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Abstract
Bile acids are derived from cholesterol to facilitate intestinal nutrient absorption
and biliary secretion of cholesterol. Recent studies have identified bile acids as
signaling molecules that activate nuclear farnesoid X receptor (FXR) and
membrane G protein-coupled bile acid receptor-1 (Gpbar-1, also known as
TGR5) to maintain metabolic homeostasis and protect liver and other tissues
and cells from bile acid toxicity. Bile acid homeostasis is regulated by a
complex mechanism of feedback and feedforward regulation that is not
completely understood. This review will cover recent advances in bile acid
signaling and emerging concepts about the classic and alternative bile acid
synthesis pathway, bile acid composition and bile acid pool size, and intestinal
bile acid signaling and gut microbiome in regulation of bile acid homeostasis.
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Introduction
Bile acid synthesis is tightly regulated by a network of feedback 
mechanisms that is complex and not completely understood.  
Alteration of bile acid homeostasis affects hepatic metabolic 
homeostasis and causes hepatic inflammation and pathogenesis of  
metabolic diseases such as non-alcoholic fatty liver disease  
(NAFLD), diabetes, and inflammatory bowel diseases. Recent 
research using mouse genetic models and human patients has 
shown that bile acids are signaling molecules that activate nuclear 
farnesoid X receptor (FXR), membrane G protein-coupled bile 
acid receptor-1 (Gpbar-1, also known as Takeda G protein- 
coupled receptor 5, or TGR5), and sphingosine-1-phosphate  
receptor 2 (S1PR2) to regulate not only bile acid synthesis in the 
liver but also lipid, glucose, and energy metabolism in tissues, 
including the liver, intestine, macrophages, and adipose tissues. 
Many investigators are not familiar with the concepts of bile acid 
homeostasis or bile acid pool and composition in maintaining  
metabolic homeostasis. This review will briefly discuss recent 
advances in understanding how bile acid homeostasis is maintained 
by (1) the classic bile acid synthesis pathway versus the alternative 
bile acid synthesis pathway, (2) regulation of bile acid pool size 
versus composition, (3) FXR signaling in liver versus intestine, and 
(4) the gut microbiota-to-liver axis. Only key references published 
in last 3–4 years are cited.

Bile acid synthesis
Bile acid synthesis involves about a dozen enzymes located in the 
cytosol, endoplasmic reticulum, mitochondria, and peroxisomes 
to convert cholesterol to bile acids in hepatocytes1. There are two 
major pathways, the classic (or neutral) pathway and the alterna-
tive (or acidic, sterol 27-hydroxylase [CYP27A1]) pathway in the 
liver (Figure 1). The classic pathway starts with modifications of 
the steroid rings by hydroxylation, isomerization, and reduction/ 
dehydroxylation enzymes located in cytosol and endoplasmic  
reticulum, followed by steroid side-chain oxidation in mitochon-
dria and oxidative cleavage of the side chain in peroxisomes. The  
alternative pathway starts with oxidation of the steroid side chain 
and followed by 7α hydroxylation of the steroid ring to form  
oxidized steroid intermediates.

The classic pathway of bile acid synthesis is initiated by the rate-
limiting enzyme cholesterol 7α-hydroxylase (CYP7A1) to form  
7α-hydroxycholesterol, which is converted to 7α-hydroxy- 
4-cholesten-3-one (named C4). C4 is the common precursor of 
cholic acid (CA) and chenodeoxycholic acid (CDCA). Serum  
C4 level is now used as a biomarker for the rate of bile acid  
synthesis. C4 can be used for CA synthesis involving sterol 
12α-hydroxylase (CYP8B1). Without 12α-hydroxylation, C4 
is converted to CDCA. Mitochondrial CYP27A1 catalyzes the  
steroid side-chain oxidation, followed by peroxisomal β-oxidation  
to cleave a 3-C propionyl group from the side chain to form C24-bile 
acids (Figure 1). The alternative pathway is initiated by CYP27A1 
and is followed by a non-specific oxysterol 7α-hydroxylase  
(CYP7B1) in the liver, steroidogenic tissues, and macrophages. 
In the brain, cholesterol is converted to 24-hydroxycholesterol by  
sterol 24-hydroxylase (CYP46A1), followed by a brain-specific 
cholesterol 7α-hydroxylase (CYP39A1). In mouse and human  
liver, cholesterol 25-hydroxylase (CH25H, not a CYP enzyme)  

