
Denoising of MR Spectroscopic Imaging Data Using Statistical 
Selection of Principal Components

Abas Abdoli1, Radka Stoyanova2, and Andrew A. Maudsley1

1Departments of Radiology, University of Miami School of Medicine, Miami, Florida

2Departments of Radiation Oncology, University of Miami School of Medicine, Miami, Florida

Abstract

Objectives—To evaluate a new denoising method for MR Spectroscopic Imaging (MRSI) data 

based on Selection of signal-related Principal Components (SSPC)from principal components 

analysis (PCA).

Materials and Methods—A PCA-based method was implemented for selection of signal-

related PCs and denoising achieved by reconstructing the original dataset utilizing only these PCs. 

Performance was evaluated using simulated MRSI data and two volumetric in vivo MRSI of 

human brain from normal subject and patient with brain tumor using variable signal to noise ratios 

(SNR), metabolite peak areas, Cramer-Rao Bounds (CRB) of fitted metabolite peak areas and 

metabolite linewidth.

Results—In simulated data SSPC determined the correct number of signal-related PCs. For in 
vivo studies, the SSPC denoising resulted in improved SNR and reduced metabolite quantification 

uncertainty compared to the original data and two other methods for denoising. The method also 

performed very well in preserving the spectral linewidth and peak areas. However, this method 

performs better for regions that have larger numbers of similar spectra.

Conclusion—The proposed SSPC denoising improved the SNR and metabolite quantification 

uncertainty in MRSI, with minimal compromise of the spectral information, and can result in 

increased accuracy.
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Introduction

MR spectroscopic Imaging (MRSI) enables mapping distributions of several tissue 

metabolites that are of interest for non-invasive clinical diagnostic purposes, particularly for 

studies in the brain [1]. The technical challenges in acquiring data from low concentration 

metabolites require a compromise in the spatial resolution and signal-to-noise ratio (SNR) of 

the measurement, which can decrease the value for clinical applications. While increased 

SNR can be achieved by signal averaging, this is frequently impractical for clinical studies 

due to the increased scan times and susceptibility to movement artifacts.

An alternative approach to improving SNR, and thereby reduce the uncertainty of the MRSI 

analysis, is to reduce noise in the data as part of the reconstruction procedure. A simple 

approach is to smooth the data in both the spatial and spectral domains using, for example, a 

Gaussian function [2], which also results in decreased spatial resolution or increased spectral 

linewidth respectively [3]. Another popular approach is the thresholding of the data in a 

transformed domain, such as wavelet and time-frequency, followed by inverse 

transformation. Ancino-De-Geiff et al. [4] proposed the use of wavelet shrinkage for 

denoising of MRS data. In this method, the data is transformed to a decorrelated domain by 

an orthonormal series generated by wavelets and then the denoising is applied through 

thresholding of wavelet coefficients and inverse transformation [5]. Later, Ojanen et al. [6] 

proposed the minimal description length method to find the optimal number of wavelet 

coefficients for the denoising of electrophoresis and mass spectroscopy signals. Laruelo et 

al. [7] proposed a new wavelet base denoising technique which accounts for signal regularity 

across the spectral and spatial domains without altering the spectral resolution. Their method 

includes a proximal algorithm for a fast convex optimization to find the optimal number of 

wavelet coefficients. They reported improvements in retaining the spectral line shapes 

compared to the convolution smoothing by a Hanning function [7].Ahmed [8] proposed 

consecutive projections of the noisy MRS data in different domains, in conjunction with 

noise filtration for each domain. For these projections, a set of stable, linear, time-frequency 

transforms was applied with different resolutions [9] and improvements over the wavelet 

shrinkage method for 31P single voxel data were reported [8]. However, for consideration of 

this method to volumetric MRSI data that can have on the order of 105 spectra, the 

computational cost of using multiple projections must also be considered.

