistical analysis (i.e. number of trials is not limited by participant selections) 

(Jones, Cservenka, & Nagel, 2016; Steele et al., 2016). During this phase, the screen 

indicated whether the participant won or did not win money during that trial, as well as the 

cumulative dollar amount won up to that point. To confirm participant attention during this 

phase, youth were asked to indicate whether or not they won money during each trial. The 

task was displayed with E-Prime 2.0 software (Psychology Software Tools, Pittsburgh, PA). 

Average accuracy and reaction times (RT) for all phases across different trial probabilities/

magnitudes were recorded for both runs of the task.

2.5. MRI data acquisition

Youth were scanned on a 3 Tesla Siemens Magnetom Tim Trio system (Siemens Medical 

Solutions, Erlangen, Germany) using a twelve-channel head coil at the Advanced Imaging 

Research Center at OHSU. Functional images were collected in the axial plane oblique to 

the anterior – posterior commissure, using a high-angular resolution T2*-weighted echo-

planar BOLD sequence (TR = 2000 ms, TE = 30 ms, matrix = 240 × 176, FOV = 256 mm, 

flip angle = 90°, 33 slices, no gap, slice thickness = 3.8 mm, 300 repetitions/run). A whole-

brain, high-resolution structural image series was collected in the sagittal plane using a T1-

weighted MPRAGE scanning sequence (TI = 900 ms, flip angle = 10°, TE = 3.58 ms, TR = 

2300 ms, matrix = 256 × 240, FOV = 240 mm, slice thickness = 1 mm, 33 slices) for co-

registration to functional data.

2.6. Image processing

Imaging data were processed and analyzed using Analysis of Functional NeuroImages 

(AFNI) (Cox, 1996) using the following steps: slice time correction, correction for head 

movement, spatial smoothing with a 6.0 mm full-width half-maximum Gaussian kernel, 

within-run intensity normalization to a whole-brain signal, and co-registration of functional 

images to the anatomical image. TRs exceeding movement of 2.5 mm or 2.5° in any of the 

three displacement or three rotational parameters, respectively, were censored. To assess 
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within-run motion, an average root mean square (RMS) value was calculated using these six 

motion parameters and compared across groups. Any subject with a two-run average RMS 

value exceeding 1.5 mm was excluded from analyses.

Regressors representing selection, anticipation and feedback trials of the task were modeled. 

Stimulus times corresponding to the onset time of each phase and duration of the event 

coded as the length of each phase were convolved with a gamma-variate hemodynamic 

response function (Cohen, 1997). The estimated implicit baseline model corresponded to 

mean BOLD signal from the entire time course of the task, linear drift, periods of fixation, 

and nuisance regressors (Cox, 1996). Functional data were then transformed into Talairach 

space (Talairach & Tournoux, 1988) and resampled into 3 mm3 voxels. Contrast images Win 

- No Win, No Win - baseline, and Win - baseline were used for fMRI statistical analysis.

2.7. Statistical analyses

2.7.1. Demographics and behavior—Demographic and task performance data were 

examined for normality and occurrence of outliers using SPSS Statistics 20 (Armonk, NY: 

IBM Corp.). Non-normal variables with absolute skew/kurtosis values exceeding 2.0 were 

log transformed. Sex differences for self-reported race were assessed with chi-square 

analysis, while differences in PDS and responses on the post-scan Exit Questionnaire were 

determined with a Mann-Whitney U analysis. All other variables were examined with 

independent samples t-tests.

2.7.2. Task activation-masked fMRI analysis—To best represent task-related activity 

for both boys and girls, task activation maps were created for each sex. One-sample t-tests of 

task activation were thresholded at a voxel level of p < 0.001, uncorrected, summed and 

binarized to create a task-relevant mask (33,903 total voxels). By using this approach, we 

limit the detection of findings to those pertinent to the task conditions, as previously 

published (Cservenka et al., 2012; Cservenka, Jones, & Nagel, 2015; Jones et al., 2016). Sex 

differences were then examined within this reward-related activity mask. Sex differences in 

Win - No Win activation were examined with an analysis of covariance (ANCOVA) that 

included age as a covariate because previous studies have demonstrated changes in reward 

processing across this period of development (Braams et al., 2015; Forbes et al., 2010; Op de 

Macks et al., 2011). Although pubertal status was significantly different between boys and 

girls (Table 1), it was not included as a covariate due to its strong collinearity with age. 

