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Abstract

Alzheimer’s disease (AD) is a genetically heterogeneous neurodegenerative disorder caused by 

fully penetrant single gene mutations in a minority of cases, while the majority of cases are 

sporadic or show modest familial clustering. These cases are late-onset and likely result from the 

interaction of many genes and the environment. More than thirty loci have been implicated in AD 

by a combination of linkage, genome-wide association and whole genome/exome sequencing. We 

have learned from these studies that perturbations in endolysosomal, lipid metabolism and 

immune response pathways substantially contribute to sporadic AD pathogenesis. We review here 

current knowledge about functions of AD susceptibility genes, highlighting cells of the myeloid 

lineage as drivers of at least part of the genetic component in late-onset AD. Although targeted 

resequencing utilized for the identification of causal variants has discovered coding mutations in 

some AD-associated genes, a lot of risk variants lie in non-coding regions. Here we discuss the use 

of functional genomics approaches that integrate transcriptomic, epigenetic and endophenotype 

traits with systems biology in order to annotate genetic variants, and to facilitate discovery of AD 

risk genes. Further validation in cell culture and mouse models will be necessary to establish 

causality for these genes. This knowledge will allow mechanism-based design of novel therapeutic 

interventions in AD and promises coherent implementation of treatment in a personalized manner.
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Introduction

Alzheimer’s disease (AD) is the most common form of neurodegeneration characterized 

clinically by the presence of short-term memory loss, impaired judgement and problem 

solving as well as changes in mood and behavior, together resulting in significant familial 

and social burden. Pathologically AD is characterized by the accumulation of extracellular 

amyloid-β (Aβ) plaques and hyperphosphorylation of tau protein aggregated in 

intraneuronal neurofibrillary tangles (1). There is also substantial neuronal loss in 

hippocampus and entorhinal cortex (2), and marked gliosis (3). AD affects approximately 

5% of people over 65 years old and prevalence doubles with every 5 years of increasing age 

(4). Initial insight into the pathogenesis of AD came from genetic studies of early-onset 

familial forms that are caused by mutations in amyloid-β precursor protein (APP) (5), 

presenilin 1 (PSEN1) (6) and presenilin 2 (PSEN2) (7, 8) inherited as an autosomal 

dominant trait (9). These findings led to the proposal of “amyloid cascade hypothesis”, 

which postulates that dysregulation of Aβ peptide production and degradation underlies the 

pathological and behavioral changes observed in AD patients (10). However, the majority of 

cases are late-onset AD (LOAD) and sporadic with an unknown cause. According to twin 

studies the heritability of AD is ~58% (11), suggesting that both genetic and non-genetic 

variation influence disease, e.g. environmental and epigenetic factors, somatic mutations. 

Indeed, a study of identical twins discordant for AD has shown reduced DNA methylation in 

temporal neocortex neuronal nuclei of the AD-affected twin (12).

Early-onset Alzheimer’s Disease

The main factors influencing early-onset AD are coding mutations or copy number changes 

in genes that regulate Aβ production and degradation. Aβ is generated by sequential 

cleavage of APP by β- and γ-secretases. Overproduction of Aβ is a recognized AD risk 

factor observed in Down syndrome cases that possess chromosome 21 trisomy 

encompassing APP locus (9), and APP duplication cases because of copy number changes 

(13, 14). Most APP pathogenic mutations occur around the Aβ cleavage sites affecting APP 

processing by secretases, e.g. APP-KM670/671NL (15) or APP-E682K (16) at the β-

secretase cleavage site, which increase Aβ production. Mutations in the Aβ sequence have 

the potential to affect its biophysical properties, such as hydrophobicity and aggregation 

rate, while C-terminal Aβ mutations at the γ-secretase site influence the Aβ42 to Aβ40 ratio 

(17). Mutations in PSEN1 and PSEN2 that form the active core of γ-secretase complex, 

affect endopeptidase- or carboxypeptidase-like activity, shifting production of Aβ40 and 

Aβ42 to longer and more neurotoxic species, e.g. Aβ43 in the case of PSEN1-R278I (18, 

19) or PSEN1-L435F (20), which also shows a dramatic reduction in total Aβ production. 