converts cholesterol to 25-hydroxycholesterol, which is the most 
abundant oxysterol in serum and can be used for synthesis bile 
acids in the liver. There is a misconception that the alternative  
pathway synthesizes CDCA only. However, the oxysterol  
intermediates formed in the extrahepatic tissues can be transported 
to the liver for synthesis of both CDCA (~70%) and CA (~30%). 
Many investigators assay CYP27A1 expression as a marker for the  
alternative pathway. It should be noted that CYP27A1 is required 
for bile acid synthesis in both classic and alternative pathways.  
CYP27A1 is not a rate-limiting enzyme in the alternative pathway, 
because CYP27A1 is highly expressed in most tissues. CYP7B1 
is a marker for the alternative pathway. In mouse liver, CDCA is 
converted to α-muricholic acid (α-MCA) by a newly identified 
sterol 6β-hydroxylase (Cyp2c70). The 7α-OH group in α-MCA  
is epimerized to 7β-OH to form β-MCA2. The conjugated bile  
acids are secreted into bile via the canalicular bile salt export  
pump to form mixed micelles with cholesterol and phosphatidyl-
choline in the canalicular and stored in the gallbladder. Meal intake 
stimulates cholecystokinin secretion from the pancreas to stimulate 
gallbladder contraction to release bile acids into the gastrointestinal 
tract. Some bile acids are passively absorbed in the upper intes-
tine, but most are actively absorbed via apical sodium-dependent 
bile salt transport peptide in the ileum and colon where gut micro-
bial bile salt hydrolase (BSH) de-conjugates bile acids to free bile 
acids, then bacterial 7α-dehydroxylase converts CA and CDCA to  
deoxycholic acid (DCA) and lithocholic acid (LCA), respectively. 
Some free bile acids (DCA and CA) may cross the colonic epithe-
lium by passive diffusion. LCA is sulfur-conjugated and excreted 
into feces. A small amount of LCA circulated to the liver is  
rapidly sulfur-conjugated by bile salt sulfotransferases (SULTs), 
and excreted into urine. In mouse liver, LCA can be converted to 
ursodeoxycholic acid (UDCA) by 7β-hydroxylase as a primary bile 
acid. Human liver synthesizes very little UDCA (~1%).

Enterohepatic circulation of bile acids
In the enterocytes, bile acids bind to ileum bile acid binding protein 
and trans-cross to the sinusoidal membrane, where organic solute 
transporter α (Ostα) and Ostβ heterodimer excreted bile acids to 
portal blood for circulation back to hepatocytes. Enterohepatic cir-
culation of bile acids is a highly efficient physiological pathway, 
which recovers about 95% of bile acids in the pool and serves as 
a feedback mechanism to inhibit CYP7A1 gene transcription and 
bile acid synthesis and maintain bile acid homeostasis in humans. 
In rats, enterohepatic circulation of bile acids is less efficient than 
in humans and the bile acid pool size is larger, and this may be due 
to absence of the gallbladder and relatively long intestine for the 
body size and higher bile acid synthesis rate. The Cyp7a1-specific  
activity in rat liver is about 100-fold higher than in human and 
mouse liver.

