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Inside the cell nucleus, genomes fold into organized structures
that are characteristic of cell type. Here, we show that this
chromatin architecture can be predicted de novo using epigenetic
data derived from chromatin immunoprecipitation-sequencing
(ChIP-Seq). We exploit the idea that chromosomes encode a 1D
sequence of chromatin structural types. Interactions between
these chromatin types determine the 3D structural ensemble of
chromosomes through a process similar to phase separation.
First, a neural network is used to infer the relation between the
epigenetic marks present at a locus, as assayed by ChIP-Seq, and
the genomic compartment in which those loci reside, as measured
by DNA-DNA proximity ligation (Hi-C). Next, types inferred from this
neural network are used as an input to an energy landscape model
for chromatin organization [Minimal Chromatin Model (MiChroM)]
to generate an ensemble of 3D chromosome conformations at a
resolution of 50 kilobases (kb). After training the model, dubbed
Maximum Entropy Genomic Annotation from Biomarkers Asso-
ciated to Structural Ensembles (MEGABASE), on odd-numbered
chromosomes, we predict the sequences of chromatin types
and the subsequent 3D conformational ensembles for the even
chromosomes. We validate these structural ensembles by using
ChIP-Seq tracks alone to predict Hi-C maps, as well as distances
measured using 3D fluorescence in situ hybridization (FISH)
experiments. Both sets of experiments support the hypothesis
of phase separation being the driving process behind compart-
mentalization. These findings strongly suggest that epigenetic
marking patterns encode sufficient information to determine the
global architecture of chromosomes and that de novo structure
prediction for whole genomes may be increasingly possible.
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In the nucleus of eukaryotic cells, the 1D information of the
genome is organized in three dimensions (1, 2). It is increasingly

evident that genomic spatial organization is a key element of
transcriptional regulation (1, 3, 4). During interphase, the 3D
arrangement of chromatin brings into close spatial proximity
sections of DNA separated by great genomic distance, introducing
interactions between genes and regulatory elements. These folding
patterns are cell type-specific (5, 6), and their disruption can lead
to disease (7–10).
The use of high-resolution contact mapping experiments

(Hi-C) has revealed that, at the large scale, genome structure
is dominated by the segregation of human chromatin into
compartments. Initial analysis of Hi-C experiments revealed
that loci typically exhibited one of two long-range contact
patterns, suggesting the presence of two spatial neighbor-
hoods, dubbed the A and B compartments (11). Subsequently,
higher resolution experiments have shown the presence of six
distinct long-range patterns, indicating the presence of six
subcompartments (A1, A2, B1, B2, B3, and B4) in human
lymphoblastoid cells (GM12878) (6). The compartmentaliza-
tion of the genome has been observed in many organisms

[including mouse (6, 12) and Drosophila (13–15)], and has been
confirmed by microscopy experiments (16). Crucially, the long-
range contact pattern seen at a locus is cell type-specific, and is
strongly associated with particular chromatin marks.
To model this structure, we recently introduced an effective

energy landscape model for chromatin structure called the
Minimal Chromatin Model (MiChroM) (17). This model com-
bines a generic polymer potential with additional interaction terms
governing compartment formation, as well as other processes in-
volved in chromatin organization (4, 18–22) [i.e., the local helical
structural tendency of the chromatin filament (17, 23–25) and the
chromatin loops associated with the presence of CCCTC-binding
factor (CTCF) (6, 26–28)]. The formation of compartments (as
well as any other interaction in the MiChroM) is assumed to
operate only through direct protein-mediated contacts bringing
about segregation of chromatin types through a process of
phase separation (17, 29). The MiChroM shows that the
compartmentalization patterns that Hi-C maps reveal can be
transformed into 3D models of genome structure at 50-kb
resolution.
Here, we extend the earlier work by demonstrating that the

structure of chromosomes can be predicted, de novo, by in-
ferring chromatin types from chromatin immunoprecipitation-
sequencing (ChIP-Seq) data and then using these inferences as

Significance

In the nucleus of eukaryotic cells, the genome is organized in
three dimensions in an architecture that depends on cell type.
This organization is a key element of transcriptional regula-
tion, and its disruption often leads to disease. We demon-
strate that it is possible to predict how a genome will fold
based on the epigenetic marks that decorate chromatin. Epi-
genetic marking patterns are used to predict the corre-
sponding ensemble of 3D structures by leveraging both
energy landscape theory and neural network-based machine
learning. These predictions are extensively validated by the
results of DNA-DNA ligation assays and fluorescence micros-
copy, which are found to be in exceptionally good agreement
with theory.