Thus, the toxic dysfunction mechanism is used to describe AD-related genetic changes in γ-

secretase (19). Indeed, evaluation of heterozygous null PSEN1 mutation in genome-edited 

induced pluripotent stem cells (hiPSc)-derived human neurons shows reduced level of γ-

secretase, but no effect on Aβ levels, supporting the toxic gain of function model (21). 

Interestingly, a study of 138 mutations in PSEN1 concluded there is no correlation between 

Aβ42/Aβ40 ratio and AD age-at-onset, based on the in vitro assay used in this study, 

suggesting that Aβ levels may not be the sole driving factor and that other genetic and 
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environmental factors contribute to disease progression (22). To date sequencing of β-

secretase (BACE1) has not identified mutations that influence AD risk (23). However, two 

rare coding variants in α-secretase ADAM10 (Q170H and R181G) have been reported in 

familial LOAD (24), and both mutations show impaired activity due to incorrect ADAM10 

folding and elevated plaque load in APP transgenic mice (25).

Late-Onset Alzheimer’s Disease

Genetic risk factors play a critical role in AD susceptibility. The “common disease – 

common variant” hypothesis proposes that a combination of multiple common variants and 

environmental factors underlie disease risk (26). Technological advances in high-throughput 

genotyping and sequencing allow testing of tens of thousands of control and patient samples 

that can be used to conduct genome-wide association studies (GWAS). GWAS report genetic 

variants and loci that are enriched in populations with a disease trait compared to unaffected 

individuals. Several GWAS of AD were performed (27–31) and later combined in a meta-

analysis (32) reporting more than twenty AD susceptibility loci in European populations 

(33). APOE is the most significant risk factor confirmed in all studies across populations. 

While the largest GWAS have been performed in European populations, a GWAS in African 

Americans identified variants in APOE and ABCA7 as genome-wide significant (34). A 

GWAS in Asian populations identified AD-associated genome-wide significant variants in or 

near APOE and SORL1 (35). Given the vastly different sizes of the datasets in these GWAS, 

European cohorts remain the most powerful for gene discovery. Nevertheless, it is important 

to establish the contribution of these loci to risk in other populations. Half of identified 

susceptibility loci have minor alleles that are protective, thereby increasing AD age-at-onset. 

Furthermore, the known risk loci do not fully explain the genetic component of AD 

estimated at 58% based on twin studies (11).

Functional Genomics

GWAS are extremely useful as a way to identify association for multifactorial traits such as 

AD that have genetic and environmental components and don’t rely on family history like 

linkage studies. However, large sample sizes are required and most signals have small effect. 

Furthermore, associations are reported for an index single nucleotide polymorphism (SNP) 

with the lowest P value, but in reality can be driven by any variant in the linkage 

disequilibrium (LD) block (33). Loci identified by GWAS often contain multiple genes that 

could all contribute to disease association, or only one of the genes in the locus could be 

causative. As a result labeling a gene within a locus in Manhattan association plots could be 

misleading (Figure 1), since it suggests assignment of causation, which is not possible based 

on GWAS alone.

It is the goal of functional genomics to make sense of genomic and transcriptomic data to 

uncover the mechanisms underlying SNP associations with disease. Foremost, association of 

genetic variation with AD endophenotypes that characterize disease progression and 

correlate with pathology can help prioritize SNPs that modify AD risk. As such, 

cerebrospinal fluid (CSF) levels of Aβ42 and tau/p-tau181, and pathological traits in brain 

tissue such as plaque and tangle density, brain atrophy and cognitive impairment have been 
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used as quantitative traits in genetic association analyses (36). For example, APOE4 
genotype is the strongest marker associated with accelerated grey matter atrophy as well as 

lower Aβ42 and higher tau/p-tau181 levels in CSF (37–39).

