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Abstract
Purpose Cumulus cells (CC) play important roles in oocyte
development and cumulus expressed genes can be used as
markers for oocyte quality. This study aimed to investigate
temporal changes in the expression of cumulus marker genes
during oocyte maturation as possible biomarkers of embryo
developmental competence in ovine.
Methods Gene expression was assessed in the CC of the
BCB+ (developmentally competent) and BCB- (developmen-
tally poor) oocytes at 0, 12, and 24 h of in vitro maturation
(IVM). Further, the association between the temporal cumulus
gene expression and in vitro oocyte and embryo development
was assessed.
Results The maturation and blastocyst formation rates were
found significantly greater for the BCB+ than the BCB- oo-
cytes. At the 0 h of IVM, a significant upregulation in the
expression of PTGS2, STAR, SDC2, LHR, FGF2, BCL2,
IL7RA, HSPA1A, and IFNT was observed in the CC of the
poor (BCB-) as compared to the competent (BCB+) oocytes.
In contrast, it was observed that as maturation progressed, the
cumulus expression of most of the favorable genes was re-
duced and was found significantly downregulated at the com-
pletion of IVM in the poor as compared to the competent
oocytes.
Conclusions The study revealed noticeable differences in
the cumulus gene expression profile at different stages of
IVM between ovine oocytes of differential developmental

ability. The results indicated that the loss of cumulus gene
expression along the maturation period in the poor oo-
cytes was related to their intrinsic poor quality in the
ovarian follicle.
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Introduction

The outcome of in vitro fertilization (IVF) is largely
influenced by the developmental competence of oocytes.
Competence is the ability of an oocyte to complete the
process of maturation, to be fertilized and to support the
early embryonic development. It is suggested that al-
though culture conditions throughout in vitro embryo
production may have a modest influence on the devel-
opmental potential of the early embryo, the quality of
the oocyte at the start of the process is the key factor
determining the proportion of oocytes developing to the
blastocyst stage [1]. During follicular development and
ovulation, oocytes are surrounded by cumulus cells
(CC). These cells play important roles in acquiring com-
petence of an oocyte during the process of maturation
[2] and oocyte developmental competence is adversely
affected if CC are removed before maturation [3]. One
of the major functions of CC is the channeling of me-
tabolites and nutrients to the oocyte, which is required
for germinal vesicle breakdown and subsequent devel-
opment to metaphase-II stage [1].

The assessment of the expression of CC marker genes as
predictors of oocyte/embryo developmental competence
has gained importance in recent years. Several cumulus
expressed genes are crucial for oocyte maturation and
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development and assessment of their expression can pro-
vide a reliable method for choosing oocytes with greater
potential for blastocyst formation and live birth [4]. The
expression of gremlin 1 (GREM1), hyaluronan synthase 2
(HAS2), prostaglandin-endoperoxide synthase 2 (PTGS2),
and steroidogenic acute regulatory protein (STAR) genes in
CC correlates with the developmental ability of oocytes
and morphology of embryos [5–7]. The receptors of FSH
and LH are expressed in CC [8, 9], and it is proposed that
LH contributes towards oocyte maturation exclusively
through the cumulus expressed receptors [10, 11]. The cu-
mulus expression of B-cell CLL/lymphoma 2 (BCL2) and
BCL2-associated X protein (BAX) genes has been found to
be associated with the development of oocytes [12, 13].
The interleukin-7 (IL-7) receptor (IL7RA) is expressed in
CC and its expression increases with oocyte maturation
[14]. Heat shock protein 70 (HSP70) gene (HSPA1A) is
also expressed in CC under non-heat stress condition and
critical roles of this protein in fertilization and embryo
development have been suggested previously [15–17].
Although interferon tau (IFNT) expression is detectable
in CC, its functional role in oocyte development is not
established currently [18].

