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Abstract
With nearly 42 million mild traumatic brain injuries (mTBIs) occurring worldwide
every year, understanding the factors that may adversely influence recovery
after mTBI is important for developing guidelines in mTBI management.
Extensive clinical evidence exists documenting the detrimental effects of
elevated temperature levels on recovery after moderate to severe TBI.
However, whether elevated temperature alters recovery after mTBI or
concussion is an active area of investigation. Individuals engaged in exercise
and competitive sports regularly experience body and brain temperature
increases to hyperthermic levels and these temperature increases are
prolonged in hot and humid ambient environments. Thus, there is a strong
potential for hyperthermia to alter recovery after mTBI in a subset of individuals
at risk for mTBI. Preclinical mTBI studies have found that elevating brain
temperature to 39°C before mTBI significantly increases neuronal death within
the cortex and hippocampus and also worsens cognitive deficits. This review
summarizes the pathology and behavioral problems of mTBI that are
exacerbated by hyperthermia and discusses whether hyperthermia is a variable
that should be considered after concussion and mTBI. Finally, underlying
pathophysiological mechanisms responsible for hyperthermia-induced altered
responses to mTBI and potential gender considerations are discussed.
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Introduction
Mild traumatic brain injuries (mTBIs) and concussions occur 
in about 100 to 300 people per 100,000 annually worldwide1.  
This public health problem is underestimated because an esti-
mated 50% of people with a concussion do not seek medical  
attention2. This places the annual incidence of mTBI and con-
cussion at about 42 million people worldwide3. The current defi-
nition of concussion as recommended by the 4th International  
Conference on Concussion in Sport in 2012 is “concussion is a  
brain injury and is defined as a complex pathophysiological 
process affecting the brain, induced by biomechanical forces”4.  
This dysfunction is mediated by a cascade of pathophysiologi-
cal responses to the injury that ultimately alters cerebral function 
without necessarily causing concurrent macrostructural damage4. 
For the purposes of this review, we will use concussion and  
mTBI synonymously, as a non-penetrating head injury that alters 
brain functioning with no or brief loss of consciousness5. Other  
than management of symptoms, the patient with mTBI is typi-
cally recommended to rest until symptoms resolve, followed by a  
gradual increase in return to normal activity6. Concussions 
and mTBIs are a significant clinical problem yet lack effective  
evidence-based therapeutics2.

Concussions and mTBIs can result in significant cognitive, psy-
chosocial, and physical issues, although many of these symptoms 
resolve rapidly. Clinical assessments of learning and memory 
ability have revealed that a single concussion can result in sig-
nificant impairments in working memory, attention and con-
centration issues, and decreased processing and reaction time7.  
However, several studies have demonstrated that mTBI may 
also result in chronic cognitive impairments lasting for weeks 
after injury2,8,9. Additionally, many have more chronic physical  
symptoms such as headaches, vestibular issues, irritability, depres-
sion, and fatigue, collectively referred to as post-concussion  
syndrome10–12. Although there is some variability in the recovery 

trajectory, for 50%–60% of individuals with mTBI, symptoms will 
typically resolve in 7 to 10 days8. However, imaging and more 
objective clinical assessments indicate that abnormalities in the 
brain may persist beyond 30 days after mTBI13.

Prevalence of hyperthermia during mild traumatic 
brain injury
An aspect of mTBI that has been understudied and may affect 
recovery is the effect of temperature. It is well known in severe 
and moderate TBI that brain temperature has a profound effect on 
outcome14,15. If the patient is hypothermic, outcome is improved, 
but if the patient is hyperthermic, outcome is greatly worsened. 
However, hyperthermia has not been typically considered to 
be an important variable in mTBI studies despite the potential  
co-occurrence of hyperthermia with mTBI.

Many athletes experience mTBIs in the context of mild hyper-
thermia. Strenuous exercise can raise core temperature to  
39–40°C, and this temperature increase is more long-lasting in  
hot environments16–18. Exercise-induced hyperthermia slowly  
recovers once an athlete has stopped exercising19,20. If core tem-
perature has risen to 39–40°C, this temperature naturally returns 
to normothermic levels within 60 minutes to 3 hours after exer-
cise has ceased19,21. The brain in particular is slow to cool, and  
published studies have found that after 1 hour of bicycle exercise,  
the jugular venous blood, a close approximation of brain tem-
perature, is still significantly hyperthermic even 60 minutes after  
exercise has ceased (Figure 1)20.

