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Abstract

Symbiotic relationships between hosts and bacteria are common in nature, and these may

be responsible for the evolutionary success of various groups of animals. Among ants,

these associations have been well studied in some genera of the Camponotini, but several

questions remain regarding the generality of the previous findings across all the members of

this ant tribe and if bacterial communities change across development in these hosts. This

study is the first to characterize the bacterial community associated with a colony of the

recently recognized genus Colobopsis and three colonies of Camponotus (two distinct spe-

cies) and show how different the composition of the bacterial community is when compared

across the different genera. Our data reveal that Colobopsis (species: Co. riehlii) and Cam-

ponotus (species: Ca. floridanus and Ca. planatus) have distinct microbiota, and we were

able to verify that the identity of the species contributes more to the bacterial diversity. We

also demonstrated that there were no significant differences between colonies of the same

species (Camponotus planatus), and between stages of development from different colo-

nies. We did find that some developmental stages have distinct bacteria, confirming that

each stage of development could have a specific microbiota. Our results show species are

one of the factors that shape the bacterial community in these Camponotini ants. Additional

studies of the intra-colonial microbiome of other hosts and across development may reveal

additional clues about the function and importance of bacteria in colony recognition, individ-

ual and colony health, and nutritional upgrading.

Introduction

Symbiotic interactions are thought to be one of the factors responsible for the ecological suc-

cess of many groups of animals and plants [1–4]. Symbiotic microbes can influence the host

through the manipulation of the host’s reproduction or provide direct benefits to the host

through nutrition, defense, or even environmental tolerance [5–8]. Social animals often inter-

act intimately with other members of their group and offspring through grooming and
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trophallaxis. These activities facilitate the transmission and sharing of bacteria, often making

their microbiota extremely specialized [9,10]. As these behaviors may facilitate symbiont trans-

fer, social insects are considered models to evaluate evolutionary aspects of microbial commu-

nity diversity and acquisition [11].

Among the Hymenoptera (bees, wasps, and ants), many species of ants (Formicidae) are

known to possess diverse and stable microbial communities [12–18]. The importance of bacte-

rial symbionts related to nutrition has been shown to be fundamental in ant species feeding

low on the trophic scale [17,19,20] as is the case for the ant tribe Camponotini. One of the

most well-known ant genera recognized for having symbiotic relationships with bacteria is

Camponotus Mayr, 1861 [21–24]. The genus is currently subdivided into 43 subgenera, cover-

ing more than 1000 valid species and 31 fossils [25], with an almost world wide geographic dis-

tribution. They are popularly known as carpenter ants, have diurnal and nocturnal activity

with a generalist diet, and have diverse nesting habits. Arboreal nesting species may specialize

on a diet that is nutritionally deficient, since their diet is largely derived from the exudate of

plants and phytophagous insects [20,26,27].

The phylogeny of Camponotini, especially within Camponotus, has always been complex,

and several studies using different approaches have indicated that Camponotus is not mono-

phyletic [28–31]. Ward et al. [32] in a recent phylogenetic analysis of the group elevated Colo-
bopsis Mayr 1861, to the genus level, but still belonging to the tribe Camponotini. Prior to this

it was considered a subgenus of Camponotus. Completely understanding the phylogeny and

evolution of Camponotus remains a difficult task, which will require the efforts of researchers

from around the world, due to their wide distribution and high species diversity. Colobopsis,
now considered a distinct ant genus, has 94 valid species, with a distribution across the Aus-

tralasia, Indomalaya, Neartic, Neotropical, Oceania and Paleartic regions [33]. This genus has

strictly arboreal habits, and nests inside dead branches. As in the distantly related turtle ant

genus, Cephalotes, they can employ phragmotic major workers to block the nest entrance with

their heads as a line of passive defense [34–36].

With the recognition of this new genus, Colobopsis, it now raises the intriguing question

whether host-associated endosymbionts are tracking the host’s evolutionary history. We also

wanted to investigate the diversity of bacteria associated with these genera and determine how

common Blochmannia is associated with both genera, as has been noted in several studies for

Camponotus [21,22,37]. In a recent study Brown and Wernergreen [37], using next-generation

sequencing (NGS) techniques, found that 95–98% of the reads of Camponotus chromaiodes
were dominated by the intracellular bacteria Blochmannia and Wolbachia. However the varia-

tion across the different stages of development and for additional species and genera remains

unclear.

It is known that diet [38,39], parasitic infection [40], host age [41], phylogeny of host

[15,42] may contribute to changes in the bacterial community. Thus, the natural variation

found across insect microbiota may indicate important influences of host biology. To this end,

our understanding of factors that determine the bacterial communities of Camponotus florida-
nus, Camponotus planatus and Colobopsis riehlii remain unclear. In addition detailed compara-

tive surveys of the microbiota present in different castes and across development within a

colony are still lacking [15].

This study focuses on the bacterial community of different colonies of Camponotus and

Colobopsis across their stages of development, to reveal more about the factors that influence

bacterial communities. Therefore, the present work raises the following questions: 1) What

exerts greater influence in these microbiomes, the colony/species or developmental stage? 2)

Are Camponotus floridanus, Camponotus planatus and Colobopsis riehlii bacterial communities

different? 3) Do individuals from different colonies, but the same species, have similar
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microbiota? 4) Are there differences between the stages of development within the same col-

ony? And finally 5) Does the same stage of development from different colonies/species have

similar bacteria? Leveraging next generation amplicon sequencing, we address these questions

and document the diversity of bacteria to help identify the factors that structure the bacterial

communities found across a diverse and widely distributed group of animals.