Brilliant cresyl blue (BCB) staining is an established
non-invasive method for discriminating oocytes of differ-
ential developmental ability from a heterogeneous pool [5].
The principle of the method is that the intracellular enzyme
glucose-6-phosphate dehydrogenase (G6PDH) metabo-
lizes BCB stain absorbed by the oocytes following their
incubation in the staining solution. The concentration of
G6PDH is greater in the growing as compared to that of
the grown oocytes. Therefore, the growing oocytes quickly
metabolize the stain following incubation and the oocytes
appear colorless (BCB-), but the grown oocytes with lesser
G6PDH activity remain blue (BCB+).

In vitro embryo production and gene expression in oo-
cytes, cumulus-oocyte complexes (COCs), and embryos
have been studied extensively in ovine. Nevertheless,
negligible information is currently available on the cumu-
lus expressed genes and their association with the devel-
opment of oocyte and or embryo in this species.
Furthermore, meager information is available at present
on the chronological changes in the profile of the cumulus
expressed genes during oocyte maturation in ovine or any
other mammalian species.

The study aimed to assess the temporal expression pattern
of selected oocyte development-related genes at different
stages of in vitro maturation (IVM) in the CC of the BCB-
screened oocytes and to relate the expression profile with the
oocyte developmental ability in ovine. It was hypothesized
that the temporal expression pattern of the cumulus expressed
genes would differ between the poor quality and the develop-
mentally competent ovine oocytes.

Materials and methods

The chemicals used in the experiments were procured from
Sigma-Aldrich Co., MO, USA unless otherwise mentioned.

Experimental design

Experiment 1

Maturation rate of the BCB-screened ovine oocytes following
IVM was assessed. The BCB-screened COCs (BCB+ and
BCB-) were matured in vitro for 24 h and denuded and nuclear
maturation rate was determined by Hoechst staining. The ex-
periment was conducted in 10 replicates (N = 347 in the
BCB+ and N = 465 in the BCB- groups).

Experiment 2

Development of the BCB-screened ovine oocytes following
IVM, IVF, and in vitro embryo culture (IVC) was assessed.
The BCB-screened COCs (BCB+ and BCB-) were subjected
to IVM, IVF, and IVC and the post-fertilization embryo de-
velopment rate was recorded. The experiment was performed
in four replicates (N = 144 in the BCB+ and N = 229 in the
BCB- groups).

Experiment 3

Temporal expression pattern of the selected oocyte
development-related genes was assessed in the CC of the
BCB-screened ovine oocytes at different stages of IVM. The
CC were collected from the individual BCB-screened COCs
(BCB+ and BCB-) at the 0, 12, and 24 h of IVM and the
cumulus gene expression was assessed by the real-time quan-
titative PCR (qPCR). The experiment was conducted in five
replicates.

Oocyte collection, IVM, IVF, and IVC

Sheep ovaries were collected from a local abattoir and
transported to the laboratory in a thermos containing warm
(~37 °C) normal saline supplemented with strepto-
penicillin (1.6 g/l; Cadila Healthcare Ltd., Vadodara,
India) within 3–4 h of slaughter. The ovaries were washed
thoroughly with strepto-penicillin-supplemented warm
normal saline and excess tissues were removed. Oocytes
were aspirated from the 2–6 mm follicles using a 20-G
needle attached with a 2-ml syringe containing 500 μl of
aspiration medium that was composed of HEPES-buffered
M199 (Life Technologies Corporation, NY, USA) supple-
mented with heparin (50 IU/ml), gentamicin (50 μg/ml;
Life Technologies Corporation, NY, USA), and fatty acid
free BSA fraction V (4 mg/ml). The COCs with more than
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three layers of compact CC and homogeneous cytoplasm
were collected for the experiments. The COCs were
washed in aspiration medium and then subjected to the
BCB staining (26 μM in DPBS) for 45 min at 38.5 °C
and the BCB+ (blue-colored cytoplasm) and the BCB-
(colorless cytoplasm) COCs were collected separately.
The BCB-screened COCs were washed in DPBS and
B199 medium that was composed of bicarbonate-buffered
M199 (Life Technologies Corporation, NY, USA) supple-
mented sodium pyruvate (0.2 mM), gentamicin (50 μg/ml),
cysteamine (0.1 mM), and FBS (10%; Life Technologies
Corporation, NY, USA). Ten COCs in 10 μl of B199 me-
dium were transferred into 40 μl drops of IVM medium
(B199 supplemented with ovine-FSH, human-LH, and
17b-estradiol) that were overlaid with mineral oil and
pre-incubated for at least 2 h at 38.5 °C in a CO2 incubator
(5% CO2 in a humidified environment). The final concen-
trations of FSH, LH, estradiol, and FBS in the maturation
drops were 0.01 U/ml, 0.02 U/ml, 1 μg/ml, and 10%, re-
spectively. The COCs were matured for 24 h at 38.5 °C in a
CO2 incubator.