Bile acid homeostasis
1. The classic bile acid synthesis pathways versus the 
alternative bile acid pathway
CYP7A1 is the only rate-limiting enzyme in the classic bile acid 
synthesis pathway. CYP8B1 is at the branch point for CA and 
CDCA synthesis and determines the ratio of 12α-hydroxylated bile 
acids (CA and DCA) to non-12α-hydroxylated bile acids (CDCA 
and LCA) in the bile acid pool. CA has the lowest critical micellar  
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Figure 1. Bile acid synthesis, signaling, and regulation in human liver. In the liver, the classic bile acid synthesis pathway is initiated by 
cholesterol 7α-hydroxylase (CYP7A1) to synthesize cholic acid (CA), which requires sterol 12α-hydroxylase (CYP8B1), and chenodeoxycholic 
acid (CDCA). Mitochondrial sterol 27-hydroxylase (CYP27A1) oxidizes the steroid side chain, followed by peroxisomal β-oxidation to cleave 
a 3-C unit to form C24-bile acids. The alternative bile acid synthesis pathway is initiated by CYP27A1, followed by a non-specific oxysterol  
7α-hydroxylase (CYP7B1) to synthesize both CA and CDCA in hepatocytes. CYP27A1 is also expressed in macrophages and many extrahepatic 
tissues for synthesis of steroid intermediates, which can be used for synthesis of bile acids in hepatocytes. In the brain, cholesterol is oxidized 
to 24-hydroxycholesterol by sterol 24-hydroxylase (CYP46A1), followed by a brain-specific sterol 7α-hydroxylase (CYP39A1). Cholesterol 
also can be hydroxylated to 25-hydroxycholesterol by cholesterol 25-hydroxylase (CH25H). These oxidized steroid intermediates formed in 
extrahepatic tissues can be transported to hepatocytes for synthesis of bile acids. In the brain, growth hormone-Stat5 signaling may activate G 
protein–coupled bile acid receptor-1 (Gpbar-1, also known as TGR5) to regulate expression of CYP7B1, a male-predominant enzyme. In mice, 
CDCA is converted to 6β-hydroxylated bile acids, α-muricholic acid (MCA) and β-MCA by Cyp2c70. Bile acids are conjugated to the amino 
acids taurine or glycine for secretion into bile via bile salt export pump (BSEP). In the ileum, TCA and TDCA are taken up into enterocytes via 
apical bile salt transporter (ASBT). In the colon, bile acids are de-conjugated by bacterial bile salt hydrolase (BSH) and are 7α-dehydroxylated 
by bacterial 7α-dehydroxylase to form deoxycholic acid (DCA) and lithocholic acid (LCA). Conjugated bile acids are secreted into portal 
blood via organic solute transporter α/β (OSTα/OSTβ) and circulated back to hepatocytes via Na-taurocholate co-transport peptide (NTCP) 
to inhibit bile acid synthesis. The enterohepatic circulation of bile acids is very efficient; approximately 95% bile acids are recovered and the 
approximately 5% bile acids that are lost in feces are replenished by de novo bile acid synthesis. Two mechanisms have been proposed to 
inhibit CYP7A1 and CYP8B1 gene transcription. In the liver, CDCA activates FXR to induce small heterodimer partner (SHP), which represses 
trans-activation of the CYP7A1 and CYP8B1 genes. In the intestine, CDCA activates FXR to induce fibroblast growth factor 15 (FGF15, or 
human orthologue FGF19), which is circulated to the liver to activate hepatic FGF receptor 4/Klotho signaling to inhibit CYP7A1/CYP8B1 gene 
transcription via ERK1/2/cJun of the mitogen-activated protein kinase (MAPK) pathway. In the liver, TCA-activated sphingosine-1-phosphate 
receptor 2 (S1PR2) signaling may activate the ERK1/2 pathway to modulate CYP7A1/CYP8B1 activity. In the intestinal L cells, TLCA activates 
TGR5 to increase cAMP and stimulate GLP-1 secretion. GLP-1 stimulates insulin secretion from β cells to improve insulin sensitivity.
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concentration (~50 μM) among all bile acids and is highly  
efficient for mixed micelle formation with cholesterol and  
phosphatidylcholine in bile and for absorption of dietary  
cholesterol in enterocytes. For that reason, CA is added in a high-
cholesterol diet (lithogenic diet, 0.2% cholesterol and 0.5% CA) 
to accelerate hypercholesterolemia in rodents. It has been reported 
that the increased ratio of serum 12α-hydroxylated bile acids to 
non-12α-hydroxylated bile acids is associated with insulin resist-
ance in humans3. The alternative (acidic) pathway is the major 
pathway for bile acid synthesis in the neonate. After weaning, 
CYP7A1 is expressed and the classic pathway becomes the major 
pathway for bile acid synthesis in adult liver. The classic pathway 
is the predominant pathway for synthesis of bile acids in human 
liver, whereas the classic and alternative pathways contribute about 
equally to bile acid synthesis in rodents. In patients with bile acid 
synthesis deficiency in the classic pathway, the alternative pathway 
is used to produce bile acids. In Cyp7a1−/− mice, the alternative 
pathway is stimulated to produce bile acids to maintain a smaller 
but more hydrophilic bile acid pool with reduced tauro-cholic acid 
(TCA) and increased T-MCAs and taurodeoxycholic acid4.

2. Bile acid pool size versus bile acid composition
Bile acid pool size: The bile acid pool is defined as the total bile 
acids circulating in the enterohepatic circulation, including bile 
acids in the liver (~1–2 %), intestine (~75–80%), and gallbladder 
(~15–20%). Small amounts (~1%) of bile acids spilled over from 
the circulation to serum and urine are not included in the pool. Dur-
ing cholestatic liver injury, serum bile acids are increased and cause 
jaundice. It is therapeutically important to assay the total bile acid 
pool size and changes in bile acid contents in the liver, intestine, 
and gallbladder bile.

