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Abstract

A fundamental question in developmental neuroscience is how hundreds of diverse cell types are 

generated to form specialized brain regions. The ganglionic eminences (GEs) are embryonic brain 

structures located in the ventral telencephalon that produce many inhibitory GABA (γ-

Aminobutyric acid)-ergic cell types, including long-range projection neurons and local 

interneurons (INs), which disperse widely throughout the brain. While much has been discovered 

about the origin and wiring of these cells, a major question remains: how do neurons originating in 

the GEs become specified during development as one differentiated subtype versus another? This 

review will cover recent work that has advanced our knowledge of the mechanisms governing 

cortical interneuron subtype specification, particularly progenitors' spatial origin, birthdates, 

lineage, and mode of division.

Introduction

Beginning at the end of the 19th century, Orr and His proposed the Neuromeric model of 

brain development to explain how different brain regions are generated from the neural tube 

[1,2]. According to this model, the forebrain, midbrain, and hindbrain can be divided into a 

series of segmental compartments called prosomeres, mesomeres, and rhombomeres, 

respectively, from which different regions of the brain differentiate. Among the neuromeric 

divisions, rhombomeres have been the most extensively studied in vertebrates. Each 

rhombomere is a transverse section along the longitudinal axis of the neural tube with a 

bulge-like appearance, unique pattern of gene expression, and strict boundaries that prevent 

cells from migrating between adjacent compartments [3]. These demarcations have 

functional consequences. Precise combinatorial expression of transcription factors confers 

neuronal identity so that each rhombomere contributes in an exquisitely stereotyped way to 

the formation of individual nerves. For instance, in the chick embryo rhombomeres 2 and 3 

contribute to the branchiomotor nucleus of the trigeminal nerve (CN V), rhombomeres 4 and 

5 contribute to the facial nerve (CN VII), and rhombomeres 6 and 7 contribute to the 

glossopharyngeal nerve (CN IX) [4,5].
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In the forebrain, neuronal diversity within the ventral telencephalon is associated with 

specific transient germinal zones, termed the medial, caudal and lateral ganglionic 

eminences (MGE, CGE, and LGE, respectively). While not forming longitudinal divisions in 

the neuraxis, the GEs otherwise satisfy many criteria of prosomeres: they are bulges in the 

embryonic brain, have spatial patterns of gene expression distinct from one another, and 

have been shown to contribute to specific cell types in the brain (Figure 1B). For example, 

the MGE gives rise to PV-expressing cortical interneurons, SST-expressing cortical 

interneurons, and the projection neurons of the globus pallidus (GP); the CGE gives rise to 

VIP-expressing cortical interneurons and Reelin-expressing cortical interneurons; and the 

LGE gives rise to olfactory bulb interneurons and the medium spiny projection neurons of 

the striatum. However, it has proven much harder to understand the logic governing cell fate 

decisions in the GEs compared to the rhombomeres of the hindbrain. While the projection 

neurons derived from the GEs populate subpallial structures including the striatum, globus 

pallidus and medial amygdala, cortical interneurons travel long and complex tangential 

migratory routes to their final settling positions throughout the forebrain [6] (Figure 1A). 

This has made fate-mapping and consistent classification of interneuron subtypes 

challenging. Complicating matters is the fact that most neurochemical markers that define 

interneuron subgroups are not expressed at early time points, posing a formidable barrier for 

understanding mechanisms of fate determination. Moreover, the embryonic preoptic area 

gives rise to a small yet diverse group of cortical interneurons [7] and the anatomical 

boundaries of each GE are not clearly demarcated (e.g. the caudal portions of both the MGE 

and LGE cannot easily be differentiated from the rostral CGE), calling into question the 

origin of some GABAergic cell types. Despite these challenges, recent work has advanced 

our knowledge of the mechanisms governing cortical interneuron subtype specification, 

which will be the main focus of this review.

