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Abstract

Purpose of Review—We aimed to summarize the recent advances in genetic findings of 

Alzheimer’s disease (AD), focusing on traditional single-marker and gene approaches and non-

traditional ones, i.e., polygenic and epistatic components.

Recent Findings—Genetic studies have progressed over the last few decades from linkage to 

genome-wide association studies (GWAS), and most recently studies utilizing high-throughput 

sequencing. So far, GWASs have identified several common variants characterized by small effect 

sizes (besides APOE-ε4). Sequencing has facilitated the study of rare variants with larger effects. 

Nevertheless, missing heritability for AD remains extensive; a possible explanation might lie in 

the existence of polygenic and epistatic components.

Summary—We review findings achieved by single-marker approaches, but also polygenic and 

epistatic associations. The latter two are critical, yet-underexplored mechanisms. Genes involved 

in complex diseases are likely regulated by mechanisms and pathways involving many other 

genes, an aspect potentially missed by traditional approaches.
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Introduction

Alzheimer’s disease (AD), the most common neurodegenerative disease, affects more than 5 

million older adults in the USA alone [1]. Clinically, AD is characterized by decline in 

cognition, especially memory, although there is great heterogeneity in its clinical 

presentation and progression [2]. Neuropathologically, extracellular amyloid plaques and 

intra-cellular neurofibrillary tangles are present and neurodegeneration results from neuronal 

death and loss of synapses. Both environmental and genetic factors are thought to impact the 

disease risk profile. The genetic heritability, or impact of genetic variability on disease risk, 

of AD is predicted to be as high as 80% [3, 4]. Since the early 1990s, the field has had a 

number of successful breakthroughs shedding light on the genetics that contribute to disease 

risk. In this review, we provide an overview of the genetic findings in AD research, with a 

focus on recent advances and promising methodologies that may help researchers identify 

components of the heritability that are yet unknown.

Based on the age of onset, AD has been traditionally delineated as early-onset (EOAD, onset 

< 65 years old) or late-onset (LOAD, onset > 65 years old). The distinction is not only age-

dependent as there are underlying separate but overlapping etiologies, genetics, and clinical 

presentations. EOAD accounts for only approximately 1–6% [5, 6] of AD cases. These 

forms are more likely familial and inherited in a Mendelian fashion; in the early 1990s, 

linkage analyses determined the loci mainly implicated in these forms, the amyloid 

precursor protein (APP), presenilin1 (PS1), and presenilin 2 (PS2) genes, which harbor 

highly penetrant rare variants. More than 300 variants have been identified to date (N = 67; 

230; 39, respectively [7]. The discovery of these genetic determinants provides considerable 

weight to the “amyloid hypothesis,” which predicts that dysregulated Aβ precipitates the 

development of the disease and potentially affects its progression [8].

On the other hand, the later onset form of the disease constitutes approximately 95% of AD 

cases [9]. LOAD is considered to be sporadic in nature, with complex genetic and 

environmental risk factor profile. This review will focus predominantly on this form of the 

disease. In 1993, genetic analysis identified APOE as a major genetic risk factor for LOAD 

[10]. The ε4 allele of APOE has the largest genetic effect, and has been replicated 

extensively across different forms of the disease (sporadic and familial LOAD [10, 11••], 

APP/presenilin mutation carriers [12], and across ethnic groups [13••, 14, 15••]). It has an 

attributable risk of approximately 25% [16], with ε4 homozygotes showing an odds ratio up 

to 20 when compared to that of ε3 homozygotes [17]; furthermore, one allele of ε4 reduces 

the disease onset up to 5 years, and two copies up to 10 years. For ~ 15 years, APOE was the 

only established locus for LOAD. However, with the advent of genome-wide association 

studies (GWAS) and whole-exome/genome sequencing, several additional loci have now 

been identified.

GWAS

Early Studies

In the last 15 years, GWASs have contributed to the majority of our genetic knowledge of 

LOAD. Over time, sample sizes have increased and biological and statistical methodologies 
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have improved, resulting in a steady progression of genetic findings. Significance for genetic 

studies is typically set to p < 5 × 10−8. In 2004, the first two LOAD GWASs resulting in 

significant findings confirmed the APOE locus as a significant risk factor [18, 19]. 