Another contribution to hyperthermia during mTBI is a hot ambient 
environment. Military personnel in Iraq and Afghanistan, countries 
with high environmental temperatures, are at risk to be hyperther-
mic when injured22. The combination of high exertion and warm 
humid environments has the potential to raise the risk of experi-
encing mTBI while hyperthermic even further16–18. Thus, an mTBI 

Figure 1. Temperature responses during cycling. Jugular venous blood temperature most closely reflects brain tissue temperature and is 
still elevated at 60 minutes during recovery (arrow). Figure reproduced with permission20.
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experienced in the context of hyperthermia can be a common occur-
rence due to high environmental temperatures and, in particular, 
among people who are engaged in activities with a high relative 
risk for head injury.

Only a small proportion of energy produced by muscle metabolism 
is used by work, whereas over 75%–80% of the energy released by 
muscle metabolism is heat23. Evaporation is effective in dissipating 
large amounts of heat and this limits core-temperature increases to 
2–3°C in trained athletes18,24. Despite these natural cooling mecha-
nisms, increases in core temperature to 39–40°C are commonly 
observed in people because of high-intensity activity18,25. Heat dis-
sipation is also slowed by the environment temperature. Adapta-
tion is well known to occur with exercise in warm environments 
and these physiological adaptations improve performance, but core 
temperature still rises to mildly hyperthermic levels with exercise in 
heat-adapted individuals23,24.

The brain is not protected against increases in core temperature 
and, in fact, stays warmer for a longer period of time after a rise in 
core temperature to hyperthermic levels21. Exercise increases cer-
ebral temperature because physical activity results in an increase 
in heat production of the muscles, which elevates arterial blood 
temperature. Heat removal from the brain is mediated by the heat 
capacity of the blood, cerebral blood blow, and the arterio-venous 
blood temperature difference. Increased arterial blood temperature 
elevates cerebral temperature at the same rate as the rise in core 
temperature20. However, owing to the limited heat removal capacity 
of the brain, brain temperature returns more slowly than core tem-
perature and is still hyperthermic for up to 60 minutes with passive 
rest after exercise20.

Assessing brain temperature after an mTBI is complicated by the 
dissociation of brain temperature from oral, rectal, or tympanic 
membrane temperature26,27. Indeed, these temperature readings 
can be 1–3°C lower than brain temperature (Figure 1). Tempera-
ture measurements from alternative locations such as the temporal 
artery more accurately reflect brain temperature but are not com-
monly used26,27. Thus, brain hyperthermia may be a likely variable 
at the time of mTBI, but studies assessing this variable in patients 
with mTBI are lacking.

Effects of hyperthermia
The detrimental consequences of post-traumatic hyperthermia  
following more moderate and severe TBI have been reported by 
multiple laboratories and previously summarized14,28. In various 
animal models of TBI, induced periods of mild hyperthermia at 
various post-traumatic time periods significantly aggravate his-
topathological and behavioral outcomes29. In clinical investiga-
tions where severely brain-injured patients have been monitored, 
periods of fever are common and also result in worsening of func-
tional outcomes30. In contrast to these findings, the consequences 
of hyperthermia on mTBI and concussion symptoms and recovery 
are a fairly new and active area of investigation31. To address this 
important question, we determined whether hyperthermia would 
also affect pathological and cognitive outcome after mTBI. We used 
a model well established to recapitulate several aspects of human 
mTBI, mild fluid-percussion brain injury, where saline is briefly 

pulsed on the dura of the parietal cortex. Using this preclinical 
model of mTBI in rats, mild fluid-percussion brain injury, we found 
that mTBI in the context of mild hyperthermia (39°C) both pre- 
and post-injury resulted in a significant exacerbation of pathology 
(Figure 2) as assessed by cortical contusion volume32. The mTBI 
pathology converted into pathology that was nearly equivalent to the 
pathology observed in moderate TBI. However, hyperthermia after, 
but not prior to or during, mTBI did not worsen cortical contusion 
volume. The exacerbation of pathology due to hyperthermia also 
occurred in the hippocampus, and increased neuronal loss occurred 
in mTBI animals that were hyperthermic both pre- and post-injury  
(Figure 3). Furthermore, hyperthermia in only the post-injury period 
also increased hilar neuronal loss. Thus, preclinical studies dem-
onstrate that mTBI experienced while hyperthermic significantly 
exacerbates neuronal loss and cortical damage.