In a different approach, the denoising can be applied prior to or during MRS signal 

reconstruction using explicit parametric modelling approaches [10, 11]. Eslami and Jacob 

[10] proposed a reconstruction scheme for MRSI data that results in a sparser representation 

of the spectral data that enables the separation and suppression of the noise as well as line 

shape distortions. Nguyen et al. [11] applied a similar approach with the addition of spectral 

prior knowledge estimated from k-space data.
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It is often assumed that the signal-related (noiseless) data is a lower rank subspace of the 

original data. Low-rank modeling with recent advances in its algorithm has become a 

popular method in the medical imaging field [12-14]. Singular Value Decomposition (SVD) 

and Principal Component Analysis (PCA) provide a representation of complex data in a 

lower dimensional space that is defined by the significant PCs (principal component 

directions) [15, 16]. MRSI data can be represented as a product of (i) the PCs, which are 

orthonormal and ordered by the decreasing amount of commonality in the data they 

represent; and (ii) their scores or magnitudes, which are the projections of the data onto the 

corresponding PC. The total number of PCs is usually much larger than the number of 

independent variations in the dataset. For instance, in vivo MRSI data with 1024 points in 

the frequency domain will result in 1024 PCs, but if we assume that there are 10 observed 

metabolite spectral patterns the amplitude, frequency, phase and linewidth variations will 

result in ∼40 signal related PCs [17, 18] and the remaining PCs will be noise-related. 

Recalculating the data using only the significant PCs while ignoring the higher noise-related 

will effectively reduce the noise in the data.

For denoising of MRSI data, Zhu et al. [19] proposed a PCA based denoising technique 

based on a deformable shape-intensity model. They reported increased SNR up to 2.1 times 

without distorting spectral lineshapes and linewidths. Nguyen et al. [20] proposed a low rank 

approximation (LORA) scheme that exploits two low-rank structures. The first structure is 

derived on the assumption that spatial and temporal variations in MRS data are separable, 

and the second one is calculated based on the linear predictability assumption in temporal 

dimension. This study reported a better performance of LORA denoising compared to the 

wavelet shrinkage and Gaussian smoothing in terms of SNR and spectral quality [20].Kasten 

et al. [21] proposed a data-driven low rank component analysis for MRSI in which a 

generative model is estimated from the raw data via regularized variation framework that 

minimizes the approximation error within the subspace.

One of the challenges of low-rank denoising is the selection of the optimal rank for 

approximation of the noise-free signal. In the report of Nguyen et al. [20] it was assumed 

that the rank of the noiseless data is equal to N, if the Nth and (N+1)th eigenvalues of the 

original data is greater (or equal) and less (or equal) than the Euclidean norm of the 

estimated noise, respectively. They also applied the Akaike information criterion [22] where 

the noiseless data is assumed to be a low-rank Hankel matrix and the noise to be a Gaussian 

Hankel matrix [20].

Volumetric whole-brain MRSI datasets present an additional challenge for the denoising 

techniques in that they can contain a wide range of data quality and include regions prone to 

increased artifacts due to contamination from residual water and unsuppressed subcutaneous 

lipid signals. Therefore, it is very likely that the spectral decomposition of the data includes 

PCs that only represent ‘unwanted’ signal artifacts. Thus, it is necessary to examine the 

information carried by each PC to filter out those that are dominated by either artifact or 

noise.

In this study a spatial-spectral low-rank method was developed for denoising of 

volumetric 1H MRSI data of the brain that was combined with a new approach for selection 
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of the significant signal-related PCs obtained from PCA. In this method, PCs are selected 

using a statistical test that examined the relative information content describing the 

metabolite signal. To improve the performance, the denoising step is applied after correction 

for B0 and phase shifts, which results in a smaller number of signal-related PCs relative to 

the uncorrected data.

Materials and Methods

Theory

Let si(ω) be the noise free spectrum of voxel i, for i = 1, …, N where N is the total number 

of voxels and ω is the frequency. Assuming si(ω) contains M spectral peaks and fj(ω), j = 1, 

…, M, represents the normalized spectral shape of the jth peak, si(ω) can be represented as 

the weighted sum of the shapes:

(1)

where Aj is the amplitude of jth spectral peak. Let s̄i(ω) be the acquired MRS spectrum:

(2)

where ∊ is complex Gaussian noise with mean 0 and standard deviation σ, i.e. ∊ ∈ N(0,σ2). 