Following this discovery, subsequent GWASs were plagued by difficulty in finding novel, 

non-APOE loci, likely due to (1) small sample sizes, (2) small effect sizes of the yet-to-be-

discovered markers, and (3) low coverage of genome-wide markers by the genotype chip 

employed. Nonetheless, 2 years later, two GWASs were published reporting genome-wide 

significance of CLU [20, 21]. In addition, these reports identified CR1 [20] and PICALM 
[21] as additional susceptibility loci. In 2010, CLU and PICALM were identified again, 

while additionally identifying BIN1 and a locus including XOC3L2/MARK4/BLOC1S3 
[22]. The next year, the Alzheimer’s Disease Genetic Consortium (ADGC) newly identified 

additional risk loci: MSA4A, CD2AP, CD33, EPHA1, and replicated CR1, CLU, BIN1, and 

PICALM [23]. A companion paper found significant risk association with ABCA7, 

MS4A6A/MS4A4E, CD33, CD2AP, and replicated previous results with EPHA1 [24].

International Genomics of Alzheimer’s Project

The highest-powered GWAS to date was performed by the International Genomics of 

Alzheimer’s Project (IGAP) in 2013 [13••]. Data were incorporated from four separate 

consortia: ADGC, the Cohorts for Heart and Aging Research Consortium (CHARGE), the 

European Alzheimer’s Disease Initiative (EADI), and the Genetic and Environmental Risk 

in Alzheimer’s Disease (GERAD) Consortium for their stage 1 meta-analysis. Together, this 

study included 17,008 cases and 37,154 controls. Fourteen genomic regions, in addition to 

the APOE locus, were identified in this stage. In stage 2, 11,632 single nucleotide 

polymorphisms (SNPs) from the genomic regions prioritized in stage 1 were genotyped in 

an independent sample of 8572 cases and 11,312 controls. In the end, in addition to further 

confirming the previous susceptibility genes (ABCA7, BIN1, CD2AP, CLU, CR1, EPHA1, 

MS4A6A, PICALM, APOE4), 11 new loci were identified: SORL1, CASS4, FERMT2, 

HLA-DRB5-DRB1, INPP5D, MEF2C, CELF1, NME8, PTK2B, SLC2A4, and ZCWPW1. 

Although some of these were not previously implicated in LOAD, others such as SORL1 
have been previously studied in relation to LOAD based on biological evidence, with 

confirmation results through target-gene genetic studies [25, 26].

Implicated Pathways

Although the functional consequences of all LOAD risk genes have not been fully resolved, 

many of them cluster into a few major biological pathways. The consideration of these 

pathways can aid our understanding of genes that may work together to affect the disease 

state, create a framework for the pathophysiology of the disease, and guide exploration into 

related targets. Proteins encoded by the identified genes tend to fall in more than one 

pathway: APOE, CLU, CR1, PICALM, BIN1, and ABCA7 are part of the amyloid pathway; 

CR1, EPHA1, ABCA7, MS4A4A/MS4A6E, CD33, and CD2AP fall into the inflammation/

immune system pathways. APOE, CLU, a ABCA7 nd are part of lipid transport and 

metabolism pathways; CLU, PICALM, BIN1, EPHA1, CD33, and CD2AP in synaptic cell 

functioning/endocytosis pathways [27, 28]. The HLA locus, which plays a central role in the 

immune system, showed a strong associations at DRB1 and DRB5 paralogues (i.e., the 

genetic result of a duplication event), which encode for genes expressed in antigen-
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presenting cells, and whose protein products bind antigens accessing the endocytic route 

whereby cells internalize extracellular matter. SORL1 is intimately involved in the APP 

pathway, playing a role in the determination of APPs cleavage to Abeta [25]. PTK2B is a 

focal adhesion kinase, involved in cellular adhesion, expressed in the brain, and was also 

found to be an in vivo modulator of Tau toxicity [29]. MEF2C is also expressed in the cortex 

and known to be involved in the inflammation pathway; an assay of MEF2C binding sites 

was enriched in GWAS-implicated inflammation loci [30].

Differences in the Genetic Architecture of LOAD Between Ethnic Groups

African Americans and Caribbean Hispanics are approximately two to three times as likely 

as non-Hispanic Whites to develop LOAD [31, 32]; however, the majority of GWAS and 

sequencing LOAD studies have been concentrated in the non-Hispanic White population. 