IVF and IVC were performed according to the previously
described methods [19] after suitable modifications. On the
day of IVF, semen sample was collected from a healthy ram
(~3 years of age) using a handheld electro ejaculator for sheep/
goat. The neat semen was diluted with warm (37 °C) milk-egg
yolk extender (1 g of nonfat dry milk powder, 90 mg of glu-
cose, 500 μg of gentamicin, and 1 ml of egg yolk in a total
volume of 10 ml) for a final spermatozoa concentration of
50 × 106/ml. The diluted semen sample was stored at 4 °C
for approximately 3.5 h and then subjected to the swim-up
separation in SOFH-IVF (without heparin) medium to prepare
spermatozoa for IVF. Following the 24 h of IVM, the COCs
were washed in SOFH-IVF and SOF-IVF (supplemented with
2% estrous ewe serum) media and 10 to 12 COCs in 10 μl of
SOF-IVF medium were transferred into 30 μl drops of SOF-
IVF medium that were overlaid with mineral oil and pre-
incubated for at least 2 h at 38.5 °C in a CO2 incubator.
Subsequently, 10 μl of prepared spermatozoa was added into
each drop for a final volume of 50 μl and final spermatozoa
concentration of 1 × 106/ml.

After 24 h of sperm-oocyte incubation in a CO2 incubator,
CC were removed from the COCs by vortexing in 200 μl of
SOFH-IVF medium for 5 min. Presumptive zygotes were
washed in SOFH-IVF and SOF-IVC (supplemented with
10% FBS) media and transferred into 20 μl drops (8 to 10
zygotes/drop) of SOF-IVC medium that were overlaid with
mineral oil and pre-incubated for at least 2 h at 38.5 °C in a
CO2 incubator. IVC was performed for 192 h in a CO2 incu-
bator and the embryos were transferred into fresh pre-
incubated SOF-IVC drops at 96 h post culture. The embryos
were evaluated at 24, 120, and 192 h post culture and different
development stages were recorded.

Assessment of oocyte maturation

Oocyte maturation rate was assessed following the 24 h of
IVM. The COCswere collected from the culture drops, placed
in a 1.5-ml microcentrifuge tube containing 150 μl of aspira-
tion medium supplemented with hyaluronidase (6000 U/ml),
incubated for 5 min at 37 °C, vortexed for 5 min, and centri-
fuged at low speed briefly. The entire content of the tube was
emptied in a 35 mm culture dish containing 2 ml of aspiration
medium. The denuded oocytes were collected, washed in as-
piration medium, incubated in Hoechst 33342 solution
(5 μg/ml DPBS) for 30 min at 37 °C, and washed in aspiration
medium. The stained oocytes were mounted on glass slides
with DPX Mountant and screened under a fluorescent micro-
scope with DAPI filter (wavelength 330–380 nm). Different
nuclear maturation stages such as germinal vesicle (GV),
telophase-I (T-I) and M-II were recorded and the oocytes at
T-I and M-II stages were considered as matured. The propor-
tion of oocytes that underwent meiosis resumption was calcu-
lated as the proportion of all oocytes other than those at GV
stage (Fig. 1).