Contributing effects of puberty were examined post hoc in SPSS. AFNI’s AlphaSim (Cox, 

1996) was used to correct for between-group multiple comparisons at a voxel- and cluster-

level (threshold of p < 0.001 and α < 0.01, respectively; minimum cluster size = 19 voxels).

2.7.3. Region of interest and mediation analyses—To test if sex hormones mediated 

the relationship between sex and striatal BOLD response, a region of interest (ROI) analysis 

of bilateral nucleus accumbens was conducted. A mask of the nucleus accumbens was 

created with the following Talairach coordinates: 12, −8, −8 (right) and −12, −8, −8 (left) 

corresponding to this region. Surrounding the peak coordinates, two spheres with 4 mm radii 

where created (20 total voxels; Fig. 3A). Next, an ANCOVA comparing sex differences in 

reward processing (Win - No Win), while controlling for age, was conducted. AFNI’s 
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AlphaSim was used again to account for multiple comparisons at a voxel- and cluster-level 

threshold of p < 0.05 and α < 0.05, respectively, which yielded a minimum cluster size of 5 

voxels. A more liberal voxel- and cluster-wise threshold was implemented relative to the 

task activation-masked ANCOVA to account for the small ROI. Values of percent BOLD 

signal change from significant clusters were included in a nonparametric bootstrapping 

procedure (5000 re-samples) to assess mediation by sex hormones (Hayes, 2013). The model 

included sex (independent variable), sex hormone (mediator variable), percent BOLD signal 

change from significant clusters (dependent variables), and age as a covariate.

2.7.4. Sex hormone linear regressions—To examine the relationships between sex 

hormones and reward-relevant brain activation, multiple regressions with either log 

testosterone or log estradiol (controlling for age) were conducted separately for boys and 

girls. Like the previous analysis, multiple regressions were restricted by the task-activation 

masks created for each sex. Results of the linear regressions were corrected for multiple 

comparisons with a voxel-wise correction of p < 0.001 and cluster-wise correction of α < 

0.01. Because task activation maps differed slightly by sex, the minimum cluster sizes were 

15 voxels for girls (of 11,039 total voxels) and 16 voxels for boys (of 32,885 total voxels).

3. Results

3.1. Participant characteristics and task behavior

Details on participant characteristics can be found in Table 1. Boys and girls did not differ in 

age, SES, IQ, sensation seeking, or general quality of sleep. Two-run averaged RMS head 

movement values exceeded 1.5 mm for five participants that were subsequently excluded 

from further analyses; RMS was not statistically different between boys and girls of the 

remaining sample. Sex hormone levels were not normally distributed and underwent log 

transformation. Boys had statistically greater serum levels of log testosterone, while girls 

had statistically higher log estradiol levels. Girls also reported more advanced pubertal 

maturation. Sensation seeking was not statistically different by sex, nor was it correlated 

with pubertal status or age across the whole sample. However, examined separately by sex, 

sensation seeking was correlated to puberty in boys, but not girls, while sensation seeking 

was not correlated to age in either boys or girls. Self-reported state anxiety prior to the scan 

session was significantly higher in girls (T-score = 42.7 ± 5.7), compared to boys (T-score = 

39.6 ± 7.5; t164 = 2.95, p = 0.004). State anxiety was positively correlated with log estradiol 

across the whole sample, but not within sex. Percent of risky selections was statistically 

higher in boys (64.5%), compared to girls (56.2%; t164 = 2.00, p < 0.05), but was not 

correlated with sensation seeking in the whole sample or by sex. Log testosterone and 

estradiol were not significantly related to percent of risky selections across the whole sample 

or by sex. Correlation tables can be found in Supplementary Material.