There is evidence that the genetic architecture, or the contribution of individual genes and 

alleles to overall risk of the disease, differs between the groups [33]. For example, the effect 

of the APOE ε4 allele on LOAD risk is considerably higher in non-Hispanic Whites than 

that of African Americans [32, 34]. However, heritability rates for the disease are thought to 

be similar across ethnic groups [35]. Thus, the variability of the genetic profile impacts the 

disease similarly between ethnic groups, but the weight of specific genes and their variants is 

likely to be different. To this effect, research thus far indicates that risk genes for LOAD, 

discovered primarily through research of non-Hispanic White subjects, also confer risk in 

African American and Caribbean Hispanic individuals [14, 36, 37••].

In a study of persons of Caribbean Hispanic descent, a novel locus on chromosome 5, 

FBXL7, met genome-wide significance [15••]. While the exact role of FBXL7 is still 

unknown, F-box proteins, of which FBXL7 is a member, are thought to be involved in cell 

growth, survival, and cell death [38]. This study along with a report by Lee et al. also 

confirmed several risk loci as nominally significant in non-Hispanic Whites: CLU, 

PICALM, BIN1, CD33, FERMT2, CELF1, SLC24A4-RIN3, and ABCA7 [15••, 33]. 

Further, in a GWAS of African Americans, ABCA7 was found to be genome-wide 

significant, and CR1, BIN1, EPHA1, and CD33 [37••, 39] were replicated as well.

While the risk of several loci differs between ethnic groups, others show a more 

homogenous risk profile in genetically diverse populations. Trans-ethnic metanalyses have 

been employed in order to identify loci associated with LOAD across different ethnic 

groups. For example, a GWAS in persons of Korean, Japanese, and Caucasian descent found 

genome-wide significance with SORL1 [40]. Also, a recent investigation in Europeans, 

African Americans, Japanese, and Israeli-Arabs found PFDN1/HBEGF, USP6NL/ECHDC3, 

and BZEAP1-AS1 were genome-wide significant [41].

As is evidenced by the increase of genetic risk discoveries for LOAD over the years, 

collaboration between groups bolstering sample size is crucial to uncovering new genetic 

discoveries. In addition, studies with larger sample sizes in non-Caucasian populations will 

help increase our understanding of the genetic architecture that is shared between 

populations vs. specific to each ethnic group. It is important to keep in mind that standards 

should be set in place for every step of the research process, including diagnosis, sample 

collection, genotyping, and statistical analysis to help reduce spurious findings in the data.
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New Findings from Next-Generation Sequencing—Although GWAS has played an 

important role in the discovery of LOAD risk variants, its discovery power is limited due to 

the design of the study. Firstly, GWAS is primarily limited to capturing common variants, 

with minor allele frequencies (MAFs) in the general population greater than one/5%. These 

common variants fall mostly in intergenic or intronic regions with mostly unknown 

functional effects. Most of the identified loci are common in the population and 

characterized by small effect sizes (by definition, an odds ratio < 1.5) [24, 42]. Moreover, 

signals identified by GWAS are believed to either tag the causative common coding variants 

or to show “synthetic associations” [43], whereby less common causal variants that tend to 

occur along with one allele of a common SNP lead to overattribution of the causal role of the 

common SNP. It has been postulated that low-frequency (MAF < 5%) and rare (MAF < 1%) 

functional variants may be the missing components in the search for unaccounted heritability 

in a number of complex diseases, including LOAD [42, 44–47]. Although the “common-

disease-common-variants” hypothesis that postulated that the heritability component of 

common diseases should be variants common in the population was once in strong favor, 

recent findings support a spectrum of variant frequencies that contribute to this common 

disease, with functional, rare variants falling into this continuum. While rare in the 

population, these variants are more likely to fall in exonic regions and produce functionally 

deleterious effects [48]. Next-generation sequencing methods such as whole-exome 

sequencing (WES) and whole-genome sequencing (WGS) allow for identification of de 

novo and rare variants. Recently, studies employing next-generation sequencing have 

identified rare genetic variants within regions prioritized by GWAS [49–51] along with 

novel variants in previously unidentified genes [52••, 53••, 54•, 55].