This conversion of pathology also resulted in an exacerbation 
of cognitive impairments33. Animals that received mTBI when  
normothermic had no significant learning or retention deficits 
in contextual fear conditioning or the water maze (Figure 4).  
However, animals that received mTBI while hyperthermic (39°C) 
had significant deficits in both hippocampal-dependent learning 
tasks as compared with animals that received mTBI during nor-
mothermic conditions or sham controls. Thus, a relatively mild 
elevation in brain temperature at the time of an mTBI causes  
hippocampal-dependent behavioral deficits. We tested whether 
reducing brain and body temperature to normal physiological  
temperatures 15 minutes after an mTBI would prevent the 
development of behavioral deficits. We found that animals that 
received an mTBI with mild hyperthermia but then were cooled to  
normothermic levels at 15 minutes post-TBI did not exhibit def-
icits in the water maze or with contextual fear conditioning and 
performed at sham, non-injured levels (Figure 4). These results 
may have important implications in the treatment of mTBI for  
athletes in warm ambient environments. The simple treatment  
of cooling rapidly after mTBI has the potential to prevent the  
development of hippocampal-dependent learning deficits.

Although the current discussion focused primarily of elevated  
brain temperature after brain injury, it is known that elevations in 
brain temperature under stressful conditions may have important 
biological effects independent of injury mechanisms34,35.

Temperature-sensitive biomarkers
The failure of multiple phase 3 clinical trials for TBI has directed 
National Institutes of Health and US Department of Defense  
working groups to conclude that non-invasive measures of thera-
peutic efficacy need to be developed to demonstrate that the  
therapy is engaging its proposed molecular target(s) and result-
ing in a biological effect36. Determining whether a biomarker 
panel detects mTBI and is sensitive to temperature manipulations 
would greatly improve clinical guidance37,38. Efforts to develop 
biomarkers released from the injured brain and detected in the 
serum for mTBI have been hampered by the lack of sensitivity to 
concussion and the short half-life of most brain-derived biomar-
kers of mTBI39,40. Biomarkers sensitive to injury severity for TBI 
include glial fibrillary acidic protein (GFAP), which is released 
from injured astrocytes, and ubiquitin C-terminal hydrolase L1  
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Figure 2. Exacerbation of cortical contusion volume with hyperthermia after mild traumatic brain injury (TBI) in an experimental 
model of TBI in rats. Animals received mild fluid-percussion brain injury while (a) normothermic (37°C), (b) hyperthermic (39°C) beginning 
15 minutes prior to mild TBI and for 2 hours after injury, or (c) hyperthermic (39°C) only for 2 hours after injury. (d) Brains were sectioned and 
stained with hematoxylin and eosin to visualize and quantify cortical contusion volume. Scale bars = 300 µm. *P <0.05 versus normothermic, 
#P <0.05 versus hyperthermic post only. Adapted from 32.

Figure 3. Increased hippocampal cell loss after mild traumatic brain injury (TBI) and mild hyperthermia. Animals received (a) sham 
surgery, mild fluid-percussion brain injury while (b) normothermic (37°C), (c) hyperthermic (39°C) beginning 15 minutes prior to mild TBI 
and for 2 hours after injury, or (d) hyperthermic (39°C) only for 2 hours after injury. (e) Neuronal loss in the dentate hilus was quantified by 
stereology in NeuN-immunostained sections. Scale bars = 300 µm. ***P <0.001 versus Sham, #P <0.05, ##P <0.001 versus normothermic. 
Adapted from 32.
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(UCH-L1)41,42. However, both are limited in utility because of 
the relatively short half-life of the biomarkers. Other promising  
biomarkers that are being evaluated for their diagnostic utility for 
mTBI include auto-antibody to GFAP, auto-antibody to S100β,  
tau, select microRNAs (miRNAs), and plasma soluble cellular  
prion protein43–47. Preclinical and clinical studies have demon-
strated that several of these biomarkers are sensitive to therapeutic  
hypothermia in moderate to severe TBI. In particular, GFAP and 
UCH-L1 are downregulated after therapeutic hypothermia in pre-
clinical models of moderate TBI48,49. Therapeutic hypothermia 
decreases levels of GFAP in adult patients with severe TBI but 
not in pediatric patients with TBI50,51. However, both GFAP and  
UCH-L1 are limited in utility for mTBI because of the relatively 
short half-life of these biomarkers. Other potential biomarkers  
that are temperature-sensitive in moderate to severe TBI include 
neuron-specific enolase, S-100, brain-specific creatine kinase, 
and several miRNAs52–54. Whether they are regulated by tem-
perature after concussion or mTBI remains to be established. 
Pro-inflammatory cytokines are highly sensitive to temperature 
manipulations after TBI, including hyperthermia55–59. However, 
cytokines are limited in utility for mTBI since mTBI often can be  
complicated by systemic injuries and these biomarkers do not 
differentiate well between brain-derived versus systemically  
derived sources. Biomarkers known to be sensitive to temperature 
in other studies include MMP-9 and HSP70 and merit study for 
mTBI60–63.