Responses on the post-scan Exit Questionnaire revealed that compared to girls, boys 

believed it was more important to perform well on the task (Z = 2.08, p = 0.04) and were 

more motivated by money (Z = 2.01, p < 0.05). All participants understood the task, and 

boys and girls did not feel differently after winning or losing (all Z ≤ 1.62, p ≥ 0.11). 

Additionally, log estradiol was negatively correlated with ‘Importance of Performance’ and 
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‘Motivation to Earn Money’ across the whole sample, but not within sex. Log testosterone 

was not related to either measure (Supplementary Material).

3.2. Sex differences in BOLD response during reward processing

3.2.1. Task activation-masked fMRI analysis—Sex differences in reward processing 

were assessed with an ANCOVA (controlling for age) masked with a task activation-related 

mask. Sex differences in percent BOLD signal change during Win - No Win were such that 

boys showed an increase in response, as compared to girls, in the following brain regions: 

left lentiform nucleus (extending to thalamus, putamen and caudate nucleus), right lentiform 

nucleus (extending to putamen, caudate nucleus and nucleus accumbens), right thalamus, 

left paracentral lobule (extending to cingulate cortex and precuneus), right superior parietal 

lobule (extending to precuneus and inferior parietal lobule) and right fusiform gyrus 

(extending to lingual gyrus) (Table 2; Figs. 1 and 2). Effect sizes for these results were in the 

medium range (Partial η2 ~ 0.10) (Table 2).

Percent BOLD signal change values from significant clusters of group differences were 

plotted for Win - baseline and No Win -baseline contrasts to examine whether group 

differences were driven by changes in BOLD response during Win trials, No Win trials, or 

both. Boys and girls showed comparable BOLD response during No Win trials; however, 

they differed significantly in their BOLD response during Win trials. In all clusters, boys 

showed greater BOLD signal during Win trials, relative to girls (Figs. 1 and 2).

To confirm that sex differences in reward processing were not attributed to differences in 

task performance, percent of risky selections, which was significantly higher in boys 

compared to girls (Table 1), was examined post hoc. Addition of a percent risky selections 

covariate did not change the significant effects of sex on percent BOLD signal change at any 

cluster (all F(1,162) ≥ 12.99, p < 0.001). However, percent of risky selections also explained 

some variance of BOLD activation during Win – No Win in the following clusters: left 

lentiform nucleus/caudate nucleus/thalamus/putamen (F(1,162) = 7.61, p = 0.006, partial η2 

= 0.05), right lentiform nucleus/putamen (F(1,162) = 4.76, p = 0.03, partial η2 = 0.03), right 

lentiform nucleus/caudate nucleus/nucleus accumbens (F(1,162) = 6.31, p = 0.01, partial η2 

= 0.04), right fusiform/lingual gyrus (F(1,162) = 7.04, p = 0.009, partial η2 = 0.04) and right 

lentiform nucleus/thalamus (F(1,162) = 11.09, p = 0.001, partial η2 = 0.06). Percent of risky 

selections did not explain variance in Win – No Win BOLD response in left paracentral 

gyrus/cingulate cortex/precuneus (F(1,162) = 2.77, p = 0.10), right superior/inferior parietal 

lobule/precuneus (F(1,162) = 2.70, p = 0.10) or right thalamus (F(1,162) = 3.71, p = 0.06).

Further, given the relevance of pubertal status in the neuromaturation of reward processing 

(Braams et al., 2015; Forbes et al., 2010), its effect on reward response was also analyzed 

post hoc. With the addition of a PDS covariate, the results of the ANCOVA replicated; 

pubertal status did not change the significant effects of sex on percent BOLD signal change 

at any cluster (all F (1,163) ≥ 11.43, p ≤ 0.001). However, PDS explained additional variance 

of Win – No Win BOLD response in right fusiform/lingual gyrus (F(1,163) = 3.92, p < 0.05, 

partial η2 = 0.02), such that PDS was associated with an increase in fusiform gyrus 

activation independent of age and sex. PDS did not explain a significant amount of variance 

in the remaining clusters (all F(1,163) ≤ 2.88, p ≥ 0.09).
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3.3. ROI and mediation analyses