Collection of CC, RNA isolation, and cDNA synthesis

The CCwere collected from the BCB-screened COCs at the 0,
12, and 24 h of IVM. The COCs were evaluated under a stereo
zoom microscope and the COCs with nearly similar cumulus
mass were collected for RNA isolation in both groups (BCB+
and BCB-) at each time point. Denudation of the COCs was
performed by subjecting them to hyaluronidase treatment and
vortexing as described previously. Following the treatment,
entire content of the microcentrifuge tube was placed in a
35-mm culture dish in the form of a drop and oocyte was
removed from the drop. The leftover medium along with the
CC was aspirated with the help of a micropipette and placed
into a fresh 1.5-ml microcentrifuge tube and centrifuged
(5000×g for 5 min at 4 °C). The supernatant was discarded
and the cell pellet was washed with aspiration medium by
centrifugation (5000×g for 5 min at 4 °C). The washed pellet
was subjected to RNA extraction using TRI reagent following
the manufacturer’s instructions and linear acrylamide (Life
Technologies Corporation, NY, USA) was used for effective
precipitation of RNA. The extracted total RNAwas dissolved
in nuclease-free water and subjected to RNase-free DNase I
(Life Technologies Corporation, NY, USA) treatment follow-
ing the manufacturer’s instructions. Following the DNase
treatment, the RNA pellet was washed, air dried, dissolved
in 10 μl of nuclease-free water, and reverse transcribed into
first-strand complementary DNA (cDNA) immediately using
the High-Capacity cDNA Reverse Transcription Kit (Applied
Biosystems, CA, USA) following the manufacturer’s instruc-
tions. The synthesized cDNAwas stored at −20 °C until used
for gene expression analysis by qPCR.
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Gene expression analysis

The qPCR assays of selected genes were performed in a Bio-
Rad MyiQ™ qPCR detection System using SsoFast™
EvaGreen® Supermix (Bio-Rad Laboratories Inc., CA,
USA). Briefly, 1 μl of cDNA, 0.25 μM of each primer and
1× EvaGreen mix were used in a total volume of 10 μl. The
qPCR conditions were as follows: initial denaturation at 95 °C
for 3 min and 40 cycles of 95 °C for 15 s and 60 °C for 30 s.
The identity of amplified product was confirmed by agarose
gel electrophoresis and melting curve analysis (initiated at
55 °C with 0.5 °C increments at each step of 10 s up to
95 °C). The details of the selected genes and the primer pairs
used in the study are provided in Table 1. The relative changes
in gene expression were determined using the 2−ΔΔCTmethod
[28] and 18S was used as endogenous reference gene [2].

Statistical analysis

Statistical analyses were performed using the PASW 18.0.0
software package (SPSS/IBM, IL, USA). The values
expressed in percentage for oocyte and embryo development
rates were subjected to arcsine transformation before analyses
[29]. The values expressed in fold change for gene expression
were subjected to log2 transformation before analyses [30].
Student’s t test was used to analyze the variations in the oocyte
and embryo development rates between the BCB-screened
groups. The variations in the cumulus gene expression be-
tween the BCB-screened groups at each time point was ana-
lyzed by Student’s t test. A probability value of less than 0.05
was considered significant.

Results

In vitro development of the BCB-screened oocytes

The variations in the oocyte development rates between the
BCB-screened groups are depicted in Fig. 2. At the end of the
24 h of IVM, the proportion of oocytes at GV stage was found
significantly (p < 0.05) lesser in the BCB+ (3.61%) as

compared to that of the BCB- (15.9%) group. In contrast,
the meiosis resumption and maturation rates following the
24 h of IVM were found significantly (p < 0.05) greater in
the BCB+ (96.4 and 68.8%, respectively) as compared to that
of the BCB- (84.1 and 42.9%, respectively) group. Similarly,
following IVM, IVF, and IVC, the rates (%) of cleavage and
morula (of cleaved embryos) and blastocyst (of cleaved em-
bryos) formation were found significantly (p < 0.05) greater in
the BCB+ (51.1, 54.2, and 26.0, respectively) than that of the
BCB- (28.4, 30.7, and 3.11, respectively) group.

Gene expression in the CC obtained
from the BCB-screened COCs

The variations in relative gene expression in the CC obtained
from the BCB- as compared to the BCB+ oocytes at different
stages of IVM (0, 12, and 24 h) are depicted in Fig. 3.