Author contributions: M.D.P., R.R.C., E.L.A., P.G.W., and J.N.O. designed research; M.D.P.
and R.R.C. performed research; M.D.P. and R.R.C. contributed new reagents/analytic tools;
M.D.P., R.R.C., E.L.A., P.G.W., and J.N.O. analyzed data; and M.D.P., R.R.C., E.L.A., P.G.W.,
and J.N.O. wrote the paper.

Reviewers: J.L., University of Illinois at Chicago; and T.S., New York University.

The authors declare no conflict of interest.

This open access article is distributed under Creative Commons Attribution-NonCommercial-
NoDerivatives License 4.0 (CC BY-NC-ND).
1M.D.P. and R.R.C. contributed equally to this work.
2To whom correspondence may be addressed. Email: michele.dipierro@rice.edu or
jonuchic@rice.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1714980114/-/DCSupplemental.

12126–12131 | PNAS | November 14, 2017 | vol. 114 | no. 46 www.pnas.org/cgi/doi/10.1073/pnas.1714980114

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1714980114&domain=pdf
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:michele.dipierro@rice.edu
mailto:jonuchic@rice.edu
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1714980114/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1714980114/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1714980114


an input into an effective energy landscape model. The work
flow behind this approach is broadly described in Fig. 1.
Although the compartments and subcompartments visible in

Hi-C maps correlate with a handful of specific epigenetic
modifications present at those loci (also ref. 6), the distri-
butions of epigenetic markers found in each compartment are
broad and largely overlap. It is therefore impossible to assign
any given locus correctly to a specific compartment using the
frequency of any single epigenetic modification. To overcome
this difficulty, we use a machine learning approach to extract
information from the raw chromatin immunoprecipitation
(ChIP-Seq) data. We first obtained ChIP-Seq profiles available
from the Encyclopedia of DNA Elements (ENCODE) project
for the GM12878 lymphoblastoid cell line, encompassing
84 protein-binding experiments and 11 histone marks. Next, we
discretized each of these profiles, partitioning them into 50-kb
loci, each of which is assigned a value from 1 (weakest signal) to
20 (strongest signal). We then constructed a neural network to
uncover the relationship between compartment annotations
and epigenetic markings. We use a neural network in which
each data type available at a given locus corresponds to a single

neuron (30). The state of the network is represented by the
state vector ~σðlÞ= ðCðlÞ, Exp1ðlÞ, Exp2ðlÞ, . . . , ExpLðlÞÞ, which
represents all of the data available at locus l, with C being the
subcompartment annotation and Expi being the result of the
ith ChIP-Seq experiment. The data at each locus are further
assumed to be distributed according to a Boltzmann distri-
bution for a Potts model:

Hð~σÞ=−
X
i<j

Jij
�
σi, σj

�
−

X
i

hiðσiÞ,

Pð~σÞ= 1
z
expð−Hð~σÞÞ,

where the Pð~σÞ indicates the probability of observing the state
vector ~σ at any given locus l, the Jij interactions capture local
pairwise correlations between epigenetic marks or between
marks and chromatin types, and hi determines the individual
frequencies of chromatin types and markers. This procedure is
equivalent to training a Boltzmann machine to encode the in-
formation contained in the dataset. The learning strategy is based
on the idea that the parameters of the neural network should

Fig. 1. Schematic illustration of the MEGABASE + MiChroM computational pipeline. (1) ChIP-Seq data constitute the only input to our pipeline. ChIP-Seq
tracks obtained from a publicly available resource (ENCODE) are converted into a sequence of chromatin structural types using a neural network dubbed
MEGABASE. The neural network encodes the relationship between compartmentalization and the biochemical state of each locus along the genome. (2)
Sequences of chromatin structural types are used as input to a physical model for chromatin folding (MiChroM) to obtain the ensembles of 3D structures of
specific chromosomes (17). MiChroM is an effective energy landscape model consisting of a generic polymer with chromatin-type interactions and a trans-
lational invariant local ordering term (Ideal Chromosome). (3) Ensembles of 3D structures are validated by comparing the predicted contact maps with those
experimentally determined by using Hi-C.