Spatial domains

Nkx2.1 is a transcription factor expressed in the MGE that is critical for specifying 

interneurons towards an MGE rather than a CGE or LGE fate. Loss of function studies 

revealed that in the absence of Nkx2.1, MGE-derived interneurons undergo a fate switch to 

CGE and LGE subtypes [8,9]. Loss of Shh, which activates Nkx2.1, led to a similar result 

[10]. Thus, Nkx2.1 is an example of how a master regulator gene that is expressed in an 

anatomically defined region of the ventral telencephalon can be instrumental in cell fate 

decisions (e.g. MGE-type vs. CGE-type INs). However, the fact that multiple distinct cell 

types arise from the MGE (Figure 1B) suggests that smaller subdivisions of the GEs might 

also be involved in creating more refined subtypes of interneurons (such as PV or SST 

subtypes of MGE-type INs), similar to the spinal cord [11,12].

Indeed, there is evidence that spatially segregated progenitor domains exist within the MGE, 

CGE, and LGE that give rise to different neuronal subtypes [13–18]. When cells from the 

dorsal MGE (dMGE) of GFP+ donor animals were transplanted into the MGE of wild type 

host embryos, transplanted cells consistently produced a majority of SST+ cortical 

interneurons and only a minority of PV+ cortical interneurons. However, when GFP+ cells 

from the ventral MGE (vMGE) were transplanted into wild type hosts, a majority of GFP+ 

cells in the cortex were PV+ interneurons and only a minority were SST+ interneurons [13]. 
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Thus, there was a spatial bias for the production of specific interneuron subtypes within 

subregions of the MGE. The same results were observed when dMGE and vMGE cells were 

transplanted into the postnatal cortex, excluding the possibility that the host MGE influenced 

transplanted cells’ differentiation [19–21]. In addition, there is evidence that the laminar fate 

of LGE/CGE-derived neocortical interneurons is also dependent on their progenitor domains 

[14]. A combination of extrinsic secreted factors acting through the induction of 

transcription factors creates these spatial domains within each eminence. For instance, while 

Shh is enriched in the dMGE, Wnt expression is enriched in the caudal portion of the MGE 

(unpublished data, G. Fishell). Similarly, transcription factors including Lhx8, Gbx2 and Otx 

all contribute to regional patterning within the MGE along the rostrocaudal and dorsoventral 

axis, and to varying degrees have been implicated in the specification of particular MGE-

derived subtypes [22–24].

Temporal dynamics

Temporal dynamics within each GE also have a profound impact on the type of interneuron 

produced. For example, in the MGE SST+ interneurons have their peak of neurogenesis 

earlier than PV+ interneurons (Figure 2C). In particular Chandelier cells, which are a type of 

PV+ interneuron born late in the ventral germinal zone (VGZ), provide the best example of 

an interneuron population derived with both temporal and spatial precision [20]: When 

Nkx2.1+ cells were dissected late during embryogenesis (E16) from the VGZ and 

transplanted into the somatosensory cortex of P3 hosts, they reliably took on a Chandelier 

cell phenotype despite being placed in an ectopic heterochronic environment [25]. This 

implies that this population is committed to a Chandelier cell fate by an intrinsic genetic 

program late in embryogenesis. Birthdate also appears to be important for CGE-derived 

cortical interneuron subtype specification, as there is a shift in the subtypes produced across 

development [26,27].

Therefore there is a clear connection between birthdate and the type of interneuron 

generated. These temporal dynamics may be achieved by dedicated GE progenitors 

proliferating during restricted time windows to generate certain interneuron subtypes. 

Alternatively, GE progenitors might undergo progressive intrinsic changes in their 

competence to sequentially produce cell types in a defined order (Figure 2A). However, little 

evidence to date supports the idea that mitotic progenitors are fate restricted. Rather, there 

seems to be evidence for an inherent plasticity of progenitors, as demonstrated by the fate 

switch from MGE to CGE character upon removal of Nkx2.1. Furthermore, because the 

conditional removal of Nkx2.1 occurred at a time concurrent with terminal mitotic divisions 

[8], the correlation between subtype specification and birthdate may reflect fate commitment 

occurring at the end of a cell’s proliferative cycle (discussed further in Mode of Division 
section).