Materials and methods

Sample collection and determination of the different stages of

development

All specimens used in this study were collected by authors MOR and CSM in April 2015 from

the Florida Keys, USA—Watson Creek bridge, Monroe County (24.69786N, 081.3405W).

These specimens were collected under the permissions of the Florida Department of Environ-

mental Protection—Division of Recreation and Parks (permit number 0127201515 to CSM).

Three Camponotus colonies, representing two species (Ca. floridanus and Ca. planatus), and

one Colobopsis riehlii colony were obtained from hollow twigs of trees and brought to the lab.

The samples were immediately preserved in 95% ethanol and stored at -20˚C before DNA

extraction. In order to determine the castes / stages of development, we selected the eggs, larva

with variation of size (L1 = small larvae, below 2 mm; and L2 = large larvae–last larval instar,

approx. 2–4 mm), pupae classified according to the pigmentation of the eye and body (P1, P2

and P3—from the white eye to total pigmentation, respectively), small and large workers (W1

and W2 to represent adult worker size polymorphism, with W1 as minor and W2 as major

workers), queens and males [43,44]. Within each entire colony, the quantity of each caste/sub-

caste/stage was determined (see Table 1). The taxonomic identification were determined using

taxonomic keys for Camponotus and Colobopsis species in the southeastern US (available in:

http://mississippientomologicalmuseum.org.msstate.edu//Researchtaxapages/

Formicidaepages/Identification.Keys.htm#.WE7qIH31-3H—from Creighton 1950, Snelling

1988; Mark Deyrup, pers. comm., William MacKay-Camponotus website) and vouchers were

deposited in the collection of the USP Zoology Museum in São Paulo, Brazil.

DNA extraction and bacterial DNA sequencing

Total DNA was extracted from 85 samples (three specimens of each caste and colony, when

available) of entire individuals with the Qiagen DNeasy Tissue kit following the manufacturer’s

recommendations with filtered pipette tips and sterile techniques were applied to avoid con-

tamination following Moreau [45].

Additionally, the samples were sterilized on the surface as described in Moreau [45].

Although we did not use the modification of the Qiagen DNeasy kit for Gram-positive

Table 1. Colonies of Camponotus and Colobopsis collected in the Florida Keys, Florida, USA for the present study, and the number of individuals

from each caste available in each colony.

Collection code Species Egg L1 L2 P1 P2 P3 W1 W2 Male Queen Total

MOR#59 Camponotus floridanus 0 18 13 5 18 0 29 30 0 0 113

MOR#69 Camponotus planatus 125 30 33 2 10 1 70 26 11 7 315

MOR#73 Camponotus planatus 10 32 1 0 9 3 31 6 5 0 97

MOR#62 Colobopsis riehlii 0 33 5 4 2 1 13 9 0 1 68

L1 and L2 refers to larva; P1, P2 and P3 refers to pupal stage 1, 2 and 3; W1 and W2—refers to minors W1 and majors W2.

https://doi.org/10.1371/journal.pone.0187461.t001
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bacteria, we did follow the extraction method recommended by Rubin et al. [46]. This method

is able to detect Gram positive bacteria in large quantities, but this could still influence the

diversity of bacteria we are able to detect. We amplified the V4 region of 16S rRNA using

primers described in Caporaso et al. [47], following the Earth Microbiome Project (EMP) pro-

tocol (515f primer and 806r; http://www.earthmicrobiome.org/emp-standard-protocols/16s/).

Per sample three PCR reactions were performed (triplicate) when samples were available, each

25 μl PCR reaction contained 12 μl of MO BIO (MO BIO, Solana Beech, USA) PCR Water

(Certified DNA-free), 10 μl of 5 Prime HotMasterMix (1x) (5 PRIME, Gaithersburg, USA),

1 μl of forward primer (5 mM concentration, 200 final pM), 1 μl Golay barcode tagged reverse

primer (5 mM concentration, 200 pM final) and 1 μL of template DNA (>0.20 ng/ μl), under

the following conditions 94˚C for 3 min, with 35 cycles at 94˚C for 45 s, 50˚C for 60 s, and

72˚C for 90 s, with a final of 10 min at 72˚C. After the triplicate reactions were combined we

confirmed amplification efficiency using agarose gel electrophoresis (1%). The samples were

quantified via qPCR and Qubit (Thermo Fisher Scientific) with High Sensitivity Assay Kit

(Life Technologies Corp., Carlsbad, USA), and only then pooled with different samples after

controlling for volume to include the same amount of genetic material. For purification, only

100 μL of each pool was cleaned using the UltraClean PCR Clean-Up Kit (MO BIO, Solana

Beech, USA), following the manufacturer’s recommendations. The molarity of the pool was

determined and diluted down to 2 nM, denatured, and then diluted to a final concentration of

6.1 pM with a 10% PhiX for sequencing on the Illumina MiSeq at the Field Museum of Natural

History, Chicago. A 151 bp x 12 bp x 151 bp MiSeq Illumina run was performed using the cus-

tom sequencing primers and procedures described in the supplementary methods in Caporaso

et al. [47]. All raw sequence data are publicly available in Figshare [https://figshare.com/s/

290531bea3dee984444e] and NCBI SRA accession number SRR5136256 and study SRP09

5836.