For volumetric MRSI, let us reform the data to a two dimensional complex matrix S̄(r, ω) 

with r and ω being the spatial and frequency domains, respectively. Therefore each row will 

represent a spectrum, S̄
i(ω), and the total number of rows (r) would be N. Let S(r, ω) be the 

corresponding ‘noiseless’ complex matrix with si(ω) in its rows. Therefore, for the 

volumetric MRSI, Eq. 2 can be represented as:

(3)

PCA is a standard statistical technique for decomposition of S̄ along the axes of the PCs 

which are ordered by the decreasing amount of commonality in the data they represent:

(4)

where Z(r, ω) is the matrix of PC scores and P(ω, ω) is the PCs matrix. In the case that the 

amplitudes of the metabolite peaks Aj (Eq. 1) vary independently from each other, PCA will 

yield L significant PCs. The rest of the PCs will be noise related. The spectral matrix can be 

reconstructed only with the first L PCs and thus the data will be ‘denoised’, i.e.:
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(5)

where subscript L indicates the low rank of the matrix based on L significant signal-related 

PCs. Determining the rank L in in vivo MRSI data, however, is quite challenging as it is not 

known a priori how many spectral patterns are in the data and, more importantly, there are 

added noise and additional features from variations in frequency, phase, lineshape, and 

baseline, which exacerbate the problem.

Method

The proposed method, Statistical Selection of Principal Components (SSPC), determines the 

signal related PCs in S̄(r, ω). The technique is based on examining each PC and comparing 

the variance in frequency regions with known metabolites with the variance in the ‘noise’ 

regions. For this purpose, Levene's test [23] was performed to assess the equality of 

variances between these two regions. Similar to the F-test, Levene's test is a variance 

equality test that can handle the non-normality of data. While in Eq. 2 the noise is assumed 

Gaussian, it should be noted that any apodization, zerofilling or spatial filtering introduces 

correlation and the noise in MRS after these standard pre-processing procedures cannot be 

considered normally distributed. Also, the peak amplitudes within the metabolite region 

generally are not normally distributed. After performing Levene's test, a threshold was 

applied to the significant difference (p-value) calculated by the test to retain the significant 

PCs and construct the S̄(r, ω). The selection is applied to all PCs and the result need not be 

consecutive, i.e. PCi+1 may be included while PCi is excluded. In this method, the total 

number of selected PCs would be equal to the rank L of S̄(r, ω). The choice of the p-value 

threshold depends on the noise level in the dataset and will be determined by the user. An 

estimate for the threshold value can be obtained by performing Levene's test for two noise-

only regions in last PCs that are noise-related PCs; however, the threshold value can be 

increased to retain more PCs.

Simulated MRSI Data

Simulated volumetric MRSI datasets were generated for Cartesian k-space sampling using a 

function in the MIDAS (Metabolite Image Data Analysis System) software package [24]. To 

examine the performance of the PC selection a MRSI dataset was created for a simple 

abstract object consisting of three overlapping spherical volumes, each characterized by a 

different spectral pattern, labeled Line1, Line2 and Line3 (Fig. 1a). Spectroscopy signals 

were generated with Gaussian lineshapes and constant amplitudes over each region with 

relative values of 0.8, 0.7 and 1.0. Gaussian noise with mean value 0 and standard deviation 

of 0.08 was added in the time-domain. The spatial resolution of the simulated datasets was 

64×64 voxels in-plane and 4-voxels through-plane. To examine the effect of frequency and 

phase shifts, a second dataset was generated with randomly shifted phase and frequency 

between-30° and +30°, and -6 Hz to 6 Hz, respectively.

A third dataset was generated to resemble the volumes and metabolites in an in vivo brain 

MRSI that included a small lesion with a different spectral pattern. The primary volume had 
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an ellipsoidal shape containing subregions with different spectral patterns that represented a 

lipid ring, normal brain tissue, ventricles containing only a water signal, and a small region 

representing a brain lesion (blue region in Fig. 2). In addition, spatial variations of all 

simulated spectral peaks were created throughout the whole object following a synchronous 

cubic distribution pattern for all metabolites. The metabolite region included simulated 

resonances for N-acetylaspartate (NAAsim), total Creatine (Crsim) and total Choline 

(Chosim), whereas in the lesion the NAA peak was set to zero and an overlapped doublet for 

Lactate (Lacsim) was included.

In Vivo MRSI Data

Volumetric MRSI data of one normal subject (male, 31 years old) and one brain tumor 

subject (female, 49 years old) were obtained at 3T (Siemens Trio) with 8-channel detection. 