Genomic regions where differences in gene expression are associated with SNP genetic 

variation are named expression quantitative trait loci (QTL) (40). Gene expression has been 

analyzed in normal human tissue (GTEx Consortium (41)), regional brain tissue 

(BRAINEAC database (42)) and prefrontal cortex of aging and demented people 

(ROS/MAP project (43, 44)). The disadvantage of these datasets is that tissues are not 

homogenous and thus underrepresented cell populations may be beyond the resolution of 

current datasets. Indeed, attempts to identify brain tissue eQTLs corresponding to AD 

GWAS loci have not produced compelling associations, with marginal results that do not 

replicate across datasets. Analyses of primary cell-type specific expression from the Immune 

Variation (ImmVar) project have shown that AD susceptibility alleles are enriched among 

eQTLs in monocytes, but not T cells (45). Based on this observation, evaluation of eQTLs in 

primary cells at baseline and under stimulated conditions in patient samples may help 

decipher the causal relationship between genetic and phenotypic variation.

Analyses of genomic sequence can provide information to categorize functional SNPs if 

found in regulatory regions (Figure 1), which include any of the elements involved in 

transcription and translation, such as enhancers, promoters, untranslated regions, introns, 

histone marks, etc. and lead to changes in chromatin state causing changes in expression or 

mRNA splicing captured by expression, splicing and methylation QTL (46, 47). AD-related 

methylation changes have been detected near known GWAS genes ABCA7 and BIN1 and 

novel genes ANK1, RHBDF2, CDH23 and RPL13 (48, 49). A study of chromatin state 

alterations in human samples found an upregulation of immune response genes and 

regulatory regions that are targeted by SPI1, a myeloid specific transcription factor (50). 

Furthermore, protein QTL can be used to map loci that affect protein abundance, which 

when coupled with GWAS can reveal networks of protein-protein interactions (51). Other 

epigenomic datasets are being generated by consortia such as PsychENCODE (52), the NIH 

ROADMAP Epigenomics (53), BLUEPRINT Epigenome (54), Accelerating Medicines 

Partnership for AD (AMP-AD) (55) and CommonMind (56), and will facilitate large-scale 

integrative functional genomics analyses.

A complementary approach to functional genomics uses systems biology to infer multi-scale 

networks, which are effective in identifying co-expressed gene modules enriched in 

functional categories. These gene modules can be used to generate hypotheses for further 

experimental testing. However, prior knowledge is rarely verified experimentally and 

annotations lack context- and cell-specific functions of each gene, thus prohibiting modeling 

of dynamic processes, such as disease progression. Analyses of networks in samples from 

AD patients versus control individuals revealed differentially regulated nodes of immune-

related genes, governed by TYROBP (57), an adaptor protein DAP12 expressed in microglia 

that is required for TREM2 signaling. Whole genome sequencing in patients with sporadic 

early-onset AD has identified rare coding variants in TYROBP that perturb expression levels 

of TREM2 and TYROBP in vitro (58), confirming the significance of this module in AD 

risk. A proteomic study of cortical tissue from AD patients reported enrichment of AD 
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GWAS candidates in microglial protein networks, supporting a causal role for myeloid cells 

in AD (59).

While GWAS enable the identification of common variants, usually with small effect size, 

other approaches are needed to identify rare variants. The most commonly used approaches 

are whole exome (WES) and whole genome sequencing (WGS). WGS provides the most 

comprehensive survey of the genome including regulatory regions not covered by WES. 

Like GWAS these studies may be performed in large unrelated cohorts, in isolated 

populations or in families. When studying rare variants, one advantage of families is that a 

rare variant discovered in one family member will be enriched in the remaining family 

members allowing analysis of segregation with disease. Most of the published WES/WGS 

studies have been relatively small and have focused on families/isolated populations. 

deCODE Genetics has used WGS in the Icelandic population to identify rare variants in APP 
(60), TREM2 (61, 62) and ABCA7 (63) that influence risk of AD. The TREM2 (64, 65) and 

ABCA7 (66, 67) findings have been widely replicated. Other studies using late onset AD 

families have identified PLD3 (68), UNC5C (69) and AKAP9 (70), but these await 

replication in larger cohorts.