Bacterial quantification

We measured the amount of bacterial DNA present in all samples with quantitative PCR

(qPCR) of the bacterial 16S rRNA gene using 515f (5’—GTGCCAGCMGCCGCGGTAA)and 806r

(5’—GGACTACHVGGGTWTCTAAT) universal bacterial primers of the EMP (http://www.

earthmicrobiome.org/emp-standard-protocols/16s/) to check Illumina sequencing efficiency.

All qPCRs were performed on a CFX Connect Real-Time System (Bio-Rad, Hercules, USA)

using SsoAdvanced 2X SYBR green supermix (Bio-Rad) and 2 μL of DNA. Standard curves

were created from serial dilutions of linearized plasmid containing inserts of the E. coli 16S

rRNA gene and melt curves were used to confirm the absence of qPCR primer dimers. The

protocol for standardization following the recommendations of Rubin et al. [46]. All samples

were analyzed in triplicates including a blank. The results were averaged before calculating the

number of bacterial 16S rRNA gene copies per microliter of DNA solution (S4 Table).

Bioinformatic analysis

The sequences were analyzed in QIIME 1.9.1 [48]. We merged the forward and reverse

sequences through SeqPrep. Demultiplexing was completed and QIIME defaults were used for

quality filtering of raw Illumina data. We implemented the pick_open_reference_otus.py com-

mand using the SILVA 128 reference database with 97% identity [49,50] to call OTUs, and

UCLUST to create the OTU table. Singletons were discarded. Chimera checking was per-

formed with UCLUST [51] and PyNAST (v1.2.2) was used for sequence alignment [52].

To test whether the composition of the bacterial community is more related to the colony/

species itself, or whether it is more related to the different stages of development, we separated

Microbiome from Camponotus and Colobopsis colonies

PLOS ONE | https://doi.org/10.1371/journal.pone.0187461 November 22, 2017 4 / 22

http://www.earthmicrobiome.org/emp-standard-protocols/16s/
https://figshare.com/s/290531bea3dee984444e
https://figshare.com/s/290531bea3dee984444e
http://www.earthmicrobiome.org/emp-standard-protocols/16s/
http://www.earthmicrobiome.org/emp-standard-protocols/16s/
https://doi.org/10.1371/journal.pone.0187461


our analyses into two categories: different colonies/species (MOR#59, MOR#62, MOR#69, and

MOR#73) and developmental stage (available in colonies/species sampled, see Table 1).

The summarize_taxa_through_plots.py command was used to create a folder containing

taxonomy summary files. In order to standardize, all samples that obtained less than 400

bacterial sequences after quality filtering were excluded from the subsequent analysis. We

started our analysis with 73 samples (triplicate of each caste when available, which obtained

good DNA quality), and after filtering to a sequencing depth of 400, 63 samples passed this

cutoff and were included in downstream analyses. Ten samples were excluded because they

did not pass the cutoff of 400 sequences (see S6 Table), and they are identified with a yellow

star in Fig 1. All analyzes started from the bacterial OTU data. We implemented an analysis

of multidimensional nonmetric scaling (NMDS) and related statistics in the PAST3 soft-

ware package [53] to illustrate the relationship between ecological communities [54,55].

Sorensen (Dice coefficient) and Bray-Curtis, similarity and dissimilarity indices, respec-

tively [54] were used to test the variation and the structure of the bacterial communities,

respectively. The samples were grouped according to the host colony/species and develop-

mental stage. Analyses of similarity (ANOSIM) with Bonferroni correction was used to

determine statistical significance [54,55]. The SIMPER analysis was conducted to verify the

contribution of each OTU for grouping between colonies/species and different develop-

mental stage [55].

The G test of independence (P, FDR_P and Bonferroni_P) was carried out to determine

whether OTU presence/absence is associated with different colonies/species or different devel-

opmental stages. We also used Analysis of Similarity (ANOSIM), Adonis [56] to determine

sample grouping and a redundancy analysis (RDA) to test the relationships between samples.

Observed species richness, Shannon diversity, the Chao1 nonparametric richness estimator,

whole-tree phylogenetic diversity, Simpson, and equitability metrics were calculated to com-

pare alpha diversities based on a two-sample t-test using non-parametric (Monte Carlo) meth-

ods to test differences in OTU richness among categories. Unweighted and weighted UniFrac

distance matrices [57], which use phylogenetic information to calculate community similarity,

were used to calculated beta diversity. These beta diversity metrics were used to compare com-

munity level differences between two categories: colonies/species and developmental stage.

Jaccard dissimilarity metrics were calculated and the average was compared. A matrix of com-

munity pairwise distances was generated by UniFrac and used to cluster samples by principal

coordinates analysis (PCoA).

Cytoscape v3.2.1 [58] edge-weighted spring embedded algorithm was used to visualize net-

works of bacterial community [59]. Connections were drawn between samples representing

the shared significant OTUs. A heatmap was constructed with all OTUs that had 100 reads

using heatmap.2 and the vegan package [60] in R [61]. The dendrogram was created with

Bray-Curtis dissimilarity hierarchical clustering of bacterial communities in hclust.