Subjects were scanned after obtaining signed informed consent in accordance with the 

procedure approved by our Institutional Review Board. These data were acquired using a 

spin-echo acquisition with two-dimensional phase encoding, echo-planar readout in the ky-

time dimensions, frequency-selective water suppression and TR/TE = 1551/17.6. Sequence 

details have been provided elsewhere [25-27]. The acquisition included a water-reference 

dataset obtained in an interleaved manner with identical spatial parameters as the metabolite 

MRSI. MRSI acquisition was preceded by an inversion-recovery preparation, with TI = 198 

ms, to suppress signal from subcutaneous lipids [25, 27]. A T1-weighted image (MPRAGE, 

Magnetization Prepared Rapid Gradient Echo) at 1-mm resolution (TR/TE/TI = 

2300/2.4/930 ms) was also acquired for each study.

All data were processed using the MIDAS software package [24]. The processing steps 

included resampling of the echo-planar imaging (EPI) readout with combination of odd and 

even echo readouts [28], zero-filling in the spatial domain from 50×50×18 points to 

64×64×32 points, zero-filling in the frequency domain from 500 points to 1024 points, 

Fourier transformation in all three spatial dimensions, and multichannel combination [29]. 

Spatial smoothing (Gaussian, damping factor of 2.0) was applied as a convolution in the 

spatial domain after spatial-spectral Fourier transformation, B0 correction, and lipid k-space 

extrapolation [30]. The resolution of the reconstructed metabolite images corresponded to a 

voxel volume of 1.55 ml calculated at full width at half maximum.

A high SNR reference dataset was also created from the normal subject dataset by averaging 

the MRSI data from 64×64 voxels in-plane and 32-voxels through-plane to 10×10 voxels in-

plane and 10-voxels through-plane. The averaging was performed after application of 

processing steps mentioned above. To remove noisy and contaminated averaged spectra 

based on LW and CSF partial volume criteria, parametric spectral fitting [31] was performed 

to derive the LW from NAA, Cre, and Cho resonances. A threshold of 2 < LW < 8 was then 

applied to filter out the unwanted averaged spectra. A noisy version of this dataset was then 

generated by adding a Gaussian noise with mean value 0, standard deviation of 0.08 based 

on the maximum amplitudes of NAA in the averaged data. The purpose of this study was to 

examine the performance of the SSPC denoising method in improving the metabolite 

quantification for in vivo datasets.
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To increase the effectiveness of the SSPC denoising for the in vivo datasets the spectral 

phase and frequency variations were corrected prior to denoising. This was achieved using 

two steps. Firstly, following spatial reconstruction a time-domain phase-correction function 

was applied at each voxel location, with the correction function obtained from the 

unsuppressed water acquisition. Because some phase variations still remained across the 

image a second processing step was applied that used spectral fitting of the primary 

resonances, consisting of NAA, Cre, and Cho singlet resonances only, and then applied the 

phase and frequency terms determined from this analysis as a correction to the data. 

Following denoising the parametric spectral fitting [31] was again performed to obtain maps 

of NAA, Cr and Cho, myo-Inositol, and glutamate plus glutamine (Glx).

For data that had the SSPC denoising applied no spectral smoothing was applied during 

processing. For comparison to standard processing methods, data were also processed using 

Gaussian apodization of the time data, prior to spectral Fourier transformation, for a 

relatively small 2 Hz line-broadening and a value more typically used (for 3 T) with 5 Hz 

line-broadening.

Data Analysis

SSPC denoising performance was compared with: 1) spectral apodization using Gaussian 

smoothing, and 2) conventional PCA denoising. For the second method, the rank L was 

found using the SSPC scheme and the same rank was applied for the PCA reconstruction 

using the first L consecutive PCs. It should be mentioned that the conventional PCA 

procedure is equivalent to the first part of the LORA [20] denoising scheme. Since the 

second part of LORA denoising, which utilizes the Cadzow algorithm [32] for each 

spectrum, is not coupled to the first part, results of comparisons between the conventional 

PCA and SSPC denoising would also be valid for the first part of LORA denoising.