Di Pierro et al. PNAS | November 14, 2017 | vol. 114 | no. 46 | 12127

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y



0 243.25Mb

A

0 135.6Mb

Contact Maps

3D Structures

ChIP-Seq Tracks

Chromatin Types

13.2M
b

56.05M
b

67.3Mb 85.2Mb

67.3Mb 85.2Mb

13.2M
b

56.05M
b

B

C

D

52.6M
b

69.25M
b

77.6Mb 101.5Mb

77.6Mb 101.5Mb

52.6M
b

69.25M
b

MEGABASE + MiChroM
Simulation

Hi-C
Experiment

-9 -5 0
log(contact probability)

E

A2
B1
B2

B3

A1

Chromosome 2 Chromosome 10

H2AFZ
H3K36me3
H3K27me3
H3K27ac

H3K79me2
H3K4me1
H3K4me2
H3K4me3
H3K9ac

H3K9me3
H4K20me1

Fig. 2. Predicting the 1D chromatin sequences, 3D conformations, and 2D contact probabilities of human chromosomes from epigenetic marking patterns.
We apply MEGABASE + MiChroM to obtain an ensemble of 3D structures for all of the autosomes of cell line GM12878. For illustrative purposes, predictions
for chromosome 2 (Left) and chromosome 10 (Right) are shown, respectively. (A) Ninety-five ChIP-Seq tracks are downloaded from the ENCODE database and
used as input for MEGABASE to predict 1D sequences of chromatin types (shown in B). The 3D structure of each chromosome is encoded in its specific 1D
sequence of chromatin structural types. (C) Typical 3D conformation obtained by MiChroM is shown for chromosomes 2 and 10. (D) Approximately
50,000 structures are collected from simulation to generate high-quality contact maps. These contact maps are compared with the Hi-C maps shown in E. The
simulations correctly predict the long-range contact probability patterns that are observed in Hi-C maps, as seen in the magnified regions.
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maximize the likelihood of observing the set of state vectors
representing a particular training set. A similar strategy has
been previously introduced to quantify the correlated muta-
tional patterns observed in amino acid sequence data of protein
families occurring under natural selection to aid protein struc-
ture prediction (31, 32).
The quality of compartment prediction is improved when we

include in the Potts model interactions that do not just refer to a
single 50-kb locus but also to interactions encoding correlations
between markings and annotations of nearest neighbors and next
nearest neighbors (i.e., the neural network correlates information
from loci l − 2, l − 1, l, l + 1, l + 2). Through these couplings, the
probability of observing a specific state vector at a given locus is
correlated with the states of the adjacent segments, thus minimizing
the effect of uncorrelated noise. This strategy is analogous to the
construction of secondary structure predictors in protein folding
using helix–coil models (33).
The inferred probabilistic model is then marginalized to

predict the most probable chromatin type for a given locus l
when given the experimental ChIP-Seq measurements of loci
ðl− 2,   l− 1,   l,   l+ 1,   l+ 2Þ:

CSTðlÞ= arg max  P
�
CjExp1,:::,Lðl− 2, l− 1, l, l+ 1, l+ 2Þ

�
.

We refer to the resulting probabilistic predictor of chromatin
structural types (CST) as the Maximum Entropy Genomic

Annotation from Biomarkers Associated to Structural Ensem-
bles (MEGABASE). Once trained for a given new input
sequence of epigenetic marks, the model can then find the most
probable sequence of corresponding compartment annotations.
The state vectors of every locus of the odd-numbered chro-

mosomes comprise the training set. The state vectors of the
even-numbered chromosomes then provide a test set to quantify
the performance of the trained model.
After training on the odd-numbered chromosomes, we used

our statistical model to predict the chromatin types for the
independent set of the even chromosomes of the cell line
GM12878 from their epigenetic marking profiles. For the test
set, the predicted type assignments are in broad agreement with
the experimentally determined structural annotations in the
study by Rao et al. (6). Specifically, the model is very accurate
in predicting the assignments to compartments (A vs. B), while
producing a larger number of mismatches between the pre-
dicted chromatin types and the published subcompartment
annotations, which are more fine-grained (A1 vs. A2, B1 vs.
B2 vs. B3) (SI Appendix, Fig. S1).
Once predicted sequences of type annotations are available,