Phylogenetic tree reconstruction

To investigate the possible relatedness of some of our unassigned bacterial OTUs (representa-

tive sequences from the dominant OTUs), we downloaded from GenBank the closest Blast hits

for our selected sequences and other strains of Blochmannia available from different Campo-

notini genera. We were able to include Blochmannia from all Camponotini genera except

Dinomyrmex and Overbeckia. Sequences were assembled and edited using Bioedit Sequence

Alignment Editor [62] and aligned with the Clustal W tool [63]. We implemented a maximum

likelihood analysis using PhyML 3.0 [64] on the CIPRES web portal [65]. The GTR+I+G

model of sequence evolution was implemented. Branch lengths and bootstrap support are
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Fig 1. Summary graph of bacterial OTUs found in Colobopsis riehlii, Camponotus floridanus and Camponotus planatus colonies with 16S

rRNA amplicon sequencing. A. Different colonies and species used in this study and their bacterial communities. B. Summary of all OTUs found in

Colobopsis riehlii. The main bacterium is Enterobacteriaceae in pink, followed by Wolbachia in brown C. Summary of all OTUs found in Ca. floridanus and

Ca. planatus. The main bacterium is Candidatus Blochmannia in green. The yellow stars highlight samples that were excluded after the read depth

standardization of 400 reads was implemented.

https://doi.org/10.1371/journal.pone.0187461.g001
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reported. To facilitate visualization, the clade of Wolbachia (brown) and Blochmannia (green)

were colored in FigTree [66].

Results

In this study we used the open reference option to assign OTUs. Open reference is an impor-

tant tool for studies that want to take into account the diversity of bacteria that many not be

present in the database [42]. Since these results may return OTUs with no close species level

assignments contained in the database, the open reference command assigns these OTUs to

the previous taxonomic level (i.e. Genus, Family, etc.) where there is confidence in the assign-

ment. So in our results some OTUs are only confidentially assigned to higher taxonomic levels

like "Burkholderiales; Other", while others are assigned to the species level like Candidatus
Blochmannia. From the four colonies analyzed we obtained 1,322 observed OTUs from a total

of 152,500 reads from 73 samples from one colony of Colobopsis riehlii and three colonies of

Camponotus from two species (one colony of Ca. floridanus and two colonies of Ca. planatus),
which permitted analyses comparing different colonies/species and developmental stages. To

visualize the diversity of OTUs found per sample we used the summarize_taxa_through_plots.

py command (Fig 1). For Colobopsis, 19 samples across the stages of development were ana-

lyzed, resulting in 134 OTUs from a total of 16,591 reads, ranging from 206 to 3008 reads per

samples. For analysis of the colonies of Ca. floridanus and Ca. planatus were recovered 1,188

OTUs resulting from 135,909 reads ranging from 10 to 13,989 reads, with the latter value

belonging to one from the queens analyzed.

According to our results, the bacterial communities of Colobopsis riehlii and other Camponotus
colonies (Ca. floridanus and Ca. planatus) are distinct. The predominant bacteria found in the sam-

ples of Camponotus were Candidatus Blochmannia (93.9%), Wolbachia (1.0%) (multiple strains),

Enterobacteriaceae (0.8%), followed by other bacteria in smaller quantities. For the Colobopsis sam-

ples the predominant bacteria were Enterobacteriaceae (72.8%), Wolbachia (multiple strains)

(22.2%), Pasteurellales (2.2%) mainly related to a specific stage of development, Sodalis (1.7%),

Other Enterobacteriaceae (0.4%), followed by additional bacteria at low amounts (S5 Table).

By analyzing the bacteria found across different stages of development within a colony

(developmental stage), we recovered bacteria associated with only a specific stage of develop-

ment such as the Pasteurellales, which is present in the second larval stage of Colobopsis riehlii,
and Wolbachia present only in the queens and males of Camponotus planatus. Our data also

reveal that the larval stage exhibits much greater microbial diversity than the other stages of

development (S3 Fig).

Patterns that influence the bacterial community

We performed statistical tests (weighted and unweighted, depth 400, 63 samples included) to

examine potential patterns that influence the bacterial community of these Camponotini samples,

and for this we analyzed the following two variables: differences between colonies/species and

developmental stage. A list of the 10 samples that did not reach the depth of 400 reads and were

excluded from the analysis are included in S6 Table. From these we found different colonies/spe-

cies (Table 2), can influence the bacterial community of these Camponotini samples, although for

the developmental stage we did not obtain significant results for the weighted distance.

Through analyses of beta diversity (matrices UniFrac weighted distance) we observed bac-

terial communities among all Camponotini samples. PCoA analysis showed that the bacterial

community becomes more distinct when comparing the different species than when compar-

ing the stages of development across all species (Fig 2). The average Jaccard dissimilarity met-

ric was 0.90 for Camponotus colonies (one of Ca. floridanus and two of Ca. planatus), which
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suggests only few of the bacterial community members are shared among all individuals of dif-

ferent developmental stages of Camponotus, but for Colobopsis riehlii Jaccard dissimilarity of

0.65 was inferred, which suggests more of bacteria was shared among the colony.

No significant changes in the composition of the bacterial community (Sorensen index)

were observed between the colonies/species and among developmental stage (S1 Table). How-

ever, when we analyzed the bacterial community structure (Bray-Curtis index, stress 0.051, for

different colonies, and 0.051 for different developmental stage), we found significant results

such as difference between samples MOR#73 (Ca. planatus) vs. MOR#62 (Co. riehlii) and

MOR#69 (Ca. planatus) vs. MOR#62 (Co. riehlii) (Fig 3, S1 Table). For these analyses we did

not recover significant differences between developmental stages.

The SIMPER between-groups analysis revealed that the OTUs recovered in the compari-

sons between the different colonies/species, are essentially the same OTUs responsible for

structuring these bacterial communities within significance groups (S2 Table). But we also

observe that there are multiple strains of Candidatus Blochmannia, Enterobacteriaceae and

Wolbachia present across these samples.

