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Abstract: Azurin secreted by Pseudomonas aeruginosa is an anticancer bacteriocin, which preferentially

enters human cancer cells and induces apoptosis or growth inhibition. It turns out that azurin is a

multi-target anticancer agent interfering in the p53 signaling pathway and the non-receptor tyrosine
kinases signaling pathway. This suggests that azurin exerts its anticancer activity by interacting with

multiple targets and interfering in multiple steps in disease progression. Therefore, azurin could overcome

resistance to therapy. Besides azurin, putative bacteriocins that possess functional properties similar to
those of azurin have been identified in more bacteria species. A systematic investigation on the

anticancer mechanisms of azurin and the azurin-like bacteriocins will provide more and better options in

cancer therapy. In this review, we summarize how azurin and the derived peptides hijack key cellular
regulators or cell surface receptors to remodel the cellular signaling networks. In particular, we highlight

the necessity of determining the structure of azurin/p53 complex and investigating the influence of

post-translational modifications on interactions between azurin and p53. Therapeutic applications of
azurin and derived peptides are also discussed.
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Introduction

Azurin is a copper-containing redox protein secreted

by Pseudomonas aeruginosa. It is involved in electron

transfer during denitrification in P. aeruginosa

by interacting with cytochrome c551 and nitrite reduc-

tase.1 Azurin has attracted great attention in the past

decade for its preferential entry into and cytotoxicity

towards a variety of cancer cells.2–6 Early evidences

have shown that azurin is secreted into the growth

medium of P. aeruginosa and leads to apoptotic death

of peritoneal macrophages or mast cells.7 Later,

azurin demonstrates significant cytotoxicity towards

human melanoma cells and human breast cancer
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cells.8–10 In addition, injection of azurin into nude

mice xenografted with human cancer cells leads to sig-

nificant regression of the tumor and increase of sur-

vival rate.8,9,11 Though azurin is deficient in entering

glioblastoma cells, when the N-terminal H.8 moiety of

the azurin-like protein from Neisseria meningitidis is

fused with azurin, the fusion proteins have high cyto-

toxicity for glioblastoma cells.12 Besides the full-

length protein, peptides derived from azurin also

retain the anticancer activity. A C-terminal segment

of azurin (88–113) has been shown to induce growth

inhibition of breast cancer MCF-7 cells and prostate

cancer DU145 cells.13 Another peptide, p28 (amino

acids 50–77 of azurin), exhibits proapoptotic activity

against a number of solid tumor cell lines.14

It is now emerging that azurin induces apopto-

sis or growth inhibition by interfering in the p53 sig-

naling network and the non-receptor tyrosine

kinases (NRTKs) signaling network. This suggests

that azurin exerts its anticancer activity by interact-

ing with multiple targets and interfering in multiple

steps in disease progression. Although the p53-

mediated pathway plays a central role in azurin’s

anticancer activity, the interactions between azurin

and p53 are still poorly understood. In this review,

we summarize how azurin and the derived peptides

hijack key cellular regulators or cell surface recep-

tors to remodel the cellular signaling networks. In

particular, we highlight the necessity of determining

the structure of azurin/p53 complex and investigat-

ing the influence of post-translational modifications

on interactions between azurin and p53. Therapeutic

applications of azurin and derived peptides are also

discussed.

Selective Entry into Human Cancer Cells

Azurin preferentially enters human cancer cells and

exerts cytostatic and cytotoxic effects. Truncation

experiments identified a 28-amino-acid fragment

(amino acids 50–77, p28) that is responsible for the

entry of azurin into human cancer cells.15 When

fused to p28, cargo proteins such as GST-green fluo-

rescent protein fusion protein were internalized in

J774 cells and UISO-Mel-2 cells at 378C but not at

48C, suggesting that p28 mediated internalization of

cargo proteins is an energy-dependent process.15

Competition experiments as well as studies with

inhibitors suggested that azurin may enter cancer

cells via a receptor-mediated endocytic process.15

Since azurin and p28 exhibit preferential internali-

zation in cancer cells than the corresponding normal

cells,14,15 it is likely that the levels of such receptors

are higher on the surface of cancer cells than on the

surface of normal cells. Recently, Yamada et al.

found that p28 preferentially entered human breast

cancer cell lines mainly through a caveolin-mediated

pathway as agents disrupting caveosome formation

and caveolae-mediated endocytosis significantly

inhibited the penetration of p28 into MCF-7 cells.16

Understanding the cancer cell specificity of p28 will

be beneficial for further development of targeted

drugs.