For the SSPC method, the noise and signal regions in the PCs are identified in the same 

manner as in the spectra, with the noise region being the first 150 points (9.4 to 7.90 ppm) 

and the metabolite region from 4.0 to 1.5 ppm. Qualitative comparisons between individual 

spectra obtained from different denoising methods are presented for each study. Metabolite 

peak areas and their Cramer-Rao Bound (CRB), metabolite peak area ratios, linewidth (LW) 

and SNR were used as the measures for quantitative comparisons. SNR was calculated using 

the fitted NAA area over the standard deviation (SD) of the noise in the spectral domain, 

with the noise measurement taken from the last 100 points (0.64 to -0.35 ppm) of the 

spectrum. For the in vivo studies, the SNR was used since it accounts for changes in 

linewidth. For the SNR calculation within the tumor region, the fitted Cho area was used 

instead of the fitted NAA area. In both studies, the SNR measurement was done after 

application of the spectral fitting. To examine the spatial distributions of the relative 

performance in more detail, images of metabolite peak area, CRB, LW and SNR were 

generated for the study of a normal subject. The coefficient of variation (CV) of the root 

mean square error (RMSE) was also used to calculate errors in the NAA, Cho and Cr fitted 

areas for the simulated data, as
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(6)

where Mref is the known (reference) value at voxel i, M is the fitted area at that voxel, and M̄ 

is the mean value of the reference areas over N voxels in the ROI.

Results

Simulated MRSI Data

In Fig.1 are shown the central slice from the first simulated dataset and the constituent 

spectral patterns. PCA was applied to the data before and after adding random noise. The 

real part of the resultant first 4 PCs with their corresponding normalized eigenvalue 

percentages are shown in Figs. 1b and 1c, respectively. In the first case, the first 3 PCs 

contained 100% of the information for reconstruction of the noiseless data. The shape of the 

4th PC with only 2e-5 contribution can be considered as the numerical error of the PCA 

algorithm used for the spatial-spectral decomposition of data. With added noise (Fig.1c) the 

first three PCs have only 23% of the total variance; however, the PC shapes remained the 

same as in the noiseless data. The contribution of the 4th PC was increased to 1% due to 

presence of the noise. In both cases, SSPC determined that the first three PCs were signal-

related using 0.01 as the p-value threshold for Levene's test. PCs for the second simulated 

dataset are shown in Figure 2. In this case the number of signal-related PCs was increased to 

seven due to the variations in the phase and frequency. The SSPC method also detected 7 

signal-related PCs using 0.01 as the p-value threshold for Levene's test. This result shows 

that with additional variability in the data the number of signal-related PCs is increased, 

however, as long as there is a significant difference between signal variations and noise 

variations in a given PC the SSPC method can detect and use that PC regardless of shifts in 

frequency and phase. However, if the frequency and phase shifts are small, such that the 

difference between the shifted spectrum and corrected spectrum is less than the noise level, 

they can be ignored. Therefore, it is recommended to perform the SSPC denoising after the 

phase and frequency corrections.

In Fig.3 are shown example spectra from the simulation studies and the distributions used to 

generate the simulated MRSI data. For the simulated brain (Fig. 3c and 3d), this consisted of 

regions containing lipid signals (shown in light yellow), normal metabolites (gray), water 

(dark gray), and abnormal metabolite signals (blue). SSPC determined that the first four PCs 

were signal-related using 0.01 as the p-value threshold for Levene's test.

Two noise-free spectra from each of the simulated datasets are shown in the top row in Fig.3. 

The spectrum in Fig. 3a.i is selected from an area of overlap of two volumes and shows two 

signals, while that shown in Fig. 3b.i is from the intersection of all three volumes and 

contains three signals. The examples from the simulated dataset shown in Fig. 3c and 3d are 

selected to represent “normal” (relatively equal Cr and Cho peaks and high NAA) and a 

small region of “tumor” (increased Cho, no NAA and large lactate doublet).In the second 
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row are shown the data after adding random noise and in the last row are the results after the 

SSPC denoising. The results in row (iii) show that the SSPC denoising had a good 

performance in removing the noise and preserving the peak heights, indicating no loss of 

information. Note that the reconstructed “tumor” spectrum, Fig. 3.d.iii, is noisier than that 

from the “normal” region. The tumor spectra are associated with a relatively small volume 

and therefore they contribute a small fraction of the total variance. As the PCs are ordered by 

the amount of commonality in the data they explain, the first few PCs are dominated by the 

signal from the ‘normal’ volumes. The tumor-related variance is in higher order PCs, which 

in turn contain more noise. These higher order PCs do not contribute in the reconstruction of 

the normal signals, hence the high SNR and conversely, the lower SNR in the “tumor” 

spectrum.