To examine the complicated associations between samples with shared significant OTUs, we

used Cytoscape to construct a network graph in which each node represented a host sample.

Network analyzes were performed using the spring-embedded edge-weighted algorithm (Fig 4),

which approaches the samples according to the number of OTUs shared, and we colored the

edges according to the different colonies/species (Fig 4A), and in the different stages of develop-

ment (Fig 4B). OTUs with less than 100 reads were hidden for easy viewing. From this analysis

we observe greater structuring between species than across different stages of development.

Bacterial communities of Camponotus (Ca. floridanus and Ca. planatus)

and Colobopsis riehlii are different

Our statistical results confirm that the bacterial community of Camponotus (Ca. floridanus and
Ca. planatus) and Colobopsis riehlii are different (Table 3). This can clearly be seen in Figs 2

and 3. This result shows that even in closely related genera, the microbial communities are dif-

ferent, at least for the colonies/species analyzed in this study.

Camponotus planatus from distinct colonies have similar bacterial

communities

Of all the colonies analyzed in the present study, the two Camponotus planatus colonies

(MOR#69 and MOR#73), have the highest similarity, as observed from the statistical tests that

Table 2. Patterns that explain bacterial community diversity.

Colonies/Species

Unweight Weight

Adonis R2 = 0.1658 and p = 0.001 R2 = 0.6520and p = 0.001

Anosim R2 = 0.2020 and p = 0.001 R2 = 0.4676 and p = 0.001

RDA Pseudo F = 3.8582 and significance = 0.001 Pseudo F = 30.8438 and significance = 0.001

Developmental stage

Unweight Weight

Adonis R2 = 0.2084 and p = 0.001 R2 = 0.1925 and p = 0.167

Anosim R2 = 0.1381 and p = 0.006 R2 = 0.0580 and p = 0.1170

RDA Pseudo F = 1.543 and significance = 0.005 Pseudo F = 1.3569and significance = 0.193

Colonies/Species have greater influence than Developmental stage.

https://doi.org/10.1371/journal.pone.0187461.t002
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resulted significant differences (Table 4), but a small difference if we compare with the other

colonies. This result corroborates S1 Table.

Fig 2. PCoA plots of bacterial communities associated with Camponotini samples (weighted UniFrac method). A. Different colonies/species (axis

1 = 88.8% and axis 2 = 7.12%) and B. Developmental stage (axis 1 = 88.8% and axis 2 = 7.12%). Note that the "Colony/Species" category influences the

bacterial community more than "Developmental stage".

https://doi.org/10.1371/journal.pone.0187461.g002

Fig 3. Nonmetric multidimensional scaling (NMDS) plot illustrating bacterial community structure among different colonies/species with

95% ellipses. Bray-Curtis, stress 0.081, Axis 1: 0.9817, Axis 2: 7.471E-06 and developmental stage Bray-Curtis, stress 0.085, Axis 1: 0.9807, Axis 2:

0.0002. Note that species play an important role in structuring the bacterial community.

https://doi.org/10.1371/journal.pone.0187461.g003
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Fig 4. Network analysis of Camponotini samples with edges representing the main community bacterial

members. A. The edges were colored according to the different colonies: MOR#59 –Camponotus floridanus in red,

Microbiome from Camponotus and Colobopsis colonies
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There are microbiota differences in the stage of development between

host species

Statistical analyzes show that there are significant differences in the development stage across

two of the species, Camponotus planatus (MOR#69 and MOR#73) and Colobopsis riehlii
(MOR#62). This pattern could also be true for Camponotus floridanus, but unfortunately after

rarefaction only a few individuals from this colony (MOR#59) could be included and therefore

we were not able to conduct beta diversity analyses on this species. As the main bacteria across

all of these colonies are Blochmannia and Enterobacteriaceae (for Camponotus: Ca. floridanus
and Ca. planatus, and Colobopsis riehlii respectively; S2 Table), the abundance of OTU

(weighted) may not be appropriate to test for significant differences across the developmental

stages within each colony. Therefore the results of unweighted distances were presented on

Table 5, and there are significant differences in the development stage across two of the

species.

The same stage of development in different Camponotus species have

similar bacteria

To address this question we binned our Camponotus samples (Ca. floridanus and Ca. planatus)
into the following groups: larva (L1 and L2), pupae (P1, P2 and P3), workers (W1 and W2)

and finally a mixed group with queens, males and eggs (all directly derived from the queen).

The results show that there were no significant differences when we analyzed each of these

groups, (Table 6), which reveals that there is similarity in each of these stages of development,

even when they were grouped from different colonies (See S1 Fig).

Bacteria responsible for differences between colonies/species and

development stages

Through the results of the G test (P, FDR_P and Bonferroni_P), we found bacterial commu-

nity presence/absence is significantly different across developmental stage and colonies/species

(S3 Table). Between colonies/species more OTUs were significantly different across samples

than the other developmental stage category (different stages of development within a colony).