Analysis of GWAS and gene expression data has highlighted four pathways enriched for AD 

association: cholesterol metabolism, immune response, regulation of endocytosis and protein 

ubiquitination (71). Below we discuss a selection of genes that fall into these categories 

reviewing experimental evidence for their contribution to AD (Table 1).

Lipid Metabolism

Apolipoprotein E (APOE) is the most important genetic AD risk factor influencing 

prevalence and age-at-onset. APOE association was originally identified from linkage 

studies and explains 15–20% of AD heredity. Two coding SNPs define six APOE genotypes 

– ε2/ε2, ε2/ε3, ε3/ε3, ε2/ε4, ε3/ε4, ε4/ε4 listed from lowest to highest risk for AD (72, 73). 

APOE is the major apolipoprotein expressed in human brain primarily by astrocytes, is 

involved in cholesterol homeostasis and has been extensively studied in AD (74). APOE 
influences Aβ plaque load in an isoform-specific manner in APP transgenic mice, with 

highest amyloid-β deposition in human knock-in APOE4 genotype lines compared to 

APOE3 and APOE2 (75). This effect can be explained by decreased Aβ clearance and/or 

facilitation of Aβ fibrillogenesis that is due to isoform-dependent differences, because 

APOE4 shows lower binding of Aβ and is degraded more rapidly through lipoprotein 

receptors (74, 76, 77). APOE contributes to synapse pruning by astrocytes (78) and together 

with Clusterin (CLU) is induced after injury in astrocytes and microglia promoting neuronal 

survival (74). CLU is primarily expressed in astrocytes and is involved in lipid transport, 

apoptosis and immune response. The minor allele of rs1113600, located in the intron of 

CLU is associated with reduced AD risk (28, 29), however, no eQTL was found in the locus 

(79).

CLU can bind Aβ and influence fibril formation in vitro. Deficiency of either APOE or CLU 
in APP transgenic mice does not affect Aβ deposition, but significantly reduces fibrillar Aβ 
in brain. Interestingly, double APOE and CLU knock-out increases plaque load, possibly 
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through reduced clearance of Aβ in brain parenchyma corroborated by higher Aβ levels in 

CSF (80). The risk allele of rs1113600 has been associated with lower white matter integrity 

(81) and reduced connectivity between hippocampus and frontal cortex (82) in healthy 

individuals. Targeted resequencing of CLU in one study identified rare coding variations in 

the β-chain that were enriched in AD patients independent from rs1113600 association (83). 

These non-synonymous mutations and small insertion-deletions were subsequently shown to 

be associated with altered cellular localization and diminished extracellular secretion of 

CLU (84).

ATP-binding cassette transporter A7 (ABCA7) is universally expressed in brain and 

involved in lipid transport modulating lipid efflux. ABCA7 is a highly replicated genetic risk 

factor for AD in individuals of European and African American ancestry (30, 32, 34). Deep 

sequencing in African Americans carrying risk and protective alleles at ABCA7 led to the 

identification of a 44 base pair deletion in LD with the high risk allele, which results in a 

frameshift (85). Other analyses in European descent cohorts have identified several rare 

variants in ABCA7 resulting in frameshift mutations and deletions, missense or splicing site 

variants that are enriched in AD cases, presumably leading to early stop codons and loss-of-

function alleles (63, 86). Overexpression of ABCA7 potentiates phagocytosis in 

macrophages (87) and decreases neuronal APP processing in vitro (88). ABCA7 deficiency 

accelerates amyloid-β deposition in APP-J20 (89) or APP/PS1 (90) mouse models of 

amyloidosis without effect on cognition, and in humans loss-of-function alleles are 

associated with cortical and hippocampal atrophy (91).

Regulation of Endocytosis

Cellular trafficking has long been implicated in AD pathogenesis corroborated by the 

association of the sortilin-related receptor L (SORL1) with AD in case-control studies (92). 