Sex differences in reward processing were assessed with an ANCOVA (controlling for age) 

masked with a nucleus accumbens mask (Fig. 3A). Boys showed more BOLD activation in 

Win - No Win contrasts compared to girls in right, but not left nucleus accumbens (Table 2, 

Fig. 3B and C). Log testosterone was positively correlated with right nucleus accumbens 

percent BOLD signal change, controlling for age, across the whole sample (partial 2 = 0.22, 

p = 0.005; when girls and boys where examined separately, this correlation did not stand (all 

partial r2 ≤ −0.10, p ≥ 0.41)); therefore, a nonparametric mediation analysis was pursued 

(Hayes, 2013). Log testosterone did not statistically mediate the effect of sex on nucleus 

accumbens percent BOLD signal change (Bootstrapped CI95: −0.0834, 0.0859). A mediation 

analysis with estradiol was not pursued because estradiol did not relate to nucleus 

accumbens BOLD response, controlling for age (partial r2 = −0.10, p = 0.22).

Since we observed sex differences in ‘Importance of Performance’, ‘Motivation to Earn 

Money’ and state anxiety - variables known to impact striatal response to rewards (Kumar et 

al., 2014; Lighthall et al., 2012; Zink, Pagnoni, Martin-Skurski, Chappelow, & Berns, 2004) 

- we examined correlations between right nucleus accumbens BOLD response and these 

variables. Neither ‘Importance of Performance’ (ρ = 0.10, p = 0.21) nor state anxiety (r2 = 

−0.03, p = 0.72) were related to nucleus accumbens BOLD response. ‘Motivation to Earn 

Money’ was significantly related to nucleus accumbens BOLD activity (ρ = 0.17, p = 0.04), 

thus, a mediation analysis was pursued. ‘Motivation to Earn Money’ partially mediated the 

effect of sex on nucleus accumbens activity (Bootstrapped CI95: 0.0005, 0.0303); the direct 

effect of sex on nucleus accumbens activity remained statistically significant (CI95 = 0.0301, 

0.1556).

3.4. Task-activation masked sex hormone linear regressions

To determine any associations between sex hormones and BOLD response during reward 

processing, multiple regressions (controlling for age) with testosterone or estradiol as 

regressors were conducted in girls and boys separately. These analyses did not yield 

significant effects of testosterone or estradiol in either boys or girls.

4. Discussion

In this study, sex differences in brain response to reward were observed in a large and 

carefully matched sample of adolescent boys and girls. Specifically, BOLD response 

following notification of receipt of monetary rewards was higher in males, relative to 

females, in several reward-relevant brain regions (Liu, Hairston, Schrier, & Fan, 2011; Mohr, 

Biele, & Heekeren, 2010), including the nucleus accumbens. Although testosterone was 

positively related with nucleus accumbens BOLD response, it did not mediate the 

relationship between sex and nucleus accumbens activation during reward processing. 

Estradiol was not related to nucleus accumbens response. Notably, although self-reported 

sensation seeking was not different by sex, boys made a higher percentage of risky 

selections on the task. In addition, boys reported higher motivation to perform well and earn 

money on the task, while girls reported more state anxiety, both of which have been shown 

to impact reward processing (Kumar et al., 2014; Lighthall et al., 2012; Zink et al., 2004). 
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Notably, motivation to earn money on the task partially mediated the effect of sex on nucleus 

accumbens BOLD signal during reward processing, indicating that both sex and task 

motivation play an important role in determining striatal reactivity to rewards.

4.1. Sex differences mechanisms: sensation seeking

While our primary hypothesis was supported (i.e. increased nucleus accumbens BOLD 

response to reward in males), the mechanisms underlying this difference were not as 

predicted. First, it was hypothesized that males would show increased activation of nucleus 

accumbens during receipt of rewards, due in part to previous evidence showing heightened 

sensation seeking in age-matched males versus females (Romer & Hennessy, 2007; 

Steinberg et al., 2008). Interestingly, no sex differences in sensation seeking were observed 

in this study; however, sensation seeking and percent of risky selections were positively 

correlated only in males, who made a statistically greater number of risky selections 

compared to girls. The higher rates of risky selections in males may still be partly due to 

sensation seeking, but not impulsive sensation seeking per se. The Impulsive Sensation 

Seeking scale (Zuckerman et al., 1993) employed in the present study measures a specific 

type of sensation seeking that hinges on impulsivity; however, not all sensation seeking is 

done impulsively; a different assessment tool may have detected sex differences in sensation 

seeking that may better explain group differences in BOLD response during reward.