However, the bacteria Enterobacteriaceae (multiple strains, including Candidatus Blochman-
nia), Wolbachia (multiple strains) and Pasteurellales were present across all categories (S3

Table). Separate G-test analyses of the different developmental stages within each Colobopsis

MOR#69 –Ca. planatus in orange, MOR#73 –Ca. planatus in green, MOR#62 –Colobopsis riehlii in blue. B. The edges

were colored according to the different stages of development: egg in red, L1 in light green, L2 in green, P1 in blue, P2

in light blue, P3 in aquamarine, W1 in pink, W2 in light pink, queen in yellow and male in brown. Note that it is the same

image as in A, but now colored according to the different stages of development.

https://doi.org/10.1371/journal.pone.0187461.g004

Table 3. Bacterial communities of Camponotus (Ca. floridanus and Ca. planatus) and Colobopsis

riehlii are different.

Camponotus (Ca. floridanus and Ca. planatus) vs. Colobopsis riehlii

Unweight Weight

Adonis R2 = 0.11235 and p = 0.001 R2 = 0.6525 and p = 0.001

Anosim R2 = 0.1058 and p = 0.030 R2 = 0.8546 and p = 0.001

In the colonies/species analyzed in this study, the microbial communities are different.

https://doi.org/10.1371/journal.pone.0187461.t003
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riehlii and Camponotus colony (Ca. floridanus and Ca. planatus) recovered the different OTUs,

except for Enterobacteriaceae (S3 Table).

According to our results of measures of Alpha diversity (Chao1, PD whole tree, observed

OTUs, Simpson and Shannon), we found that the samples of Camponotus floridanus, Ca. pla-
natus and Colobopsis riehlii are not very diverse, showing few different OTUs. Likely due to

this low diversity, we did not obtain significant results when comparing alpha diversities based

on a two-sample t-test using non-parametric (Monte Carlo) methods. Through the rarefaction

curve analysis of OTUs observed, our sequencing coverage of the bacterial communities

appears satisfactory for most samples. However for some samples, it was not possible to reach

a plateau (S2 Fig).

For easy viewing on our HeatMap, we are presenting only OTUs with more than 100

reads. We grouped the samples according to the quantity and type of associated bacteria.

Our results revealed that there are some OTUs specific to a particular colony, such as OTU

AJ245591.1.1215—Candidatus Blochmannia was restricted to the Ca. floridanus colony

MOR#59. The Colobopsis colony was also distinct from the others, having specific OTUs,

such as OTU EU348326.1.1455-Pasteurellales, KF249887.1.1350–Wolbachia and CP0100

49.668121.669704-Enterobacteriaceae.

For the colonies of Ca. planatus (MOR#69 and MOR#73) we also observed several samples

from different development stage with two distinct strains of Candidatus Blochmannia:

AF495758.1.1401, and the new strain New.ReferenceOTU1, suggesting possible multiple infec-

tion by this endosymbiont. For Wolbachia we found one strain with high abundance, mainly

in Colobopsis (KF249887.1.1350), and we observed an infection rate of 94.73% from across our

Colobopsis colony (n = 19). The OTU GAUE02014372.1.1238—Wolbachia was found only in

males and queens of Camponotus present in colony MOR#69 (Ca. planatus). Lastly the

CP010049.668121.669704-Enterobacteriaceae strain was recovered from larva (L2) of Campo-
notus planatus, colony MOR#69 (Fig 5). In less quantity the strain New.ReferenceOTU71—

Wolbachia (difficult visualization in Fig 5) was found in both colony MOR#69 and colony

MOR#62, at different stages of development.

Table 4. Camponotus planatus from distinct colonies have similar bacterial communities.

MOR#69 vs.MOR#73

Unweight Weight

Adonis R2 = 0.0441 and p = 0.046 R2 = 0.056 and p = 0.046

Anosim R2 = 0.054 and p = 0.085 R2 = -0.050 and p = 0.971

The Camponotus planatus colonies have the highest similarity if compared with others colonies from this

study.

https://doi.org/10.1371/journal.pone.0187461.t004

Table 5. There are microbiota differences in the stage of development between host species.

Unweight

Camponotus planatus: MOR#69

Anosim R2 = 0.222 and p = 0.039

Camponotus planatus: MOR#73

Anosim R2 = 0.1838 and p = 0.050

Colobopsis riehlii: MOR#62

Anosim R2 = 0.217 and p = 0.042

Note that within each colony analyzed separately there is a difference between the stages of development.

https://doi.org/10.1371/journal.pone.0187461.t005

Microbiome from Camponotus and Colobopsis colonies

PLOS ONE | https://doi.org/10.1371/journal.pone.0187461 November 22, 2017 12 / 22

https://doi.org/10.1371/journal.pone.0187461.t004
https://doi.org/10.1371/journal.pone.0187461.t005
https://doi.org/10.1371/journal.pone.0187461


Phylogenetic Tree: Blochmannia and Enterobacteriaceae OTUs are

related

The inferred maximum likelihood phylogeny received high boostrap support across the major

nodes placing our samples with their closest relatives. All the sequences of Blochmannia are

grouped in a single clade with high bootstrap support (99%). In addition, the OTUs identified

as Enterobacteriaceae in the present study are closely related to Blochmannia, corroborating

the hypothesis that all Enterobacteriaceae are actually Blochmannia (Fig 6).

Discussion

In Camponotini ants the presence of bacteria such as Blochmannia, considered a primary

endosymbiont, and Wolbachia, as secondary, is already well known [21,22,37,67], but the

diversity of the entire bacterial community has not been fully documented and differences

across developmental stage have not been adequately explored. Although our study included a

modest number of colonies (85 individual samples from four colonies) our results are the first

to characterize the bacterial community associated with a colony of the recently recognized

genus Colobopsis (species: Colobopsis riehlii) and three colonies of Camponotus (two distinct

species: Ca. floridanus and Ca. planatus) and show how different the composition of the bacte-

rial community is when compared across the different colonies/species (different genera and

different species—collected in the same location), and how they are conserved when compar-

ing across the different stages of development within a colony.