Mechanisms of Anticancer Activity

Azurin is a versatile protein and interferes in

several independent signaling pathways associated

with cancer progression. So far, several different

mechanisms have been proposed to account for azur-

in’s anticancer activity (Fig. 1): (i) azurin induces

cancer cell apoptosis or growth inhibition by forming

complexes with the tumor suppressor protein p53;

(ii) azurin also inhibits cancer cell growth by inter-

fering in the receptor tyrosine kinase EphB2-

mediated signaling process; (iii) furthermore, azurin

inhibits tumor growth by preventing angiogenesis

through reducing VEGFR-2 tyrosine kinase activity;

(vi) besides, azurin interferes with P-cadherin

protein expression and inhibits the growth of breast

cancer cells.

The tumor suppressor protein p53 mediated

apoptosis or growth inhibition pathway is the most

extensively studied mechanism accounting for the

anticancer activity of azurin or p28. The p53 protein

plays a central role in cancer suppression. It exerts its

tumor suppressing activity through transcriptional

regulation of downstream target genes. Under normal

circumstance, the p53 protein has a very short

half-life and the basal concentration is regulated via

Figure 1. Mechanisms of azurin to induce apoptosis and

growth inhibition of human cancer cells. Azurin enters cancer

cells and forms complexes with p53, inhibiting ubiquitin-

mediated degradation of p53 and increasing its level. The

stabilized p53 travels back into the nucleus and transcription-

ally induces proapoptotic genes such as Bax and Noxa or

cell cycle inhibitors such as p21 and p27. Azurin also binds

to the cell surface receptors, including VEGFR-2, integrin b1,

P-cadherin, and EphB2, interfering in their signal transduction

pathways that converge to NRTKs.
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ubiquitin-mediated pathways. Azurin has been shown

to form complexes with p53 and inhibit the binding of

E3 ubiquitin ligases to p53, thus increasing p53 levels

through decreased ubiquitination and proteasomal

degradation.16 Mdm2 is a key E3 ligase negatively

regulating p53. Although azurin has been shown to

interact with the N-terminal domain (NTD) of p53

which also interacts with Mdm2, binding of azurin to

p53 did not block binding of Mdm2 to p5317 because

the binding affinity of azurin with p53 transactivation

domain (TAD) (Kd � 5 lM)18 is about 25 folds weaker

than that of Mdm2 with p53 TAD (Kd � 0.2 lM).19

Recently, Yamada et al. identified potential binding

sites of p28 on the p53 DNA-binding domain (DBD).20

Interestingly, these potential binding sites for p28

overlap with the binding sites for E3 ligase COP1

(constitutively photomorphogenic 1). In addition to

Mdm2, COP1 also negatively regulates p53 and COP1

is overexpressed in breast cancer, ovarian cancer,

hepatocellular cancer, and gastric cancer. Yamada

et al. found that p28 inhibited binding of COP1 to p53,

leading to an increase in the p53 level.20,21 Azurin

may interact with p53 DBD in a similar way and sta-

bilize p53 by interfering in the COP1/p53 interaction.

The p53/azurin complexes then travel back to

the nucleus where p53 transcriptionally induces

proapoptotic genes such as Bax and Noxa which

interacts with mitochondria, triggering the release

of mitochondrial cytochrome c into the cytosol.8,9,22

This process activates the caspase cascade(s) and

initiates the apoptotic process. In addition, p53 will

also activate the expression of cell cycle inhibitors

such as p21 and p27 which inhibit the activity of

cyclin-dependent kinases, causing cell-cycle inhibition

at the G1 to S phase or G2 to M phase.16,23

Besides via the p53 mediated mechanisms,

recent studies revealed that azurin also inhibits can-

cer cell growth through interactions with various

transmembrane receptors whose signal transduction

pathways converge to NRTKs, such as Src, FAK,

and PI3K. NRTKs play important roles in a number

of fundamental biological processes and the activity

of NRTKs is often up-regulated in cancer cells.24,25

Therefore, azurin may interfere in the signaling

pathways involving NRTKs and prevent the process

of tumorigenesis.