LOAD GWAS identified rs11218343, a common variant in SORL1 in European (32) and 

Asian populations (35). Rare variants in SORL1 were also found in several families with 

autosomal dominant early-onset AD (93). Overexpression of SORL1 in cell lines reduces 

Aβ production through increased retention of APP in the Golgi (94), while overexpression 

of the AD associated SORL1-G511R variant results in decreased binding and turnover of Aβ 
(95). Ablation of SORL1 in APP/PS1 mice leads to increased plaque deposition, similar to 

the effect of SORL1 KO on endogenous murine Aβ production (96).

Bridging integrator 1 (BIN1) participates in the endocytic trafficking of synaptic vesicles 

through membrane remodeling in neurons (97). The index SNP rs6733839 in the BIN1 locus 

has been associated with AD risk in different populations (32, 98, 99). Fine-mapping of the 

BIN1 locus identified rs59335482, a 3 base pair insertion ~28 kb upstream of BIN1, that is 

associated with higher AD risk, increased transcriptional activity in vitro using a luciferase 

assay, and higher BIN1 levels (97). However, contrary evidence demonstrated that knock-

down of BIN1 increases tau aggregation in neurons through an enlargement of Rab5-positive 

vesicles (100), and reduces lysosomal degradation of BACE1 thereby increasing Aβ 
production (101). Since BIN1 is largely expressed in mature oligodendrocytes and white 

matter (102), it is unclear how it could affect AD pathology in neurons.
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CD2-associated protein (CD2AP) is an adaptor and scaffolding protein, and its locus is an 

AD risk factor identified through association of an intronic variant rs10948363 (27, 30, 32). 

CD2AP affects APP endocytosis in neurons, but shows a mild effect on Aβ levels in vitro 
and no effect on plaque load in APP/PS1 mice with CD2AP haploinsufficiency (103, 104). 

CD2AP is expressed in endothelial cells and ablation of CD2AP in mice leads to reduced 

blood-brain barrier integrity, suggesting its contribution to AD may be APP independent 

(105).

Phosphatidylinositol-binding clathrin assembly gene (PICALM) is nominally associated 

with AD through protective variants rs10792832 and rs3851179, which are located 40 kb 

upstream of PICALM, which is the nearest gene (29, 32). Studies of PICALM in neuronal 

cells show that it regulates cleaved APP C-terminal fragment degradation via 

autophagosomes (106) and clathrin-mediated endocytosis of gamma-secretase (107). 

However, the effect on Aβ levels in vitro and amyloid-β load in vivo is variable and may 

depend on the level of APP overexpression (106, 108, 109). Interestingly, PICALM is 

reduced in brain endothelium from AD patients, and PICALM haploinsufficiency in an AD 

mouse model led to a reduction in Aβ clearance through the blood-brain barrier and 

concomitant increase in amyloid-β load (110).

These genes suggest a defect in synaptic function, further supported by the association of 

MEF2C and PTK2B loci with AD progression (32). MEF2C and PTK2B are reported to be 

involved in regulation of hippocampal synapses and long-term depression, respectively (111, 

112), although the functional consequences of variation in these loci awaits validation. One 

should interpret these data with caution, as validation was mostly performed in cell lines or 

neurons in relation to APP and secretase trafficking. However, SORL1, BIN1, CD2AP and 

PICALM gene expression is substantial in microglia (113), and in the context of AD 

defective internalization of Aβ, APOE, CLU and tau has been reported.

Immune Response

The third group of genes involved in AD pathogenesis based on genetic studies belongs to 

immune system pathways. Complement receptor 1 (CR1) is a highly replicated AD risk 

factor associated with an intronic SNP rs6656401 but also in high LD with 2 other genes of 

the complement family (28, 32). CR1 is expressed on blood cells and microglia, and its 

function is to inhibit complement activation through C3b and C4b (114). The complement 

system is activated in AD (115), while in mice challenged with oligomeric Aβ it leads to 

increased synapse elimination by phagocytic microglia (116). Intragenic copy number 

variation in CR1 is associated with AD risk, which functionally results in overproduction of 

the longer CR1 isoform increasing the number of C3b/C4b sites, which might explain the 

AD risk in this locus (117).