Taken together, it appears that while spatial domains and temporal dynamics strongly predict 

interneuron identity, their contribution may be more stochastic than absolute. Although the 

vMGE is biased for producing PV+ interneurons and the dMGE for SST+ interneurons, both 

PV+ and SST+ interneurons appear to originate from progenitors located throughout the 

entire MGE. And while the peak of neurogenesis for SST+ interneurons occurs earlier in the 

Bandler et al. Page 3

Curr Opin Neurobiol. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



MGE than PV+ interneurons, SST+ interneurons are still being produced late at E15.5. 

Therefore, determining a cell’s fate is not as simple as determining its spatiotemporal origin. 

Rather, there is a stochastic mechanism underlying subtype specification that increases the 

likelihood that an interneuron will acquire a certain fate, but does not guarantee that 

outcome for every cell at a given time and location.

Lineage

How do the spatial domains and temporal dynamics within each GE refine the subtypes of 

interneurons generated? One hypothesis is that within each GE there are spatially segregated 

progenitor lineages with restricted fate potential dedicated to producing particular neuronal 

subtypes at a given time. Alternatively, a single lineage may give rise to multiple subtypes 

over time (Figure 2A). To address this question, four recent studies [28–31] sought to 

explore whether there are different progenitors dedicated to making either PV+ or SST+ 

interneurons, or if both PV+ and SST+ interneurons could be derived from the same 

progenitor. Using mouse genetics and retrovirus-mediated gene transfer to selectively label 

progenitors in the MGE, all four studies found mixed clones that contained both PV+ and 

SST+ interneurons, demonstrating that many progenitors were not restricted to making 

exclusively PV+ or SST+ interneurons (Figure 2B).

Two of these studies took advantage of a lineage fate mapping method devised by the Cepko 

laboratory, whereby dividing progenitor cells and their progeny can be tagged by a set of 

DNA barcodes to determine lineal relationships across individual cells in the adult. Both 

studies that utilized this unambiguous barcoding strategy to assign lineal relationships found 

that interneurons derived from a single progenitor (i.e. clonally related cells that share a 

lineage) within the forebrain can widely disperse across both functional and anatomical 

structures [29,30], in contrast to clonally related pyramidal cells that form functional radial 

units in the cortex (i.e. preferentially forming synapses with one another, as well as sharing 

functional relationships and physiological properties compared to nearby non-clonal cells 

[32–35]). This suggests that lineage plays no obvious role in the positioning of interneuron 

clones and does not prescribe the fate of ventral telencephalic progenitors in the same 

manner as in the dorsal telencephalon, although this is a topic of ongoing study and debate 

[36–38]. As such, more work is needed to determine if clonally related interneurons 

maintain any preferential spatial or functional relationship in adulthood. While it is possible 

that lineage plays no role in shaping interneuron fate, one could imagine that, even if they 

reside in different structures and domains, perhaps a subset of clonally related GABAergic 

populations share common properties. In such a model, specific lineages may give rise to 

progeny that share a common program that is contextually adapted after migration to 

different brain structures is complete. This would allow different regions of the 

telencephalon to acquire interneurons with particular properties, while also permitting them 

to fine tune their functional program in accordance with the requirements of specific brain 

structures [30,39].
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Mode of division

Decades of work studying the development of excitatory pyramidal cells in the dorsal 

telencephalon has shown that different modes of cell division and cell cycle dynamics 

influence the ultimate number, subtype identity, and laminar distribution of postmitotic 

neurons [40–44]. Recent findings have begun to lend support to the importance of cell 

division modes within the ventral telencephalon [45,46], and more specifically, has provided 

insight into how PV+ and SST+ interneurons may originate from a single progenitor.