Ephrins and their receptors, the Eph receptor

tyrosine kinases, have been shown to be up-regulated

in many tumors.26–28 Upon binding, the Eph/ephrin

molecules form a heterotetramers, activating the

tyrosine kinase domain. Azurin exhibits remarkable

topological similarity to ephrins and binds to EphB2

receptor tyrosine kinases with high affinity.13 A

C-terminal segment (amino acids 88–113) of azurin is

found responsible for this tight binding. The azurin/

EphB2 interaction interferes in EphB2 phosphoryla-

tion, resulting in cancer growth inhibition.13 In addi-

tion, using human umbilical vein endothelial cells as

a cancer model, p28 has been shown to inhibit angio-

genesis and tumor growth by reducing VEGFR-2

tyrosine kinase activity.29 Inhibition of VEGFR-2

kinase activity reduces the phosphorylation of the

VEGFR-2 downstream targets FAK and Akt. As a

result, the distribution of cell-motility and migration

associated proteins are altered.29 Furthermore,

azurin was shown to reduce P-cadherin protein

expression and inhibit the growth of highly invasive

P-cadherin overexpressing breast cancer cells by abro-

gating P-cadherin mediated signaling processes.10,30

Most recently, azurin was demonstrated to control the

levels of integrin b1 and its membrane localization in

non-small cell lung cancer A549 cells.31,32 Treatment

with azurin decreases integrin b1 protein expression

and attenuates the phosphorylation levels of Src, Akt,

and PI3K. Atomic force microscopy characterization

indicated that membrane properties of A549 lung can-

cer cells were altered upon azurin treatment, enhanc-

ing the sensitivity of lung cancer cells to inhibitors

specifically targeting the epidermal growth factor

receptor.32

Azurin is a promiscuous protein that is able to

interact with several unrelated targets. It is not

surprising that azurin utilizes different segments to

interfere in different cellular signaling pathways. So

far, two segments have been identified responsible

for interactions between azurin and the signaling

targets. The central segment of azurin, p28, is

involved in p53 binding.33 The p28 segment has also

been shown co-localizing with caveolin-1 and

VEGFR-2;29 however, direct physical interactions

between p28 and caveolin-1 or VEGFR-2 have not

been confirmed. Besides the p28 segment, a C-

terminal segment of azurin is responsible for the

tight binding between azurin and EphB2.13 The

same segment has also been found to bind to den-

dritic cells specific intercellular adhesion molecule

3-grabbing nonintegrin with high affinity, enabling

azurin to interfere in the binding of HIV-1 with

dendritic cells.34

Azurin/p53 Interaction: A Key to Understand

Azurin’s Anticancer Activity
Among the above discussed mechanisms, the p53

dependent mechanism is the most important and the

most extensively studied one. However, our under-

standing on the molecular details of these interactions

is far from complete (Fig. 2). Glycerol gradient centri-

fugation has shown that azurin forms complexes with

full-length p53 (p53 FL), where p53 is a tetramer.22,23

Therefore, one p53 tetramer is able to bind four azurin

molecules. This stoichiometry has been confirmed by

isothermal calorimetry.35 There are evidences show-

ing that azurin is able to interact with NTD, DBD,

and the C-terminal domain (CTD) of p53.18,20,36,37

Therefore, it is possible that azurin interacts with

multiple p53 monomers simultaneously. Atomic force
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microscope and surface plasmon resonance were

applied to determine the interactions between azurin

and p53 FL monomer. The estimated dissociation

constant (Kd) is about 1–6 lM,17,38 consistent with the

isothermal calorimetry determined Kd values for p53

tetramer and azurin,35 suggesting that one azurin

molecule is mainly interact with one monomer within

the p53 tetramer.