Interaction of gender and temperature as critical 
variables for traumatic brain injury outcome
The importance of gender on traumatic and ischemic outcome 
has been documented in various models of brain injury64–66. In 
one study, female rats after moderate fluid-percussion injury 
(FPI) demonstrated significantly smaller contusion volumes com-
pared with male rats66. In that study following ovariectomy, con-
tusion volumes in females were not significantly different than 
those in males. These and other data emphasize the importance 

of estrogen and progesterone in the pathogenesis of TBI64. Recent  
studies have also demonstrated that alterations in post-traumatic  
temperature have gender-specific effects on outcomes after  
moderate TBI. For example, Suzuki and colleagues67 reported  
that while post-traumatic hypothermia following moderate FPI  
provided neuroprotection, no significant effect on contusion  
volume was seen in female rats. Thus, there appear to be gender-
specific effects of temperature manipulations in preclinical models 
of brain injury.

In reference to the present discussion, more recent studies have  
evaluated the effects of post-traumatic hyperthermia in models of 
moderate TBI. In this regard, Suzuki and colleagues66 reported 
that an induced period of mild hyperthermia after moderate TBI 
increased contusion volumes, cortical neuronal cell death, and 
axonal damage in intact female rats. Interestingly, in that study, 
the effects of post-traumatic hyperthermia were more pronounced 
in ovariectomized animals. These results therefore emphasize that 
hyperthermia worsens outcomes after moderate TBI in female 
rats and that neural hormones may protect against secondary  
hyperthermic insults. Future studies are required to determine 
whether gender is also an important factor in the pathogenesis of 
mTBI or concussion and the detrimental effects of hyperthermia on 
functional outcomes.

Underlying temperature-sensitive pathomechanisms 
and future research directions
The pathophysiology of TBI is complex and involves multiple  
injury cascades that have been reported to be temperature-
sensitive14,28,68. In regard to post-traumatic hypothermia,  
numerous reports have shown that lowering brain temperature 
after a moderate to severe TBI reduces excitotoxicity, free radical  
generation, apoptosis, and neuroinflammation28,69–71. In the area 
of inflammation, post-traumatic hypothermia after moderate 
FPI reduces blood-brain barrier permeability to both large and 
small tracers and the infiltration of CD68-positive cells72. Other  

Figure 4. Effects of temperature manipulations on cognitive outcome after mild traumatic brain injury (mTBI). Animals received mild 
fluid-percussion brain injury while normothermic (37°C, mTBI+Normo) or hyperthermic (39°C, mTBI+Hyper). Cognition was assessed at 2–3 
weeks post-injury and compared with non-injured, sham animals. (a) Contextual fear conditioning was unaffected by mTBI but impaired in 
hyperthermic mTBI animals. (b) Water maze performance on the probe trial to assess retention of spatial learning. Time spent in the trained 
quadrant was significantly decreased in hyperthermic mTBI animals as compared with sham animals. Figure reproduced with permission33.

Page 6 of 10

F1000Research 2017, 6(F1000 Faculty Rev):2031 Last updated: 20 NOV 2017



studies have also shown that whereas hypothermia reduced the 
accumulation of polymorphonuclear leukocyte infiltration after 
TBI, post-traumatic hyperthermia increased inflammatory cell 
accumulation73. These studies are also in agreement with post-
traumatic temperature modifications (for example, that periods of 
hyperthermia significantly alter levels of several pro-inflammatory 
cytokines and inflammasome proteins)74.