CD33 is a receptor for sialic acid-modified proteins that is found on myeloid and microglia 

cells and is involved in the anti-inflammatory immune response. Association of CD33 with 

AD risk was identified by GWAS through rs3865444 located in the promoter region (27, 

30). Although CD33 was only suggestively associated with AD risk in the largest meta-

analysis of AD GWAS (i.e. not genome-wide significant) (32), there is strong evidence from 
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functional studies that changes in CD33 expression affect Aβ levels in vivo. The exon 2 

polymorphism rs12459419 in tight LD with rs3865444 has been proposed to be the causal 

variant modulating alternative splicing of CD33 (118, 119). Increased inclusion of exon 2 in 

the presence of the rs3865444 risk allele produces full length CD33 with an IgV domain, 

which likely mediates sialic acid binding leading to receptor activation. At baseline CD33 
inhibited uptake of Aβ42 in mouse primary microglial cells and CD33 ablation in APP/PS1 

mice alleviated plaque pathology (120). In accordance, monocytes from rs3865444 risk 

allele carriers show an increase in CD33 expression and reduced capacity to phagocytose 

Aβ, which correlates with an increase in brain Aβ load (121).

Inhibition of CD33 signaling decreases surface expression of triggering receptor 2 on 

myeloid cells (TREM2) (122). Several studies have reported that rs75932628, which results 

in the TREM2 missense variant (R47H), increases AD risk by about two-fold (61, 62). 

TREM2 was first identified in Nasu-Hakola disease patients, a rare recessive disorder 

associated with an frontotemporal dementia-like syndrome (123), making TREM2 a 

candidate gene for targeted sequencing in AD patients. TREM2 expression is increased in 

response to brain injury in AD (124, 125) and is found on both resident microglia and 

infiltrating monocytes and macrophages (126). Variants in TREM2 reduce transport and cell 

surface expression of the full length protein, thereby decreasing cell surface shedding and 

activity, which functionally results in a decrease of phagocytosis (127). TREM2 is a pattern 

recognition receptor that binds phospholipids, such as phosphatidylserine exposed on cells 

undergoing apoptosis (128), as well as APOE- and Clusterin-containing lipoprotein particles 

(129, 130), promoting phagocytosis of Aβ complexed in these lipoprotein particles (131). 

Deficiency of TREM2 in AD mouse models affects amyloid-β deposition in a temporal 

manner resolving pathology at early stages, but showing aggravated plaque load and 

impairment in microglia viability, proliferation and migration in aged mice (128, 132).

There are other loci supporting the role of microglial/myeloid cells in AD, however, more 

work is required to establish their functional significance in AD risk and disease 

progression. For example, the MS4A6A locus (rs983392 (32)) including 5 other members of 

the MS4A gene family, which are specifically expressed in microglia and regulate cell 

activation (133). The HLA-DRB1/HLA-DRB5 locus containing 9 genes (rs9271192 (32)) of 

the major histocompatibility complex II family are involved in immunity. The ZCWPW1 
locus contains 7 genes (rs1476679 (32)) including PILRA and PILRB immune receptors 

involved in monocyte and neutrophil infiltration and response during inflammation (134, 

135). A recent study that used the fine-mapping approach discussed above to dissect the 

causal gene in the CELF1 locus, which includes 13 genes (rs10838725 (32)), reports 

identification of SPI1 as a master regulator of endophenotypes and genes associated with 

AD (136). A large meta-analysis of exome chip data has also identified novel microglia-

expressed genes associated with AD risk, ABI3 and PLCG2 (137).

Future Directions

Although some progress has been made in understanding the underlying pathogenic 

mechanisms associated with GWAS loci, this needs to be a major focus of future research 

using methods outlined in this review (Figure 1). If GWAS samples are enlarged, it is clear 
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from other phenotypes that additional loci will be identified. Two recent large meta-analyses 

of AD samples have indeed identified additional risk loci (138, 139). A lesson from GWAS 

is that we need to be bold – large datasets will be needed to find strong evidence for 

individual genes/variants, identified in whole genome/exome sequencing projects. Although 

novel large effect size associations with AD provide valuable mechanistic insight into 

disease pathogenesis, association signals should be carefully assessed for the frequency, 

directionality and effect size that may change dependent on the methods used for patient 

stratification and variant identification by sequencing or genotyping.