The DBD domain of p53 is the main site for azurin

or p28 to interact with p53 as the dissociation constant

for interactions between p28 and p53 DBD is rather

similar to that for interactions between p28 and p53

FL.33 Computer simulations suggested that azurin and

p28 bound to the same region of p53 DBD, locating

around the L1 loop and the S7–S8 loop.20,36 This poten-

tial binding site has been validated experimentally and

T140, P142, Q144, W146, R282, and L289 of the p53

DBD are key residues for p28 binding.20 Interactions

between azurin and p53 are mainly hydrophobic.39

Thus, mutating hydrophobic residues in the hydropho-

bic patches of azurin or p53 DBD abolishes interactions

between azurin and p53 DBD.21,40,41

The p53 NTD is of particular interest as this

region interacts with Mdm2, a key negative regulator

of p53. Tryptophan fluorescence quenching experi-

ment suggested that there were interactions between

azurin and p53 NTD, which induced �10% increase in

p53’s secondary structure content.35 The dissociation

constant for azurin/p53 NTD interactions is estimated

in the range of 5–10 lM.18 Docking and molecular

dynamics simulations suggested that azurin bound to

the two helical regions of p53 NTD, which are also

binding regions for Mdm2.42 Nevertheless, GST pull-

down experiments showed that interactions between

azurin and p53 NTD were very weak37 and azurin

was not able to block binding of Mdm2 to p53.17

Therefore, the interactions between azurin and p53

NTD and their roles in reactivating p53 are still not

determined.

Interactions between p53 CTD and azurin are

the least studied and remain controversial. GST

pull-down experiments have shown that interactions

between azurin and p53 CTD are very weak.43

On the contrary, nucleic acids mediated strong inter-

actions between azurin and p53 CTD were observed

in a recent study.37 Glycerol gradient centrifugation

has suggested that WT azurin forms complexes with

p53 FL tetramer, whereas M44K/M64E azurin

mutant interacts with p53 FL and inhibits p53

oligomer formation.23 Therefore, it is possible that

M44K/M64E azurin mutant interacts with the

tetramerization (TET) region of p53 within the CTD.

The p53 protein is a scaffold molecule and

exerts its function through intricate interactions

with numerous targets.44,45 More than 1000 binary

interactions involving more than 400 proteins are

found in the IntAct molecular interaction database

for p53.46 Many of these interactions are fine-tuned

by post-translational modifications, for example,

phosphorylation of Thr18 in p53 TAD reduces the

affinity of Mdm2 with p53 TAD, while phosphoryla-

tion of Ser15, Ser20, Ser33, Ser37, Ser46, Thr18 or

Thr55 increases the binding affinity of p53 TAD

with various transcription factors. Therefore, it will

be important to investigate the influence of post-

translational modifications on interactions between

azurin and p53 in future studies. Although interac-

tions between azurin (p28) and p53 have been exten-

sively characterized, information on the complex

structures is still very limited and no structure of

azurin/p53 or p28/p53 complex has been determined

so far. We expect that the binding interface of

azurin/p53 or p28/p53 complex will overlap with

known p53 interactions (Fig. 3). Determination of

structures for azurin/p53 and p28/p53 complexes

will be valuable for further understanding the func-

tion of azurin and p28.

Azurin Derived Cancer Therapy

Live attenuated bacteria as vectors

to deliver azurin
Azurin has been widely tested as a potential anti-

cancer agent by specifically inducing azurin expres-

sion within the tumor regions to increase its toxicity.

Live bacteria as potential cancer treatments and the

Figure 2. Interactions between azurin and p53. p53 FL consists of a TAD, a proline-rich region, a DBD, a TET domain, and an

extreme C terminus. Interactions between specific p53 domain and azurin are shown by the black lines, where the binding affin-

ities obtained and the experimental techniques used are indicated.
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use of attenuated bacteria as vectors to deliver cyto-

toxic genes are promising. Previous studies have

shown that some bacteria specifically and preferen-

tially target solid tumors and can proliferate inside

cancer cells.47 Recently, combination of the azurin

anticancer activity and bacterial vector was demon-

strated in two studies. Zhang et al. employed the

Escherichia coli Nissle 1917 to specifically target

tumors and inhibit mouse B16 melanoma and 4T1

breast tumors through continuous expression of

azurin.48 They found that the growth of B16

melanoma and orthotopic 4T1 breast tumor was

remarkably restrained and pulmonary metastasis

was prevented in immunocompetent mice.48 In the

other study, Mehta et al. designed an avirulent strain

of Salmonella typhimurium that induced apoptosis

via simultaneous expression of p53 and azurin.49

Expression of these two proteins was constrained

within the tumor region by a hypoxic promoter pflE.