Bile acid composition: Most bile acids in the pool are conjugated 
bile acids. Bile acid composition is different in the liver, gallblad-
der, intestine (ileum, cecum, and colon), feces, and serum. The  
gallbladder bile acid composition (bile) more closely represents 
the bile acids in the pool, including bile acids synthesized in the 
liver and circulated from enterohepatic circulation. Most studies 
report bile acid composition in serum, which does not represent 
bile acid composition in the pool. Whenever possible, bile acid 
composition in bile or liver should be determined to represent bile 
acid composition in the pool. In humans, bile acid pool consists 
of CA (~40%), CDCA (~40%), and DCA (~20%), the ratio of 
glycine- to taurine-conjugated bile acids is about 3 to 1, and the 
pool is highly hydrophobic. In mice, most bile acids are taurine-
conjugated, the bile acid pool consists of CA (~60%) and α-MCA 
and β-MCA (~40%), and the pool is highly hydrophilic. Increased 
bile acid hydrophobicity index has been linked to cholesterol  
gallstone formation.

Feeding hydrophilic bile acids (such as T-MCA) inhibits intesti-
nal cholesterol absorption, while feeding CA increases cholesterol 
absorption. Ablation of Cyp8b1 (Cyp8b1−/−) prevents atheroscle-
rosis in Apoe−/− mice. Cyp8b1−/− mice have improved glucose  
homeostasis by increased GLP-1 secretion5. Germ-free mice, 
Cyp8b1−/− mice, and antibiotic-treated mice share common 
phenotypes; that is, all have increased CYP7A1 expression 
and enlarged bile acid pool with reduced TCA and increased  

T-MCA compared to wild type mice, and these mice are  
resistant from diet-induced obesity (DIO)6. In transgenic mice  
overexpressing Cyp7a1 (Cyp7a-Tg), increasing bile acid syn-
thesis stimulates de novo cholesterol synthesis, biliary bile 
acid and cholesterol secretion, and fecal excretion to main-
tain bile acid and cholesterol homeostasis and prevent DIO 
and diabetes7. Bile acid sequestrants reduce bile acid pool size, 
induce bile acid synthesis, and reduce intracellular cholesterol. 
As a consequence, de novo cholesterol synthesis, as well as  
low-density lipoprotein (LDL) receptor-mediated uptake of LDL 
cholesterol, is stimulated to reduce hypercholesterolemia. On the 
other hand, Cyp7a1−/− mice have a reduced bile acid pool size but 
surprisingly, also have improved glucose tolerance and insulin 
sensitivity4. In Cyp7a1−/− mice, bile acid synthesis is switched to 
the alternative pathway to produce less TCA but more T-αMCA  
and T-βMCA, which antagonizes intestinal FXR activity to  
reduce ceramide synthesis and increase insulin sensitivity. Thus, 
bile acid composition, rather than bile acid pool size, plays an 
important role in regulation of bile acid and cholesterol homeosta-
sis and protects against DIO and insulin resistance.

Bile acid signaling in metabolic regulation
Emerging research in the last two decades has uncovered that bile 
acids are endogenous signaling molecules that activate the nuclear 
receptor FXR and membrane (TGR5, also known as Gpbar-1) and 
S1PR2 in the gastrointestinal system7. Extensive experiments in 
mice and humans have demonstrated that FXR and TGR5 play 
critical roles in the regulation of bile acid synthesis and homeos-
tasis (Figure 1). However, the physiological role of these signaling 
pathways under normal physiological conditions is still not clear 
and not completely understood. Also, most studies were performed 
in mice, which have a very different bile acid composition and pool 
size compared with humans.

FXR signaling
FXR signaling has been shown to play important roles in the  
regulation of metabolism in the liver, intestine, and adipose tis-
sues. In the liver, CDCA  (EC50, effective concentration that gives  
half maximal response, = ~17 μM) activates FXR to induce 
the negative nuclear receptor small heterodimer partner (SHP) 
to inhibit transcription of the CYP7A1 and CYP8B1 genes  
(Figure 1). In mice, CA is the predominant bile acid in the bile 
acid pool but is a very weak FXR agonist (EC

50
 = ~0.59 mM). It 

is not likely that the hepatic TCA concentration (~100 μM) is high  
enough to activate FXR under normal physiological conditions. 
The FXR/SHP mechanism may be activated when bile acids are 
accumulated at high levels in hepatocytes under cholestatic condi-
tions to inhibit bile acid synthesis as an adaptive response to liver  
injury. The intestinal FXR/FGF15/hepatic FGF receptor 4/β-Klotho  
pathway may activate JNK/ERK of the mitogen-activated pro-
tein kinase (MAPK) pathway to inhibit CYP7A1 and CYP8B1 
gene transcription (Figure 1). This may be a more physiologically  
relevant pathway mediating bile acid feedback via enterohepatic 
circulation to regulate bile acid synthesis.