Most recently, the effects of post-traumatic hypothermia on  
microglial and macrophage phenotype polarization have been  
investigated after moderate TBI75. In that study, temperature- 
sensitive effects on the various subsets of pro-inflammatory (M1) 
and anti-inflammatory (M2) microglia and macrophages were 
determined by using flow cytometry and reverse transcription–
polymerase chain reaction. This study provided a link between 
temperature-sensitive alterations in macrophage/microglia activa-
tion and polarization toward an M2 phenotype with hypothermia 
that could be permissive for cell survival and repair. Studies to 
determine whether mild hyperthermic TBI also alters microglial 
and macrophage polarization are under way. Taken together, these 
studies emphasize the importance of post-traumatic temperature on 
pro-inflammatory signaling after brain injury.

Diffuse axonal injury (DAI) is a common consequence of mild 
and moderate TBI and is considered to be significantly related  
to the resulting functional deficit76–78. Previous studies have  
reported the importance of post-traumatic temperature in the  
frequency of damaged axons by using a variety of immunocy-
tochemical techniques such as beta-amyloid precursor protein  
(β-APP). For example, after moderate TBI, hypothermia reduced 
the frequency of axonal damage at early post-traumatic time 
periods in several animal models79. In reference to the effects 
of hyperthermia on DAI, Suzuki and colleagues66 reported that  
post-traumatic hyperthermia after moderate TBI significantly 
increased axonal damage as indicated by β-APP in both intact 
and ovariectomized female rats. Following mTBI or concussion,  
evidence for white matter perturbations has been reported in  
animal models as well as clinical investigations80–82. Future studies 
are required to determine the effects of hyperthermia on DAI in 
models of mTBI and concussion.

An important cause of persistent behavioral problems after mTBI 
is pituitary dysfunction. Hypopituitarism has a prevalence rate of 
25%–50% of patients with TBI overall and was found to occur 
in 37.5% of patients with mTBI83,84. Whether temperature at the 
time of injury alters this prevalence rate has yet to be studied. 
Interestingly, in an animal model of mTBI, core-temperature 
regulation was found to be disrupted in the post-injury recovery 
period during exercise85. Understanding the interaction of pituitary  
dysfunction and temperature at the time of mTBI may facilitate 
clinical guidance in identifying which patients with mTBI need  
to be screened for potential pituitary dysfunction.

Conclusions
mTBI or concussion is a serious and fairly common medical  
problem that can affect all age groups and produce both short-  
and long-term consequences. Because of the high incidence of  
concussion in athletes and military personnel, a great appreciation 
of the detrimental effects of single and multiple concussions has 
led to more research on this particular type of brain injury. Recent  
studies have implicated gray and white matter pathologies that 
result in a spectrum of neurological symptoms. Complicated  
concussions that lead to long-term disturbances in memory func-
tion or other problems require patients to undergo extensive reha-
bilitation strategies to retrain the nervous system. In parallel, new  
treatment strategies that target selective neurotransmitter sys-
tems and secondary injury mechanisms are being tested in animal  
models and in some clinical studies.

It now appears from experimental and clinical work that small  
alterations in brain temperature at the time of an mTBI or con-
cussion may be among several factors that can affect the brain’s  
response to injury through altering secondary injury mechanisms. 
Therefore, mild levels of hyperthermia that can occur in people  
during periods of strenuous activity or exercise may be consid-
ered a risk factor for more severe or long-term functional prob-
lems. In regard to potential treatment strategies, normalizing brain  
temperature after a hyperthermic brain injury appears to reduce 
the degree of structural damage and reduce behavioral out-
comes. In this regard, new technologies are being used to develop  
cooling helmets to reduce brain temperature in acute injury  
settings such as brain trauma. Also, established targeted tempera-
ture management approaches currently being used in severely  
injured patients should be considered for individuals with milder 
brain injuries. In the future, new pharmacological strategies 
that target specific injury cascades that have been shown to be  
aggravated with elevated temperature need to be identified and 
tested in clinically relevant concussion models. In this regard, it 
might be reasonable to consider first testing US Food and Drug 
Administration–approved drugs that have shown some promise in 
clinical studies and trials for severe TBI. Only through continued 
research will new prevention and treatment strategies be discovered 
and tested to minimize the potentially devastating consequences  
of mTBI and concussion.
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