For quantitative comparisons, metabolite peak area ratios and SNR obtained from denoising 

of the simulated MRS data are presented in Table 1. After application of SSPC denoising, 

the SNR for voxel 1 was increased by 433% and for voxel 2 by 131%. The errors for 

NAAsim/Crsim and NAAsim/Chosim ratios for voxel 1 were also reduced by 69% and 94%, 

respectively. For voxel 2, Lacsim peak was used instead of NAAsim. The improvements in 

reducing errors for Lacsim/Crsim and Lacsim/Chosim ratios after the application of denoising 

were 73% and 12%, respectively. Additional studies (results not shown) examined the 

denoising of the data using only the first 3 PCs and the first 5 PCs. The former resulted in 

removing the Lacsim peaks in the small lesion region, and the latter added more noise to the 

data with no improvement in peak area ratios.

In Table 2 are presented the coefficient of variation (CV) of the root mean square error 

(RMSE) of NAA, Cho and Cr areas for a ROI located outside of the tumor region (25 

voxels) and for Cho and Cr within the tumor region (25 voxels). The values are compared 

with that obtained using Gaussian apodization of 5 Hz, and the original data. These results 

show that the SSPC denoising reduced errors in ROI 1 by 33%, 68% and 66% for NAA, Cr, 

and Cho fitted areas, respectively, relative to the analysis of the original data. The 

improvements in the tumor region (ROI 2) were smaller with the maximum of 5% reduction 

of error for the Cho area. The CVRMSE values increased for the case where Gaussian 

apodization was applied, which we believe is due to the increased linewidth that notably 

affected fitting of the closely overlapping peaks of Cr and Cho.

In Vivo MRSI Data

The aim of the next study was to examine the performance of the SSPC denoising applied to 

a MRSI dataset of a normal subject. Maps of the peak areas of two metabolites (CrArea, 

GlxArea), their corresponding CRBs, LW and SNR are shown in each column in Fig. 4. The 

use of conventional spectral apodization of 2 Hz or 5 Hz line Gaussian smoothing, shown in 

Fig. 4b and Fig 4c, resulted in increased SNR and reduced CRBs compared to the raw data, 

but also increased the metabolite LW, especially for 5 Hz line smoothing. To ensure a direct 

comparison between the conventional PCA and SSPC denoising methods, the same number 

of PCs, L = 224, were used for Fig. 4d and Fig. 4e, and 65 PCs, L = 65 were used for Fig. 4f 

and Fig. 4g. For these examples the number of PCs selected, L, was based on the value 

determined in the SSPC denoising approach with a p-value threshold of 10E-5 or 10E-10, 
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and the first L consecutive PCs were used for the conventional PCA approach. It can be 

observed that the SSPC denoising (Fig. 4e and Fig. 4g) performed better than the 

conventional PCA denoising (Fig. 4d and Fig. 4f) in terms of CRB and SNR. The visual 

improvements in metabolite peak area images were more prominent for the lower 

concentration metabolite, GlxArea, compared to the higher concentration metabolite, CRArea. 

By comparing Fig. 4e and Fig. 4g, it can be observed that decreasing the p-value threshold 

from 1E-5 to 1E-10 improved SNR and CRBs without compromising the metabolite 

information such as LW and metabolite peak area.

For the second in vivo study, the high SNR averaged data was used as the reference for the 

evaluation of the SSPC denoising performance. The SSPC denoising was applied on the 

noisy data that was generated by adding Gaussian noise to the averaged data, then its results 

were compared to the original averaged data. The results for analysis of NAA, which has a 

strong signal with good SNR, and Glx, which exhibits a broad multiplet structure with low 

SNR, are shown in Fig 5. In Fig 5a are plotted the fitted NAA area results, obtained at 

multiple voxels before (orange) after (blue) application of the SSPC denoising, against the 

corresponding reference data result. It can be seen that the fitted NAA areas are clustered 

toward the center line with R2 = 0.91 for the denoised result compared to the noisy data with 

R2 = 0.90. As expected, the improvement is more evident for Glx (Fig. 5b), which showed a 

14% increase in R2. This result illustrates that the denoising reduces uncertainty of the 

parametric spectral fitting.