In general, our data reveal that Colobopsis riehlii and Camponotus (Ca. floridanus and Ca.

planatus) have distinct microbiota, although they are closely related ant genera. The OTUs

from these two host genera are distinct. We were able to verify that the identity of the species

contributes more to the bacterial diversity than the stage of development. A significant differ-

ence between species is likely due to the different bacterial communities between Camponotus
and Colobopsis ant species. We also demonstrated that there were no significant differences

between colonies of the same species (Camponotus planatus), and between stages of develop-

ment from different colonies, confirming that each stage of development may have a specific

Table 6. The same stage of development in different Camponotus colonies have similar bacteria.

Larva

Unweight Weight

Adonis R2 = 0.11564 and p = 0.189 R2 = 0.07935 and p = 0.544

Anosim R2 = -0.833 and p = 0.616 R2 = 0.0026 and p = 0.48599

Pupae

Unweight Weight

Adonis R2 = 0.32723 and p = 0.176 R2 = 0.29675 and p = 0.290

Anosim R2 = 0.1230 and p = 0.238 R2 = 0.0846 and p = 0.270

Worker

Unweight Weight

Adonis R2 = 0.06758 and p = 0.622 R2 = 0.07672 and p = 0.639

Anosim R2 = -0.0611 and p = 0.7219 R2 = -0.040 and p = 0.675

Males, Queens and Eggs

Unweight Weight

Adonis R2 = 0.11767 and p = 0.928 R2 = 0.16173 and p = 0.359

Anosim R2 = -0.1019 and p = 0.821 R2 = 0.02450 and p = 0.329

Note that there were no significant differences when we binned the same stage of development.

https://doi.org/10.1371/journal.pone.0187461.t006
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microbiota. Our results show different host species likely shape the bacterial community in

Camponotini ants. Clear visual and statistical evidence also separates Colobopsis riehlii from

the others Camponotus colonies, corroborating the studies by Blaimer et al. [31] and Ward

et al. [32] in elevating Colobopsis as a separate genus from Camponotus.
In this study, bacterial community structure and composition in ants of the same colony

were most similar to each other, a pattern recovered in other ant species [13,40,46,68]. This is

likely because social insects live in densely populated colonies with highly related individuals

[69], which may facilitate the sharing of the microbiota. In addition, it is often observed that

Fig 5. The colours in the heatmap indicate variation in the relative abundance of different bacteria in different colonies/species and

developmental stage of Camponotini samples. These range from 0% (light yellow) to 100% (red). We choose to show only OTUs with more than 100

reads, for easy viewing. Dendrograms were generated from Bray–Curtis distance matrices. Note there are OTUs restricted to specific colonies/species.

https://doi.org/10.1371/journal.pone.0187461.g005
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Camponotini ants exhibits mouth-to-mouth (stomodeal) trophallaxis, i.e. the sharing of liquid

nutrients through mutual feeding [70,71]. Nutrients stored in the crop or ’social stomach’ are

shared throughout the colony during trophallaxis [72], which is thought to be a primary

means for horizontal bacterial transfer within a colony [26,73–75]. This intense interaction

and exchange of microbiota may reinforce colony-specific signatures [40,76], and also appears

to occur with Camponotini ants.

Blochmannia, a member of the Enterobacteriaceae, is known to provide important func-

tions in Camponotini ants, which includes, Camponotus, Colobopsis, Polyrhachis and others,

whose phylogenetic trees of symbionts are congruent with those of their hosts across long peri-

ods of evolutionary time, indicating the coevolution of host and symbiont [77,78]. In addition

to its nutritional role [23], especially in early life [79], it has also maintained genes needed to

contribute to the metabolism of nitrogen, sulfur and lipids [80–82].

The high mutational rate of Blochmannia [83] may influence and disrupt the identification

of OTUs at the bacterial genus level for the short sequences generated by most amplicon meth-

ods, therefore Enterobacteriaceae or Other Enterobacteriaceae–may in fact be Blochmannia.

For Camponotus (Ca. floridanus and Ca. planatus) we detected high Candidatus Blochmannia
abundance. We also expected this bacterium in high abundance for Colobopsis riehlii but our

results did not reveal this at first. Our phylogenetic analysis of the main OTUs found in our

Fig 6. Phylogenetic tree of the main OTUs, their closest relatives, and Blochmannia from Camponotini genera sequences available in GenBank.

The maximum likelihood phylogeny of the 16S rRNA region of the main bacterial symbionts of this study along with the closests matches on GenBank.

Bootstrap support is shown on branches. The labels are given with GenBank accession number (GenBank sequences) or collection code (sequences

generated in the present study—colored in red). The branch color refers to bacteria with Wolbachia in brown and Blochmannia in green.

https://doi.org/10.1371/journal.pone.0187461.g006
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study grouped in the same clade as Blochmannia and Enterobacteriaceae with high statistical

support. All the individuals of Camponotus (Ca. floridanus and Ca. planatus) and Colobopsis
riehlii analyzed in the present study have some type of Enterobacteriaceae as the main bacte-

rium in their microbiota and based on our phylogenetic analysis is likely Blochmannia. Our

study also found 44 samples of Camponotus planatus, from two colonies (MOR#69 and

MOR#73), with two strains of Blochmannia (double infection). This result corroborates

Ramalho et al. [67] finding of double infections of Blochmannia in Camponotus textor Forel,

an exclusively Neotropical species.