we use our earlier MiChroM to sample the predicted confor-
mational ensembles of 3D structures. To highlight the re-
lationship between chromatin types and compartmentalization,
we use the MiChroM Hamiltonian with the same parameters
that had already been determined, but omit the term in that
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Fig. 3. Simulated conformational ensembles predict the distances measured by 3D FISH experiments. Simulations and 3D FISH experiments support the idea that
the compartmentalization observed in Hi-C maps emerges from the phase separation of chromatin structural types. (A and B) Cartesian distances between four
loci (L1, L2, L3, and L4) in chromosome 14 (cell line GM06990) were measured in two distinct 3D FISH experiments reported by Lieberman-Aiden et al. (11). The
same distances were measured using the MEGABASE + MiChroM pipeline. The positions of the fluorescent probes are illustrated in representative 3D config-
urations from simulations, as well as along the chromosome. As illustrated by the annotations fromMEGABASE shown in the figure, the four loci are composed of
chromatin of alternating types: L1 and L3 composed of type A chromatin and L2 and L4 composed of type B chromatin. (C and D) Cumulative distribution
functions (CDF) show that loci composed of chromatin belonging to the same type tend to be closer in space than otherwise, despite the interlaced order and
despite lying at greater genomic distances. This phenomenon is observed in FISH experiments, and it is correctly predicted by our ChIP-Seq–based modeling. The
comparison between the predicted andmeasured probability distributions shows excellent agreement for both the average distance and the distance fluctuations
(more examples of validation with FISH data are provided in SI Appendix). The average ratio between simulated distances and FISH-measured distances has been
used to calibrate the length scale of simulation. One unit of length in simulation corresponded to a length of 0.17 μm, which also implies the size of a simulated
chromosomal territory being ∼2–3 μm across, which is consistent with what was previously reported by Cremer and Cremer (2).
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energy function that models the CTCF-mediated looping in-
teractions. These looping interactions seem to arise from a
distinct process from compartmentalization, and omitting such
interactions does not disrupt the large-scale architecture of chro-
mosomes (17) (the results of additional simulations, including also
the CTCF-mediated looping interactions, are provided in SI Ap-
pendix, Fig. S2).
The simulations all start from a random collapsed polymer

having the proper length confined in a spherical region at correct
density (SI Appendix). After equilibration, we collect an ensemble
of 3D structures representing the chromosome-specific energy
landscape as shaped by the inferred chromatin-type sequences
(used as input) and by the MiChroM effective interactions.
From the ensemble of equilibrium conformations, we cal-

culate the contact probabilities between any pair of loci within
each chromosome. We compare the resulting contact maps
from the simulated ensemble of 3D structures with the ex-
perimental Hi-C maps reported by Rao et al. (6). The overall
agreement between the experimental and simulated contact
probabilities is visually evident. The comparison between the
simulated and experimental contact maps is shown in Fig. 2 for
representative chromosomes in the test set (i.e., the even au-
tosomes). The Pearson’s coefficient is ∼0.9 or higher for all of
the chromosomes whether in the training set or test set, and
the analysis of the Pearson’s coefficient as a function of ge-
nomic distance (SI Appendix, Figs. S3–S24) confirms that the
two sets of maps are correlated exceptionally well. The power
law scaling of the contact probability between two loci as a
function of their genomic distance is reproduced well at all
genomic distances in a comparison with Hi-C data (SI Ap-
pendix, Figs. S3–S24).
Finally, we compare the Cartesian distances between multi-

ple pairs of loci as predicted through the use of our computa-
tional model with those measured by using 3D fluorescence in

situ hybridization (FISH), and reported by Rao et al. (6) for the
cell line GM12878 and by Lieberman-Aiden et al. (11) for the
closely related cell line GM06990. FISH experiments in Fig. 3
show that chromatin belonging to the same structural type
tends to come into contact more frequently than otherwise,
supporting the idea that compartmentalization is induced by a
process of phase separation. This behavior is predicted with
quantitative accuracy by our ChIP-Seq–based simulation. Re-
markably, simulations predict all of the experimentally de-
termined average distances, together with their variances (Fig.
3 and SI Appendix, Figs. S25–S27).
Representative predicted 3D conformations for chromosome