One of the main challenges of denoising methods is to retain information in small regions of 

interest, such as small tumors, that have very different signal compositions compared to 

larger regions of the brain. Therefore, the aim of the third in vivo study was to investigate 

the performance of the SSPC denoising method inside and outside of a small tumor region. 

In Fig. 6 is shown a MRI that identifies a tumor on the right side of the image (left side of 

the brain), with the gross tumor volume of 7.5 ml. Two example spectra, one from a voxel 

located the normal appearing white matter region on the opposite side of the tumor region 

(voxel 1), and one from a voxel within the tumor region (voxel 2) are also shown for the 

original data and following different denoising approaches. A visual evaluation of spectra in 

Fig. 6a.iii and Fig. 6a.iv indicates that the SSPC denoising performed better than the 

conventional PCA denoising. The SSPC result with the p-value threshold of 1E-10, Fig 6a.v, 

appears less noisy compared to other methods. For voxel 2, the denoised spectra are similar 

in appearance, however, the spectrum shown in Fig. 6b.v obtained from the SSPC denoising 

with the p-value threshold of 1E-10 appears less noisy and has a smaller Glx peak height 

compared to the other spectra.

In Table 3 are presented the CRBCr, CRBGlx and the SNR for the two selected voxels. The 

SSPC denoising with 1E-10 threshold increased the SNR from 92 to 418, or 355%. 

However, for voxel 2 this improvement was 169% which is more than 2 times smaller than 

the improvement for voxel 1. The reason for this result is that the denoising algorithm will 

perform better for larger numbers of voxels that have the same spectral pattern. Similar 

results were demonstrated using the simulated MRS data that have been presented in Table 

1. The SSPC denoising with threshold of 1E-10 resulted in the best CRB values with 
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exception of CRBGlx for voxel 2, which was due to the reduced Glx peak height (Fig. 6b.v) 

in this region.

Mean and standard deviation (SD) of the SNR were calculated for two ROIs, one located 

outside of the tumor region (25 voxels) and one within tumor region (25 voxels). These 

results are presented in Table 4, which show that the SSPC denoising with a 1E-10 p-value 

threshold increased SNR by factors of 2.3, 2.3 and 1.1 compared to Gaussian apodization (5 

Hz), conventional PCA (with 119 PCs) and SSPC denoising (10E-5 threshold), respectively. 

For ROI 2 the SNR was calculated from the Cho area, since NAA was absent, and the SSPC 

denoising with 1E-10 p-value threshold resulted in a SNR increase of 2.3 times compared to 

the Gaussian apodization case.

Discussion

This study has presented a PCA based denoising method for MRSI data that incorporates PC 

selection based on a statistical comparison of spectral regions containing metabolite 

information and noise. The aim of this statistical examination was to examine the 

homogeneity of variances between the signal and noise regions derived from each PC. A 

threshold was then applied to the p-value of Levene's test to select PCs that contained 

significant metabolite information.

A primary finding of this study is that the SSPC denoising can significantly improve the 

SNR and metabolite quantification accuracy in simulated spectra, and reduce uncertainty in 

in vivo data, without significantly compromising metabolite information, provided that a 

sufficient number of PCs are retained. This method also performed better compared to the 

conventional PCA based method. Using both simulated and in vivo MRSI data it was shown 

that the SSPC denoising resulted in higher SNR and lower CRBs values compared to the 

conventional PCA denoising with the same number of PCs, and that the relative performance 

varied spatially in a manner that depended on the number of spectra with similar spectral 

patterns. The SSPC denoising with a p-value threshold of 1E-10 showed the most 

improvements for the SNR and CRBs values without altering the linewidth, although with 

some indication of a loss of information for small metabolite resonances (e.g. Fig. 6b.v). A 

p-value threshold of 1E-5 appears to offer a more conservative approach. The impact of PCA 

based denoising on the uncertainty of spectral fitting as indicated by CRB values is also 

greater for lower concentration metabolites (e.g. GlxArea) than the those with prominent 

resonances (e.g. CrArea), likely reflecting the improved performance of the spectral fitting 

algorithm used for this study with increasing SNR.

Results of the third in vivo study with a small brain lesion also indicated a good performance 

of the SSPC denoising in terms of SNR and fitting uncertainty; however, for a voxel located 

in the lesion the PCA denoising methods resulted in increased CRBGlx values with a 

threshold p-value of 1E-10. The reason for this decrease in performance is the small number 

of voxels with the spectral pattern characteristic of the lesion relative to the rest of the brain. 