Similar to the dorsal telencephalon [47], each of the GEs contains three primary regions: the 

Ventricular Zone (VZ), Subventricular Zone (SVZ), and Mantle Zone (MZ) [45]. The VZ is 

the most apical portion of the GE that lines the ventricle and contains neural progenitors 

called Apical Progenitors (APs). APs have bipolar morphology with basal and apical 

processes visible during M-phase, undergo interkinetic nuclear migration, and divide at the 

VZ surface both symmetrically to expand the AP population, as well as asymmetrically, to 

produce another AP and a neurogenic Basal Progenitor (BP) [45]. The SVZ is located 

between the VZ and MZ, and contains BPs, which can further divide symmetrically to 

produce two neuronal precursor cells, although proliferative divisions of BPs have been 

detected in the SVZ of the LGE [45]. The MZ largely contains migratory postmitotic cells 

that are thought to be committed to particular cell fates (e.g. to PV- or SST-expressing 

interneurons) [31,45,48] (Figure 2B).

In the GEs, the cell cycle regulator cyclin-D2 is enriched in BPs within the SVZ. 

Interestingly, cyclin-D2-null mice exhibit a 30–40% reduction of PV+ interneuron numbers 

in the neocortex with no change in SST+ interneuron numbers [49,50]. In vivo fate mapping 

revealed that cortical interneurons originating from MGE-derived APs were biased toward 

generating SST+ cortical interneurons. When MGE progenitors were genetically driven 

toward dividing as APs or BPs, their fates were biased toward SST+ and PV+ interneurons, 

respectively [51], indicating that interneurons’ fate is in part malleable by the mode of 

division. Taken together, this data suggests that early in development asymmetric divisions 

in the VZ of the MGE preferentially generate SST+ interneurons, whereas PV+ interneurons 

are predominantly produced later by BPs in the SVZ of the MGE. Therefore, it is possible 

that in the MGE a single progenitor first divides as an SST-producing AP and then 

transitions to a PV-producing BP, which neatly explains both, how mixed clones can contain 

SST+ and PV+ interneurons, as well as why SST+ interneurons tend to be born earlier in the 

MGE than PV+ interneurons (Figure 2B).

As in the cortex, new types of progenitors are still being discovered in the proliferative zones 

of the GEs. A new type of progenitor called ‘subapical progenitor,’ which undergo 

nonsurface mitoses within the VZ, was recently found in the MGE and LGE [45]. Extended 

live-cell imaging revealed LGE progenitors frequently progressed through a stereotyped 

sequence, advancing from AP to subapical progenitor to BP. Subapical progenitors 

predominantly contributed to larger clones, although clones of all sizes were distributed 

equally along the D-V axis of the LGE. In contrast to the cerebral cortex [52], in the LGE 

cell cycle length became progressively shorter with subsequent divisions and a majority of 

divisions were basal as opposed to apical [45]. It is possible that additional modes of 
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division exist within the VZ and SVZ of the GEs, and the mechanisms regulating how these 

modes of division influence cell fate are not fully understood. Indeed, given the greater 

diversity of interneurons versus pyramidal cells, GE progenitor diversity may ultimately 

prove to have an important role in generating the incredible breadth of interneuron subtypes.

Conclusion

Neurogenic proliferative zones become increasingly complex in higher organisms, reflecting 

a need for increased neuronal diversity and cell numbers [53,54]. Many questions remain 

that require a deeper understanding about transcriptional profiles of individual GE 

progenitor cells: Are temporal changes in gene expression global or only present within a 

particular subset of progenitors within the VZ or SVZ? Are different types of progenitors 

dedicated to producing specific neuron subtypes? How does gene expression change over 

development and across evolution, and how do these changes affect progenitor 

competencies? How many further genes are critical for directing neurons towards MGE vs. 

CGE vs. LGE fates?