2 and chromosome 10 are shown in Fig. 2.
As previously observed by Di Pierro et al. (17), analysis of

the conformational ensembles shows the existence of micro-
phase separation between chromatin of different types, leading
to the formation of the characteristic patterns of interactions
seen in Hi-C maps. Examples of the long-range patterns that
are captured by our predictions are shown in Fig. 2. The more
transcriptionally active segments of chromatin (compartments
A1 and A2 in Fig. 2) are more frequently found on the outer
surface, while the inactive segments (compartments B1, B2, and
B3 in Fig. 2) typically reside in the core of chromosomes.
The quality of the structural predictions achieved using the

chromatin annotation inferred by MEGABASE shows that
there exists a clear sequence-to-structure relationship between
the sequences of chromatin types predicted from epigenetic
marks and genome architecture. The accuracy achieved by
using our energy landscape model in predicting the effects of
compartmentalization, as seen by Hi-C and 3D FISH, supports
the plausibility of microphase separation being the physical
process driving compartmentalization in chromosomes (17,
34–36) (Fig. 4).

Marked 
Chromatin 
Fiber

Proteins

Chromatin Structural Types A and B
A1 B1 A2

Fig. 4. Process of microphase separation explains
compartmentalization in chromosomes. TheMEGABASE+
MiChroM hypothesizes that chromatin characterized
by homogeneous epigenetic markings undergoes a
process similar to phase separation under the action
of the proteome present in the nucleus. In simulations,
we observe that segments of chromatin belonging to
the same structural type tend to segregate, forming
liquid droplets, which rearrange dynamically by split-
ting and fusing. This simple process of phase separation
is sufficient to explain the emergence of compartmen-
talization in genomes as observed in DNA-DNA ligation
assays and microscopy experiments.
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The success achieved in reliably predicting chromosome
architecture indicates that our probabilistic model captures
the essential features of epigenetic marks that are associated
with compartmentalization. Hence, we further exploit MEGABASE
to study this relationship by calculating the content of mutual in-
formation shared between markers and compartments, and so
quantifying which of the markers are the best predictors of com-
partmentalization. It is immediately evident that certain bio-
chemical markers share a high content of mutual information with
chromatin structural types, while others do not. According to our
neural network, histone methylations HK36me3, H3K27me3,
H3K4me1, and H4K20me1 and nuclear proteins EED, ZBED1,
TRIM22, and HCFC1 carry most of the information associated with
identifying the chromatin types (SI Appendix, Fig. S28). In contrast,
we see that although compartment A, for example, has a very high
content of H3K27ac, that marker by itself is a poor predictor owing
to its modest mutual information value.
Histone modifications alone carry enough information to

predict genome architecture. To illustrate the disproportionate
predictive value of histone marks, we created a reduced model by
training MEGABASE using only the 11 patterns of histone
modifications out of the 95 tracks available in the ENCODE da-
tabase. The sequences of chromatin types predicted by this re-
duced model turn out to be only marginally different from those
obtained by the full dataset of ChIP-Seq tracks (SI Appendix).
Our results demonstrate clearly that it is possible to generate

de novo predictions of the genome’s 3D structure, as well as
specific predictions about the results of Hi-C and FISH ex-
periments, using only ChIP-Seq data on histone modifications

as an input. The faithfulness of the predicted conformational
ensembles underlines the existence of a sequence-to-structure
relationship between patterns of histone modifications and the
3D spatial arrangement of chromosomes.
These findings offer great hope that, like the problem of protein

folding before it, the puzzle of genome folding may be amenable
to computational predictions (37). However, despite the success of
the neural network-based prediction algorithm, the details of the
mechanism underlying chromatin folding remain unclear. Does
chromatin fold into a specific conformation because of the partic-
ular sequence of epigenetic markers or, vice versa, do compart-
ments share similar epigenetic markers because of chromosome
architecture? Dynamical studies using Hi-C and other methods will
doubtless be essential in addressing these questions.
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