In fact the Blochmannia (strain / OTU) of Colobopsis is different from the (strain / OTU) of

Camponotus, at least for the fragment of 16S rRNA that we sequenced. All these strains belong

to the genus Blochmannia, corroborating what has already been found in other studies that

this bacterium is established in the tribe [21, 22], but our data show that there is still a great dif-

ference / diversity of these strains of Blochmannia found in the samples of the present study

(Co. riehlii, Ca. floridanus and Ca. planatus). This great diversity found within Blochmannia
genus (16S rRNA gene) can be explained by its high evolutionary rate, which made possible

the differences found in the present study. Functionally these distinct strains of Blochmannia
are similar, supported by the genome [24] and the phylogenetics presented in this study. But

the Blochmannia strain found in the samples of Colobopis and Camponotus of the present

study are distinct, which suggests their microbiome to be distinct.

Wolbachia, a major invertebrate endosymbiont [14,84–86] famous for manipulating the

reproduction of the host [87], was the second most common endosymbiont found in all Colo-
bopsis riehlii samples, occurring in all individuals of the colony, across all stages of develop-

ment. There are many studies associating this bacterium with Formicidae, but its function

remains unclear. Interestingly OTU GAUE02014372.1.1238 of Wolbachia was found only in

the reproductive castes (queen and males) in the colony MOR#69 of Camponotus planatus but

was not found in the other stages of development across the colony. Another OTU of Wolba-
chia (New.ReferenceOTU71) although in a lower concentration was found in Colobopsis riehlii
(MOR#62) and in Camponotus planatus (MOR#69). This low infection rate by Wolbachia
(1%) has also been found in another North American Camponotus [14], although is not true

across the genus as Ca. textor was found to be highly associated with Wolbachia [67].

The next most common bacterium associated was Pasteurellales—EU348326.1.1455 found

specifically in the larval stage (L2) in Colobopsis riehlii (2.20%). Pasteurellales are one of the

major orders within the class Gammaproteobacteria [88,89]. This bacterium is often present in

the respiratory, alimentary and reproductive tract of various birds and mammals, including

humans [89,90]. This group of bacteria has been identified from another arboreal ant, Pseudo-
myrmex ferrugineus [91], but their function in ants is not clear.

Previous studies have reported the presence of other symbionts in Camponotus, inclu-

ding Spiroplasma which has been reported in other species of Camponotus [14], but was

not found in our results. Acetobacteraceae was also recently found in Camponotus, and is

believed to be strongly host specific [37]. We also recovered this bacterium (multiple

strains) in 11 individuals of Camponotus (20.37%), but with few copies per individual,

ranging from 1–4 reads.

Studies that try to understand the patterns that explain the association of microbiota and

host inform us about the potential impacts and roles of these symbioses. In the present study

we show that the Colobopsis riehlii microbiota is distinct from Ca. floridanus and Ca. planatus,
a closely related genus. In general, the microbiota presented here appears as a species-specific

signature, whereas most developmental stages do not have distinct microbiota. Although we

present some differences across development, especially in the larval stage, the intense social

interaction between individuals of a colony likely homogenizes the microbiota among colony
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members. Additional studies of the intra-colonial microbiome of other hosts and across devel-

opment may reveal additional clues about the function and importance of bacteria in colony

recognition, individual and colony health, and nutritional upgrading.

Supporting information

S1 Fig. Nonmetric multidimensional scaling (NMDS) plot illustrating bacterial commu-

nity structure among different development stages. Bray-Curtis, stress 0.029, Axis 1: 0.9683,

Axis 2:0.0527.

(TIF)

S2 Fig. Rarefaction curves with OTUs by sequences per samples. Rarefaction curves ana-

lyzed across the different stages of development. The queen was more diverse than the others

and when compared between the colonies of Camponotus (Ca. floridanus and Ca. planatus)
and Colobopsis riehlii.
(TIF)

S3 Fig. Simpsons index by developmental stage. Through this image it is possible to visualize

that the L2 larvae have a greater diversity in comparison with the other stages of development.

(TIF)

S1 Table. Analyses of similarity (ANOSIM). These results are evaluating variation in the

composition and structure of bacterial communities (global effect), and the colonies/species

and developmental stage that showed significant differences.

(XLSX)

S2 Table. SIMPER analysis reveals contribution of specific operational taxonomic units

(OTUs). This test indicates the contribution of specific operational taxonomic units (OTUs)

to the observed differences in community structure among different colonies/species of Cam-

ponotini.

(XLSX)

S3 Table. Analysis of G test of independence (P, FDR_P and Bonferroni_P) across Campo-

notini samples. Hence, it determines whether OTU presence/absence is associated with differ-

ent colonies and developmental stage.

(XLSX)

S4 Table. Bacterial quantification through 16S rRNA gene (qPCR) of all samples. Each

sample was analyzed in triplicate therefore follows the values of average and standard deviation

for each sample.

(XLSX)

S5 Table. Bacteria found in Camponotini samples. Bacteria and the quantities identified in

Camponotini samples in the present study.

(XLSX)

S6 Table. Samples excluded after the depth of 400 reads. These 10 samples from different

colonies did not reach our cutoff of 400 reads and they were excluded from the subsequent

analyses.

(XLSX)

S7 Table. BIOM table. All OTUs and samples from the present study.

(XLSX)
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