Notably, two large, independent studies concurrently reported an association of a rare variant 

found in TREM2 [52••, 53••], encoding the triggering receptor expressed on myeloid cells 

[56]. TREM2 is known to be involved in microglial response and inflammation. The 

Arg47His SNP resulted in a large OR (~ 5) in a North American/European population [52••] 

and an OR of 2.92 in an Icelandic population [53••]. Trem2 showed significantly greater 

expression corresponding to rises in brain levels of beta amyloid in a mouse model of AD. 

The Arg47His SNP and others have been replicated in subsequent studies [57, 58].

In another example, by first utilizing WES data from families multiply affected with LOAD, 

Cruchaga et al. identified a low-frequency variant (Val232Met:MAF ~ 0.3%) in the 

phospholipase D3 gene (PLD3) segregating with the disease in two independent families. 

The authors subsequently validated this variant in sporadic LOAD employing more than 

11,000 cases and controls [54•]. The variant was associated with AD risk (OR = 2.1) and 

lower age at onset. PLD3 is highly expressed in the hippocampus and cortex, but expressed 

significantly less in neurons from AD brains. Knockdown of PLD3 significantly increases 

extracellular Abeta42 and Abeta40. While these findings are encouraging, efforts to replicate 

this finding were unsuccessful [59–61], only marginally significant [62], or significant but 

with a smaller odds ratio [63], ultimately requiring further investigation into the causative 

role of the gene in AD.

While SORL1 has been replicated as a LOAD risk gene since 2007 using GWAS, the 

potential deleterious mutations responsible of such association have been more elusive to 

Raghavan and Tosto Page 5

Curr Neurol Neurosci Rep. Author manuscript; available in PMC 2018 August 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



identify. In a targeted sequencing study of both families and case controls, 17 coding exonic 

variants were found significantly associated with LOAD [50]. Two of the rare variants 

identified segregated within families. Accompanying functional studies demonstrated 

increased Abeta40 and Abeta42 secretion when these variants were transfected into cell 

lines.

A recent probe into GWAS-identified LOAD risk genes found an excess of deleterious 

coding mutations in ABCA7 and BIN1 [49]. Recently, research efforts have identified 

additional rare variants in novel genes; these studies still need to be validated with follow-up 

studies. Sequencing in a multiply-affected family found a rare, missense variant in TTC3 
that was shared in all affected members of the family [64]. A rare variant in the gene 

TM2D3 was enriched in Icelanders with LOAD and identified as a functionally damaging 

allele [65]. Two variants in tight linkage disequilibrium in AKAP9 were found to be 

associated with LOAD in African Americans [66]. A rare coding mutation in the netrin 

receptor gene UNC5C was significantly associated with LOAD in a sample with European 

background and in vitro studies showed more cell death in human cells and rodent neurons 

possessing this variant [67].

Beyond the Single-Variant and Single-Gene Approach in Alzheimer’s Disease
—While tremendous progress has been made in the understanding of the genetic landscape 

of LOAD, the relationship between the genes and variants contributing to the risk of the 

disease remains unclear. As described earlier, a number of implicated genes fall within 

similar molecular pathways; however, most models of AD risk do not consider the effects of 

harboring multiple variants. Indeed, some of the disease’s missing heritability could be 

explained by the additive and multiplicative effects of the associated genes with one another. 

The establishment of an epidemiological framework integrating these heretofore 

independent findings will assist in a more comprehensive understanding of genetic risk for 

disease. The current efforts towards this goal have focused on two main heuristics. The first 

is an additive model, calculating a score based on an individual’s genetic profile that can 

help predict risk, and the second is a multiplicative model of relationships between genes 

(“epistasis”).

Genetic Risk Scores Predict Alzheimer’s Disease Risk and Clinical 
Progression—In addition to the large effect of APOE on LOAD risk, more than 20 GWAS 

loci have been shown to be associated with LOAD risk. Polygenic risk scores attempt to 

create a more comprehensive model by aggregating sparse information across multiple 

variants into a unique risk score. Genetic risk scores derived from GWAS have been utilized 

successfully in a number of diseases such as multiple sclerosis, height and rheumatoid 

arthritis, after their success was demonstrated in schizophrenia by the International 

Schizophrenia Consortium [68]. Scores are computed by accounting for the presence of 

disease-associated alleles per individual and aim to add predictive power to AD risk models. 