4.2. Sex differences mechanisms: testosterone

Second, a link between testosterone and ventral striatal brain response during reward 

processing has been shown in early adolescent samples (Braams et al., 2015; Op de Macks 

et al., 2011) and animal models (Frye et al., 2001); therefore, testosterone was a relevant 

mechanistic target explaining group differences in reward processing. Although testosterone 

was related to nucleus accumbens BOLD response in the entire sample, replicating previous 

work (Braams et al., 2015; Op de Macks et al., 2011), it did not explain sex differences in 

reward processing BOLD activation. Moreover, testosterone did not relate to reward 

processing in either sex when regressed directly onto reward feedback BOLD signal, 

indicating that testosterone alone may not predict a neural response to reward, but might be 

correlated to this process insofar as it relates to sex and the biological processes that 

differentiate males and females during adolescence. However, it is possible that the 

reduction in sample size when conducting these analyses separately in males and females 

may have reduced our power to detect an effect. Future work should address these questions 

with much larger samples in order to account for the broad range of individual variability in 

sex hormones levels during adolescence.

4.3. Sex differences mechanisms: estradiol

Estradiol is another neurophysiological mechanism that may contribute to sex differences in 

reward-related BOLD response, as it has been shown to modulate dopaminergic systems (Di 

Paolo et al., 1985; Sarvari et al., 2014; Xiao & Becker, 1994) and relate to impulsivity 

(Smith, Sierra, Oppler, & Boettiger, 2014) and risk taking (de Water et al., 2013). Indeed, 

estradiol levels in adolescent girls have been associated with dorsal striatal BOLD response 

during reward processing (Op de Macks et al., 2011), and brain response during reward 

anticipation and receipt has been shown to fluctuate across the menstrual cycle, at least in 
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adults (Bayer, Bandurski, & Sommer, 2013; Dreher et al., 2007; Ossewaarde et al., 2011). 

An effect of estradiol was explored in the present study by relating estradiol levels to BOLD 

response in reward-relevant brain regions that differentiated boys and girls, including the 

nucleus accumbens. However, estradiol was not significantly related to reward-related brain 

response. Moreover, regression of estradiol with reward-related BOLD response did not 

yield any significant effects in either boys or girls. It is possible that our hormone data 

collection approach obfuscated the relationship between estradiol and BOLD activation to 

reward. In the case of girls, the sampling of sex hormones levels was truncated to the first 10 

days of the follicular phase; thus, establishing a physiological context through which 

individual differences in estradiol and testosterone could be interpreted. Given that sex 

hormones, particularly estradiol, fluctuate across the menstrual cycle, sampling these 

hormones during the same phase provides a reference point and added meaning to the 

values. However, one limitation of sampling from only one phase of the menstrual cycle, 

particularly the early follicular phase when estradiol levels are at their lowest, is that our 

hormone values have restricted variance. Reductions in estradiol, like those observed in 

premenstrual and early follicular phases of the menstrual cycle, acutely down-regulate 

endogenous dopamine activity (Di Paolo et al., 1985; Thompson & Moss, 1994), which in 

turn, diminishes reward signaling from the ventral striatum (Tzschentke & Schmidt, 2000). 

Therefore, the relatively low levels of estradiol, reflective of the follicular phase, observed in 

our female sample may have precipitated reductions in striatal BOLD response via blunted 

dopamine signaling during reward outcome. This interpretation may explain the weaker 

nucleus accumbens BOLD response observed in girls, relative to boys, during reward 

processing. Research comparing hormone states across the menstrual cycle is needed to 

confirm an independent role for estradiol in reward-related brain response during 

adolescence.