This regional size dependency can be considered as one of the limitations of the PCA (or 

SVD) based denoising methods.
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Limitations of this study include that the effect of residual baseline signals from 

unsuppressed water or lipid were not considered, and that the effect of altered noise 

distributions on the spectral fitting algorithm was not specifically examined. If strong 

baseline signals are consistent and widespread they would be identified as signal-related and 

maintained in the result. However, commonly these signals are highly variable and although 

those signal-related PCs will be identified, the corresponding eigenvalues for most voxels 

will be small and there will be minimal impact on the denoising performance.

Conclusion

In summary, it was shown that the SSPC denoising improved SNR and quantification 

accuracy using three simulated MRSI datasets, and reduced quantification uncertainty in two 

in vivo datasets. In addition to providing good performance, this method is simple to 

implement and computationally efficient with the total computing time less than ∼60 s for 

spectra from a volumetric in vivo dataset.
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Fig. 1. 
MRS data was simulated by generating an abstract object consisting of three overlapping 

spherical volumes. Each volume contained a single peak line, shown on the right as Line 1, 

Line 2 and Line 3. The real part of the first 4 PCs with their corresponding normalized 

eigenvalues, obtained from PCA analysis of the simulated dataset b) before and c) after 

adding Gaussian noise.
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Fig. 2. 
Phase and frequency shifted MRS data was simulated by generating an abstract object 

consisting of three overlapping spherical volumes. The real part of the first 8 PCs with their 

corresponding normalized eigenvalues, obtained from PCA analysis of the simulated dataset 

b) before and c) after adding Gaussian noise.
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Fig. 3. 
Example spectra from both simulation studies; Spectra in columns a) and b) show results for 

two voxels selected from the regions indicated in the abstract object, c) and d) show results 

for two voxels selected from the regions indicated in the ellipsoidal object. The spectra in 

each row are as follow: (i) noise-free simulated data, (ii) simulated after addition of random 

noise, and (iii) denoised data using SSPC.
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Fig. 4. 
Images of denoising results for a mid-axial slice for a volumetric MRSI study of a normal 

subject. Results from the spectral fitting are shown in each row for different processing in 

each column for (a) acquired data with no spectral smoothing, (b) Gaussian apodization (2 

Hz), c) Gaussian apodization (5 Hz), d) PCA denoising using the first 224 PCs, e) SSPC 

denoising with threshold of 1E-5 (the algorithm found 224 PCs for this threshold), and f) 

PCA denoising using the first 65 PCs, g) SSPC denoising with threshold of 1E-10 (the 

algorithm found 65 PCs for this threshold)
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Fig. 5. 
Comparison of the SSPC denoising results against a high SNR reference dataset. (a) 

Regression plots for NAA area obtained from the noisy and denoised data against the NAA 

area from the reference; (b) Regression plots for Glx area obtained from the noisy and 

denoised data against the Glx area from the reference. The results for the noisy data and its 

linear regression are shown in orange and those for the denoised data are shown in blue.
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Fig. 6. 
Example spectra from the denoising of an in vivo MRSI study of a subject with brain tumor. 

In column a) are shown results for a voxel selected from a normal appearing white matter 

region (voxel 1) and in column b) are shown results for a voxel selected in the tumor region 

(voxel 2). The rows show results for the original data (i), Gaussian denoising (ii), PCA 

denoising using the first 119 PCs (iii), SSPC denoising with a threshold of 1E-5 (the 

algorithm found 119 PCs for this threshold) (iv), and SSPC denoising with a threshold of 

1E-10 (the algorithm found 56 PCs for this threshold) (v).
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Table 4

Mean and SD of SNR for two ROIs inside and outside of the tumor region. For ROI 2, SNR was calculated 

using Cho area instead of NAA.

ROI 1 ROI 2

Mean SD Mean SD

No Denoising 108.737 20.842 40.857 10.755

Gaussian Apodization 139.167 34.304 56.504 14.931

PCA (119) 138.678 36.816 59.219 16.177

SSPC (1E-5) 273.444 49.911 85.936 18.769

SSPC (1E-10) 314.964 50.154 131.365 22.163
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