In an xenograft model of human glioblastoma in rats,

they found that bacterial carrier therapy significantly

increased the survival rate.49

p28 as an anticancer agent

The antitumor efficacy of p28 has been assessed on

human breast cancer, prostate cancer, and melanoma

cells.14,16,21,50 Recently, two phase I trials, one in

adults and the other one in children have been carried

out to investigate the safety, tolerability, pharmacoki-

netics, and activity of p28 in patients with solid

tumors. In the first phase I trial, 15 adult patients

with metastatic solid tumors enrolled. Dose-limiting

toxicities, significant adverse events or immune

responses to the peptide were not observed. Stable dis-

ease, partial response, and complete response were

achieved after therapy.51 In the other phase I trial for

pediatric patients, 18 patients aged 3–21 years with

recurrent or progressive central nervous system

tumors enrolled. This phase I study demonstrated

that although p28 may be not effective against pediat-

ric central nevous system tumors as a single cytostatic

agent, it is safe and well-tolerated in children.52

p28 as cancer-targeted vector for drug delivery

The p28 segment is responsible for the preferential

entry of azurin into cancer cells and promote uptake

of heterologous proteins.15 Based on this, it is possi-

ble to design more complicated p28-based targeted

drug delivery systems. p28 can be conjugated to a

cargo (e.g., anticancer drug) by a linker which can

be cleaved through enzymatic hydrolysis to release

p28 and the cargo. p28 can also form noncovalent

Figure 3. Illustrative structures of p53 bound to different partners. The first row: the p53 TAD binds to the Taz2 domain of

p300 (2K8F), the PH domain of TFIIH subunit p62 (2RUK), MDM2 (1YCR), and the nuclear coactivator-binding domain of CBP

(2L14). The second row: the p53 DBD binds to the brca1 CTD of 53BP1 (1KZY), DNA (1TUP), Bcl-xL (2MEJ), and oncoprotein

SV40 large T-antigen (2H1L). The third row: the p53 CT binds to the bromodomain of CBP (1JSP), the tandem Tudor domain of

53BP1 (2MWO), and 14-3-3r (3LW1). The p53 fragments are shown in orange and the interacting partners are shown in gray.
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complexes with the cargos via interactions with lipo-

somes or nanoparticles. These p28-based targeted

drug delivery systems will retain p28’s anticancer

activity and endow the cargo cancer-targeted

specificity.

Azurin as anticancer agent enhancer

Azurin not only induces cancer cell death or growth

inhibition by itself but also enhances the sensitivity

of cancer cells to other anticancer drugs. Cho et al.53

found that treatment of oral squamous carcinoma

cell line YD-9 cells and human osteosarcoma cell

line MG-63 cells with 5-fluorouracil (5-FU) alone

only resulted in approximately 30% growth inhibi-

tion at 1 mM. In contrast, when 5-FU was used in

combination with azurin, a much lower concentra-

tion of 5-FU (i.e., 10 lM) was able to induce 80–90%

of cells growth inhibition.53 Recently, azurin was

found to enhance the sensitivity of lung cancer cells

to gefitinib or erlotinib by reducing integrin b1 levels

and its membrane localization.32 In a recent study,

Yamada et al. found that p28 enhanced the cytotoxic

activity of DNA-damaging drugs or antimitotic drugs

in a variety of cancer cells through the p53/p21/

Cdk2 pathway.54 The ability of azurin to bind to

ephrin receptors has been utilized to design a com-

pound by conjugating the azurin derived peptide

with nicotinic acid and the resulting compound

showed a �13-fold increase in the efficacy of

radiotherapy.55

Conclusion and Future Perspectives

Investigations in the past 15 years have greatly

improved our understanding on azurin’s anticancer

mechanisms. It turns out that azurin is a multi-

target anticancer agent interfering in the p53 signal-

ing pathways and the NRTKs signaling pathways.

New functions of azurin such as interactions with

p63 and p73 may be discovered in future studies.56

Therefore, azurin could overcome resistance to ther-

apy. In addition, putative bacteriocins that possessed

functional properties similar to those of azurin have

been identified in more bacteria species.57 A system-

atic investigation on the anticancer mechanisms of

azurin and the azurin-like bacteriocins will undoubt-

edly provide more and better options in future can-

cer therapy.
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