4.4. Sex differences mechanisms: motivation

Psychosocial factors can also interact with physiological and reward processes. Previous 

research has shown that degree of striatal BOLD response depends, in part, on the saliency 

of a reinforcer (Zink et al., 2004). Based on post-scanning questionnaire responses, in the 

current study, boys self-reported higher motivation to obtain monetary rewards and perform 

well on the task, which may have made the task more salient for males than females. This is 

supported by the finding that males made more risky selections during the WOF task. 

Further, percent of risky selections explained a significant amount of variance (in a model 

controlling for sex and age) in the activation of several reward-relevant brain regions that 

differentiated boys and girls, particularly in ventral and dorsal striatum, which may indicate 

that sex differences in activation of these regions underlies sex differences in percent of risky 

selections made during the task. Interestingly, ‘Motivation to Earn Money’ partially 

mediated the effect of sex on nucleus accumbens activation, suggesting that both sex and 

motivation are critical components of salience and sensitivity to rewards. Importantly, girls 

reported more state anxiety prior to their scan sessions, which can blunt striatal BOLD 

response (Kumar et al., 2014; Lighthall et al., 2012); thus, we cannot rule out the possibility 

that anxiety during the scan, which was not measured, may have impacted BOLD activity. 

The combination of heightened motivation in males and enhanced state anxiety in females 

may contribute to the sex differences in nucleus accumbens BOLD response observed in this 
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adolescent sample; however, this remains to be tested. In fact, individual differences in such 

variables may explain why previous studies have not found sex differences in reward 

sensitivity of the striatum (Braams et al., 2015; Forbes et al., 2010; Op de Macks et al., 

2011); motivation, and not sex per se, may be a better predictor of nucleus accumbens 

reward activation. Future studies must parametrically modulate motivation and examine 

reward-relevant brain regions outside the ventral striatum. Regardless, we can conclude that 

task motivation is an important factor when assessing adolescent sex differences in reward 

sensitivity, as a function of striatal BOLD response.

4.5. Limitations

The primary limitation of this study was the method for analyzing sex hormone levels. 

Blood samples were collected the week of MRI scanning, thus providing a measure of trait, 

rather than state sex hormone levels. In the case of the females, this trait was specific to the 

early follicular phase of the menstrual cycle. However, a single measurement does not 

reliably describe a trait that can vary as much as sex hormone levels. In an attempt to 

account for diurnal heterogeneity, blood samples were collected before 10 a.m. for all 

participants; however, we cannot ascertain the reliability of this measure across days. 

Measurement of sex hormone levels immediately prior to scanning or administration of 

exogenous sex hormones would provide some confidence that acute mechanisms of action 

could be at play. Consideration of other variables that influence sex hormone levels would 

also be beneficial. Indeed, both genetic and environmental factors influence testosterone 

levels in adolescence (Harden, Kretsch, Tackett, & Tucker-Drob, 2014). For instance, 

maternal social instability during pregnancy or lactation leads to a delay in increase of 

testosterone in male adolescents (Siegeler et al., 2013), while anticipation of a challenge or 

competition, as well as winning lead to more acute increases in testosterone concentration in 

young men (Booth, Shelley, Mazur, Tharp, & Kittok, 1989; van der Meij, Buunk, Almela, & 

Salvador, 2010; Zilioli & Watson, 2014). Understanding variability in the factors linked to 

reward sensitivity and risk taking during adolescence will offer the best opportunity to 

uncover the mechanism(s) underlying problem risky behavior.

5. Conclusions

In sum, sex differences in BOLD activity during reward processing were observed in a large 

sample of healthy adolescents. Regions related to reward processing, including nucleus 

accumbens (Liu et al., 2011; Mohr et al., 2010), were recruited more robustly in males 

during reward trials. Sex hormones did not mediate the effect of sex on nucleus accumbens 

activation even though testosterone was positively correlated with activation of this region, 

indicating that sex may be a stronger predictor of reward sensitivity than sex hormones. Task 

motivation partially mediated the effect of sex on nucleus accumbens BOLD response, 

suggesting that motivation may serve to explain sex differences in reward sensitivity. 