TGR5 signaling
Secondary bile acids (LCA, EC

50
 = ~0.03 μM; DCA, EC

50
 = ~1 μM)  

produced in the intestine (colon) by gut bacteria activate TGR5  
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signaling, which induces cAMP/PKA signaling to stimulate energy 
metabolism in brown adipose tissue, relax and refill the gallblad-
der, and secrete glucagon-like peptide 1 (GLP-1) from intestinal 
endocrine L cells (Figure 1)8. A recent study reports that TGR5 
may be involved in the regulation of CYP7B1, a sexually dimorphic 
and male-predominant gene in the alternative bile acid synthesis  
pathway9. Activation of TGR5 in macrophages and Kupffer cells 
inhibits pro-inflammatory cytokine production and cholangiocyte 
proliferation10.

S1PR2 signaling
S1PR2 is a TCA-activated Gαi

 protein-coupled receptor, which 
activates ERK1/2 and AKT in hepatocytes and cholangiocytes11.  
It has been shown that bile acids activate ERK1/2 and JNK/cJun 
to inhibit Cyp7a1 and Cyp8b1 gene transcription (Figure 1).  
However, the role of the S1PR2 pathway in the regulation of bile 
acid synthesis is not clear and requires further study.

The gut microbiota and bile acid homeostasis
The gut-to-liver axis plays a critical role in bile acid metabolism. 
Bile acids control gut bacteria overgrowth and the gut microbiota 
regulates bile acids synthesis, bile acid pool size and composition, 
and enterohepatic circulation of bile acids. Bile acids reshape the 
gut microbiome, which has great impact on host metabolism and 
metabolic diseases12–15. Activation of FXR by specific agonists 
inhibits bile acid and fatty acid synthesis and improves glucose and 
insulin sensitivity in obese and diabetic mice. However, reported 
results are not consistent and are controversial7. In general, acti-
vation of liver FXR signaling is beneficial for primary biliary  
cirrhosis and non-alcoholic steatohepatitis (NASH) by reducing 
bile acid pool and progression to fibrosis16,17.

The role of intestinal FXR signaling in metabolic regulation is 
controversial. Deficiency of intestinal FXR or antagonizing FXR 
by an antioxidant, Tempol or Gly-MCA, an MCA derivative that 
is resistant to BSH activity, prevents DIO18,19. T-MCA has been 
shown to antagonize intestinal FXR activity and improve DIO and 
weight gain in mice and human patients20–22. Inhibition of intesti-
nal FXR reduces ceramide synthesis and modulates hepatic glu-
coneogenesis in mice23. In contrast, the intestine-restricted FXR 
agonist fexaramine reduces weight and insulin resistance and may 
occur via FGF15-mediated adipocyte browning24. Activation of 
intestinal FXR and TGR5 crosstalk in intestinal L cells stimulates  
TGR5-mediated GLP-1 secretion to improve insulin sensitivity8. 
Activation of FXR by GW4064 in intestinal L cells was shown 
to decrease proglucagon expression by interfering with glucose-
responsive carbohydrate-response element binding protein and 
GLP-1 secretion25. Bile acids are known to stimulate glucose-
induced GLP-1 secretion. It is possible that mice housed in different 
facilities, their genetic background, and differential effects of FXR 

agonists on gut microbiota contribute to the observed paradoxical 
effects on glucose tolerance and insulin sensitivity.

Future perspective
Bile acid signaling regulates hepatic metabolism via FXR signaling 
in the liver and intestine, and TGR5 in the intestine, to modulate 
the gut microbiome, host metabolism, and diseases. The emerging 
research in bile acid metabolism and homeostasis has been trans-
lated to drug therapy for liver diseases, NASH, and diabetes and 
obesity. Most bile acid research is conducted in mouse models, 
which have a very different bile acid composition and pool size. 
Gender differences in bile acids and microbiota in diet-induced 
steatosis have been reported and need to be further studied26,27. Bile 
acid receptors are signaling integrators and have emerged as thera-
peutic targets for the treatment of dyslipidemia, NAFLD, diabetes, 
and cardiovascular diseases17,28. Bariatric surgeries are effective in 
reducing weight and improving insulin resistance in obese patients, 
and FXR and TGR5 signaling have been implicated in increasing 
serum bile acids and FGF19 after bariatric surgery29–31. However, 
the underlying mechanism of bile acid signaling in improving dia-
betes after bariatric surgery is not clear and needs to be elucidated 
to develop therapeutic strategies to cure diabetes and NAFLD.
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