Definitive verification of functional variants will come from in vivo and in vitro functional 

studies using mouse models and hiPSc-derived neurons, astrocytes and microglia cells that 

enable us to model sporadic AD in relevant cell types and predict therapeutic interventions 

based on mechanism. Functional non-coding AD variants can be tested using genome 

editing tools, such as CRISPR/Cas9 (140), that offer controlled genetic background to 

dissect the effect size. Evaluation of GWAS variants with protective effects may provide 

additional information about the pathways that can counteract disease. For example, a 

protective APP-A673T mutation identified in the Icelandic population leads to decreased Aβ 
production in vitro compared to APP-A673V, a LOAD mutant at the same amino acid that 

increases Aβ production (60). It remains to be shown if AD protective variants act by 

reversing detrimental phenotypes or boosting cell activity to counteract the pathology, which 

may have implications for designing AD therapies.

Conclusions

The application of functional genomics approaches will finally provide focus for researchers 

bombarded with the wealth of information from GWAS, transcriptome, proteome and 

metabolome studies in AD cohorts. Although we may not see an expansion of the number of 

GWAS common variants associated with AD, whole exome/genome sequencing in specific 

cohorts will lead the way for discovery of new AD-associated genes. Understanding the 

mechanisms underlying LOAD genes has shifted our attention from β-amyloid metabolism 

to other cellular pathways and the contribution of myeloid cell function in AD pathogenesis. 

Characterization of functional AD-associated variants will broaden our understanding of 

mechanisms underlying AD progression that is now studied in the context of cell-cell 

interactions of the brain. In the future it will be important to see how risk variants align to 

cell specific pathways and predict master regulators of protein hubs that are dysfunctional in 

AD in order to develop novel therapies.
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Figure 1. Schematic representation of a multidimensional approach for fine-mapping risk 
variants in Alzheimer’s disease-associated loci
(A) An illustration of a locus-specific association signal from a genome-wide association 

study (GWAS) of Alzheimer’s disease (AD), e.g. Manhattan association plot (top panel). 

Each dot represents a single nucleotide polymorphism (SNP), with the X-axis showing the 

chromosomal position and Y-axis showing the association P values on the -log10 scale. SNPs 

are colored (in red) by pairwise linkage disequilibrium (LD) pattern with the most strongly 

associated SNP. The regional association signal from a quantitative trait loci (QTL) study in 

specific cell populations (e.g., peripheral monocytes or macrophages) (middle panel), that 

may show expression, splicing and methylation QTL. The functional annotation of the 

genome with histone marks and the genomic position with the genes (bottom panel), e.g. 

H3K4me3 marks promoter regions, H3K27ac marks enhancer regions.

(B) Classification of SNPs in coding and non-coding regions by mechanism of action that 

may affect expression, splicing or protein function due to mutations, insertions and 

deletions. The coding variants change protein sequence. The non-coding variants may 

influence protein levels by modulating transcription factor binding at the intronic/distal 

enhancer or promoter regions, changing histone methylation and acetylation, splicing, 
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miRNA, long noncoding RNA binding and stability, or structural variation. TF: transcription 

factor. UTR: untranslated region.

(C) Gene co-expression network and pathway analysis using large-scale transcriptomic or 

proteomic datasets.

(D) Endophenotypes relevant to AD: amyloid-β (Aβ) plaque load measured with positron 

emission tomography (PET) tracer, Aβ42 and tau/p-tau181 levels in cerebrospinal fluid 

(CSF), neuropathological changes.

(E) Functional validation of genetic hits using genome editing tools (e.g. CRISPR/Cas9) in 

cell culture and mouse models.

(F) Integrating AD GWAS with functional genomics approaches can help prioritize 

candidate genes, biological pathways and cell types, which in turn can help generate novel 

hypothesis for experimental validation. Genes listed are discussed in the review.
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