Importantly, our findings of sex differences in reward processing BOLD activity had 

medium effect sizes, which emphasize the notion that neurobiological sex differences are 

nuanced. However, studying subtle differences in male and female brains, particularly during 

adolescence, can help elucidate healthy developmental trajectories and individual differences 

in psychosocial and neurophysiological factors that affect relevant processes, such as risk 
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taking and reward sensitivity, which can promote both beneficial and adverse neuroplastic 

events with long-term consequences.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Boys showed greater striatal BOLD response during reward processing. Statistical maps of 

sex differences in percent BOLD activation in Win – No Win contrast (controlling for age) 

overlaid on a standard Talairach template are depicted here. Boys showed more activation 

(orange) than girls (blue) in bilateral lentiform nucleus (extending to caudate nucleus, 

putamen, nucleus accumbens and thalamus). Percent BOLD signal change in these regions 

is also depicted by trial type (No Win and Win) and their contrast (Win – No Win). In all 

cases, boys showed higher percent BOLD signal change during Win trials, compared to 

girls. In contrast, there were no sex differences in No Win BOLD activation. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.)
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Fig. 2. 
Boys showed greater cortical BOLD response during reward processing. Statistical maps of 

sex differences in percent BOLD activation in Win – No Win contrast (controlling for age) 

overlaid on a standard Talairach template are depicted here. Boys showed more activation 

(orange) than girls (blue) in paracentral gyrus (extending to cingulate cortex and precuneus), 

superior/inferior parietal lobule (extending to precuneus) and fusiform gyrus (extending to 

lingual gyrus). Percent BOLD signal change in these regions is also depicted by trial type 

(No Win and Win) and their contrast (Win – No Win). In all cases, boys showed higher 

percent BOLD signal change during Win trials, compared to girls. In contrast, there were no 

sex differences in No Win BOLD activation. (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. 
Boys showed greater BOLD response in nucleus accumbens during reward processing. (A) 

Bilateral nucleus accumbens mask (peak coordinates: 12, −8, −8 and −12, −8, −8) overlaid 

on standard Talairach atlas. (B) Statistical map of sex differences in nucleus accumbens 

region of interest analysis overlaid on a standard Talairach template. Percent BOLD signal 

change in the Win – No Win contrast is displayed for one significant cluster in right nucleus 

accumbens (p < 0.05 voxel and α < 0.05 cluster correction) in which boys had significantly 

more activation than girls. (C) Mean ± SEM percent BOLD signal change in right nucleus 

accumbens is plotted by trial type.
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Table 1

Demographic and behavioral measures.

Boys (n = 96) Girls (n = 71) Statistic

Age (years) 14.2 (1.3) 14.4 (1.3) t165 = 0.63

 Range 12.3–17.0 12.0–16.9

Pubertya 3.1 (0.9) 4.0 (0.6) Z = 6.45**

Socioeconomic statusb 29.9 (13.5) 30.5 (14.6) t165 = 0.28

IQc 110.3 (12.4) 110.8 (10.0) t165 = 0.31

Log Testosterone (ng/dL) 2.3 (0.5) 1.2 (0.3) t153.37 = 20.68**

 Range 7.1–809.5 2.4–53.3

Log Estradiol (pg/dL) 1.2 (0.2) 1.5 (0.2) t162.76 = 11.12**

 Range 6.1–38.0 11.9–85.0

Sensation Seekingd 42.5 (21.0) 42.8 (22.0) t165 = 0.09

CHSQ Sleepinesse 5.8 (1.7) 6.2 (1.9) t165 = 1.24

RMS head movementf 0.31 0.27 t165 = 1.19

a
Crockett Pubertal Development Scale; values range from 1 to 5, with larger values referring to more advanced pubertal development.

b
Hollingshead Index of Social Position; larger values indicate lower socioeconomic status (middle class corresponds to 32–47 range); parent-rated.

c
Wechsler Abbreviated Scale of Intelligence (2-subtest version).

d
Impulsive Sensation Seeking scale from Zuckerman-Kuhlman Personality Questionnaire.

e
Children’s Sleep Habits Questionnaire.

f
Root mean square; index of averaged within-run motion.

**
Statistical significance at p < 0.001.
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