These scores may increase the predictive capabilities of genotyping, and eventually may 

serve as a tool for personalized disease for an individual. Table 1 describes the major 

findings from recent studies of LOAD polygenic risk scores.
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Most LOAD risk scores developed over the last few years rely heavily on SNP effect sizes 

and significance values originating from the IGAP GWAS. However, varied methodologies 

have been employed to compute a score that will explain the greatest amount of AD risk 

variability. The greatest methodological difference lies in the criteria used for SNP inclusion, 

resulting in scores that range greatly in the number of SNPs in the model. While the 

computation of many of these scores counts, just the SNPs that reached genome-wide 

significance in the IGAP study (i.e., 21 SNPs) [71, 72, 76•], others include many more loci. 

One recent study, for example, included more than 87,000 SNPs, employing all SNPs with a 

LOAD association p value less than 0.05 [70•]. Although such a low threshold for inclusion 

may add noise within the model, the authors hypothesize that higher power can be achieved 

by including more SNPs that confer even low-level risk.

In addition to the confirmation of the association between such scores and AD, age of onset 

has also been found to consistently decrease as the polygenic score increases [71, 74, 75, 

76•]. Naj et al. found that while APOE contributes to 3.9% of variation at age of onset, nine 

other IGAP SNPs together contribute to additional 1.1% variation [77]. The scores are also 

associated with clinical progression to AD and can predict progression from healthy controls 

[70•, 73, 75] or MCI [69] to AD. In addition, there is a relationship between higher score 

values and worsening behavioral and neuroimaging endophenotypes of the disease [73].

The predictive power of the scores is not extremely high, with values ranging between 57 

and 78%. However, Escott-Price et al. posit that given the constraints of what is known 

about the heritability and prevalence of Alzheimer’s disease, area under the curves (AUCs) 

near 0.78 may capture close to 90% of what can actually be predicted for LOAD risk [78]. It 

should be noted that the inclusion of APOE locus in all models increases the predictive 

accuracy of the scores. In two studies, the AUC increases by approximately 0.10 when 

APOE4 is added to the model, this large increase is not surprising given the known high 

effect size of APOE4 [70•, 71]. While it is clear that APOE plays a large role in the effect of 

these scores, nonetheless, the addition of polygenic risk further strengthens the models [72, 

75, 77] by adding to the predictive power.

Polygenic risk scores, which aim to predict risk based on the risk variant profile per 

individual, will be important in identifying subjects at high risk for developing AD and aid 

in the timely diagnosis of those affected by the disease. Moving forward, it will become 

important for the field to converge on an established polygenic score model by testing across 

different cohorts to aid in reproducibility of results.

Epistasis—While polygenic scores additively account for the independent risk effects on 

the disease across multiple loci, epistasis measures the interactive effects between one gene/

variant and one or more other genes/variants. Thus, genetic epistasis captures effects that can 

be observed only when two or more genes interacts, while the latters’ main effects can be 

absent. It is well established that genes constantly interact, and that these interactions are 

critical for gene regulation, signal transduction, biochemical networks, etc. Thus, if a locus 

is examined as a single entity, without acknowledging its potential interactions, its 

contributions in impacting the disease might be missed. Although of great potential interest, 

robust identification of gene-gene interactions has been relatively unsuccessful. Studies of 
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epistasis remain difficult because of both false positives and false negatives, which can arise 

from extensive multiple comparisons and low power, respectively. Typically, the detection of 

epistatic relationships is initiated through biological and/or statistical methods. While the 

concordance of evidence from both may lead to confidence in the model, statistical epistasis 

does not imply biological epistasis and vice versa. For example, the presence of a statistical 

epistasis may occur without the presence of a physical interaction between the genes. Here, 

we focus on statistical epistasis, in which the interaction of genetic variants is significantly 

associated with the phenotype, while the details of current biological epistasis in the context 

of LOAD are beyond the scope of this review.

Beginning in the early 2000s, two primary studies of epistatic relationships were reported. 

These showed an interactive effect in LOAD between genes falling in the interleukin 

pathway (IL6 and IL10) [79], and another study reported significant findings between genes 

that are part of the iron transport pathway (TF and HFE) [80]. Both of these molecular 

mechanisms had been previously reported to be involved in LOAD, and later work replicated 

these interactions in independent samples [81, 82].