It is clear that numerous mechanisms are simultaneously regulating cell fate decisions in the 

GEs. For example, evidence is emerging that epigenetic regulation adds an additional 

dimension to the spatial-temporal determinants of interneuron fate determination [55]. When 

neural stem cells were differentiated into immature GABAergic interneurons in vitro, 

methylation changes occured at many promoters, restricting cell fate potential [56]. In vivo, 

histone deacetylase was shown to inhibit tyrosine hydroxylase transcription to suppress 

dopaminergic neurotransmitter expression in migrating olfactory bulb interneurons [57], and 

the chromatin organizer Satb1 is important for SST+ interneuron specification in an activity 

dependent manner [58,59]. Therefore, while differences in gene expression may not be 

detected between progenitors, this does not mean that their chromatin landscapes are 

identical. For instance, loss of Satb1 results in distinct deficits in SST+ versus PV+ 

interneurons [58], and Prox1 removal differentially affects distinct CGE-derived interneuron 

subtypes [60]. Furthermore, although Nkx2.1 is found throughout the entire MGE from very 

early in development, a recent epigenetic study found that Nkx2.1 differentially regulates 

gene expression in progenitors. While Nkx2.1 binds to distal regulatory elements to promote 

transcriptional repression in VZ progenitors, it promotes a permissive chromatin state and 

transcriptional activation in SVZ and MZ progenitors [61]. Thus, it seems inevitable that 

further investigation will provide additional examples of transcription factors that have 

different affects depending on what portion of the genome is accessible in a given cell. 

Epigenetic changes in interneurons might also contribute to psychiatric diseases, as 

epigenetic dysregulation at GABAergic promotors in PV cells is associated with 

schizophrenia [62]. More work needs to be done to understand the molecular mechanisms 

regulating GE development, particularly: how cell cycle dynamics and mode of division 

influence cell fate; what contribution, if any, does lineage have on subtype specification; 

what are the epigenetic mechanisms regulating cell fate decisions; and how does early 

network activity modify intrinsic genetic programs in various interneuron subtypes? 

Elucidating these processes are crucial for fundamentally understanding brain development, 

and for ultimately treating the numerous disorders associated with interneuron dysfunction 

[63–65].
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Highlights

• The GEs produce many types of GABAergic projection neurons and a 

majority of GABAergic interneurons

• Spatial origin, birthdate, and mode of division influence interneuron fate

• Subdomains exist within each GE, producing different neuronal subtypes over 

time

• PV and SST-expressing interneurons can originate from the same progenitor

• Different modes of divisions are biased for producing different interneuron 

subtypes
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Figure 1. Each ganglionic eminence produces GABAergic interneurons and projection neurons
A) Image depicting the boundary between the dorsal telencephalon and the ventral 

telencephalon. The dorsal telencephalon produces excitatory pyramidal cells that migrate 

short distances radially into the overlying cortex. The ventral telencephalon produces 

interneurons that travel long and complex migratory routes to various regions throughout the 

brain.
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B) Diagram depicting the cell types that each ganglionic eminence (GE) produces and the 

brain structures they occupy, which includes GABAergic interneurons (red), GABAergic 

projection neurons (green), and Cholinergic interneurons (dark blue).
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Figure 2. SST+ interneurons are born early in the VZ and PV+ interneurons are born late in the 
SVZ
A) Two models of progenitor lineages in the GEs. Lineages might be restricted to producing 

particular interneuron subtypes (Model 1), or progenitors’ competencies might change over 

time to allow numerous lineages to be born in a precise sequence (Model 2).

B) Model depicting how clonally related SST+ and PV+ interneurons might be born in the 

MGE. First an Apical Progenitor (AP) in the VZ gives rise to an SST+ interneuron 

precursor, and then the AP transitions to a Basal Progenitor (BP) in the SVZ where it 

produces two PV+ interneuron precursors. Clonality is assessed by infecting progenitors 
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with a unique DNA barcode (e.g. tgactcagagagtctctcactgac) that is passed on to that 

progenitor’s progeny.

C) Graph depicting the temporal order and number of select interneuron subtypes born in the 

MGE. SST+ interneurons (pink) are born early in the MGE, followed by PV+ interneurons 

(light blue), which includes Chandelier cells (dark blue).

Bandler et al. Page 16

Curr Opin Neurobiol. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Spatial domains
	Temporal dynamics
	Lineage
	Mode of division
	Conclusion
	References
	Figure 1
	Figure 2