More recent epistastic findings between LOAD loci are shown in Table 2. Ebbert et al. 

reported significant interactions between variants within GWAS-identified LOAD genes: 

CLU-MS4A4E and CD33-MS4A4E [85] although only the CLU-MS4AE interaction was 

later replicated by an independent research group [88]. Searching for epistatic effects within 

known LOAD loci has uncovered genetic relationships associated with the disease’s 

endophenotypes, or intermediate traits associated with the disease, such as amyloid 

deposition [84] and brain atrophy [87] as surrogated for AD. Other studies have restricted 

their investigation to specific sets of genes beyond those identified by GWAS. For example, 

when considering the vacuolar protein sorting 10 (VPS10) domain receptor family of genes, 

a set of loci extensively implicated in LOAD by functional and genetic investigations 

including sortilin, SorL1, SorCS1, SorCS2, and SorCS3, interactions were detected between 

SORCS1, SORCS2, and SORCS3 [83].

Genome-wide exploration for epistatic effects has resulted in conflicting and rarely 

replicated results. Employing 13 data sets from the ADGC, Hohman et al. found a number 

of interactive effects including SIRT1 × ABCB1, PSAP × PEBP4, and GRIN2B × ADRA1A 
[89]. However, the most validated epistatic finding in LOAD also came from a genome-wide 

interaction search in a large French cohort (N ~ 9000). An interacting SNP pair was found 

within the KHDRBS2 and the CRYL1 genes and was further replicated in an independent 

German cohort [86••]. These genes did not show any main effects, significant associations 

with AD on their own, and have not been previously associated with LOAD. Transcriptome 

analysis also revealed negative correlation between both genes’ expression in the temporal 

cortex and cerebellum.

These studies have shown interactive effects in both genes widely known to be associated 

with LOAD and also in genes not previously shown to be associated with the disease. This 

latter group of genes is only significantly associated with AD as a part of an interaction gene 

pair, and therefore does not show any effect when analyzed singularly. Thus, epistatic effects 
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may explain both why some gene effects examined in isolation do not replicate, and also 

may explain a portion of the missing heritability of AD.

Conclusions

Alzheimer’s disease research has advanced significantly over the last 25 years, and has 

benefitted from modern scientific advances, most recently including high-throughput 

sequencing of both the exome and the whole genome. In parallel, sample sizes have 

increased, and in turn, the power of studies has improved, allowing for new findings in 

GWAS. Importantly, continued collaborations between research groups and access to data 

will ensure consistency, replicability, and increased scientific findings. Novel methodologies 

will promote the discovery of polygenic and epistasis interactions and associations that 

explain what is yet unknown of the genetic heritability of Alzheimer’s disease.
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Table 2

Recent studies involving epistastic relationship between genetic loci that contribute to AD or AD 

endophenotype risk

Study Phenotype Epistatic relationship Statistics

Reitz et al. (2013) [83] AD 4 LD blocks within SORCS1, SORCS2, and 
SORCS3 demonstrate epistasis.

No epistasis met correction for 
multiple comparisons, but few 
interactions were higher than chance.

Hohman et al. (2013) 
[84]

Amyloid deposition BIN1 (rs744373)-PICALM (rs3851179)a p = 0.0252

BIN1 (rs7561528)-PICALM (rs3851179) p = 0.005

 Ebbert et al. (2014) 
[85]

LOAD CLU-MS4AE SF = 3.81; p < 0.016

CD33-MS4AE SF = 5.31, p < 0.003

Gusareva et al. (2014) 
[86••]

AD KHDRBS2-CRYL1 p = 0.006; replication p = 0.036

 Koran et al. (2014) 
[87]

Inferior lateral 
ventricle size, bilateral

SYNJ2-PI4KA Right: p = 9.13 × 10−12

Left: p = 8.17 × 10−13

 Ebbert et al. (2016) 
[88]

LOAD CLU-MS4AE SF = 2.23, p = 0.0004

Hohman et al. (2016) 
[89]

LOAD SIRT1 × ABCB1 OR = 1.36, p = 2.7 × 10−9

PSAP × PEBP4 OR = 1.25, p = 1.1 × 10−9

GRIN2B × ADRA1A OR = 0.77, p = 6.67 × 10−9

SF synergy factor, a metric of the strength of allelic interactions, OR odds ratio

a
Interactions between 2 SNP sets in BIN1-PICALM
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