At the beginning of IVM (0 h), the cumulus expression of
GREM1, HAS2, FSH receptor (FSHR), fibroblast growth fac-
tor 10 (FGF10), and BAX did not differ significantly between
the groups. In contrast, the expression of PTGS2, STAR,
syndecan 2 (SDC2), LH receptor (LHR), fibroblast growth
factor 2 (FGF2),BCL2, IL7RA,HSPA1A, and IFNTwas found
significantly (p < 0.05) upregulated (4.15-, 2.26-, 4.42-, 3.00-,
3.14-, 2.48-, 3.88-, 5.69-, and 2.34-fold, respectively) in the
CC of the BCB- as compared to the BCB+ oocytes.

At the mid stage of IVM (12 h), the cumulus expression of
GREM1, HAS2, PTGS2, SDC2, LHR, FSHR, FGF10, BCL2,
BAX, IL7RA, and HSPA1Awas not significantly different be-
tween the groups. In contrast, the expression of STAR and
FGF2 was found significantly (p < 0.05) upregulated (2.72-
and 1.57-fold, respectively) and the expression of IFNT was
found significantly (p < 0.05) downregulated (0.30-fold) in
the CC of the BCB- as compared to the BCB+ oocytes.

At the completion of IVM (24 h), no significant difference
was observed in the cumulus expression of PTGS2, FGF10,
BAX, and HSPA1A between the groups. In contrast, a signifi-
cant (p < 0.05) downregulation in the expression of GREM1,
HAS2, STAR, SDC2, LHR, FSHR, FGF2, BCL2, and IFNT
(0.42-, 0.28-, 0.46-, 0.53-, 0.41-, 0.25-, 0.27-, 0.33-, and
0.24-fold, respectively) and a significant (p < 0.05)

Fig. 1 Nuclear maturation stages
of the ovine oocytes following
in vitro maturation (IVM) for
24 h. Oocytes were stained with
Hoechst 33342. a Germinal
vesicle. b Telophase-I. c
Metaphase-II
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upregulation in the expression of IL7RA (1.92-fold) was ob-
served in the CC of the BCB- as compared to the BCB+
oocytes.

Discussion

The CC play important roles in the oocyte development pro-
cess. The cells are involved in the maintenance of meiotic
arrest and contribute to the cytoplasmic and nuclear matura-
tion of oocytes [2, 31]. The present study aimed to investigate
the temporal changes in the expression of selected genes at
different stages of IVM in the CC derived from the ovine
COCs of different developmental potential. The results indi-
cated that the cumulus gene expression profile at the begin-
ning and completion of IVM was distinctly different between
the developmentally poor (BCB-) and the developmentally
competent (BCB+) ovine oocytes.

The CC were derived from the BCB-screened COCs for
assessing the association of oocyte developmental compe-
tence with CC gene expression. The BCB staining test is a
proven non-invasive and non-perturbing method for selecting
more developmentally competent oocytes [5]. In ovine, sig-
nificantly greater maturation, cleavage, and blastocyst rates of
the BCB+ as compared to the BCB- oocytes have been ob-
served previously [32]. In the current study, significantlyT
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greater meiosis resumption and maturation rate following
IVM and significantly greater cleavage and morulae and blas-
tocyst formation rates following IVM, IVF, and IVC in the
BCB+ as compared to the BCB- group indicated that the
screening was effective in defining the oocyte pools of vari-
able quality.

The expression profile of 14 selected genes was investigat-
ed at different stages of IVM in the CC derived from the BCB-
screened oocytes. The selected genes were representative of
previously identified CC markers of oocyte quality and devel-
opment (GREM1, HAS2, PTGS2, STAR, SDC2, and

HSPA1A), gonadotropin responsiveness (LHR and FSHR),
FGF signaling (FGF2 and FGF10), apoptosis (BAX and
BCL2), and interleukin (IL7RA) and interferon (IFNT)
signaling.

GREM1 and HAS2 are involved in the regulation of cu-
mulus function and final oocyte maturation, respectively [20,
33]. The PTGS2 expression in COCs may determine oocyte
quality and timing of maturation and promotes the expansion
and survival of CC [34–36]. The expression of STAR is pro-
moted primarily by FSH and LH [37] and the STAR-knockout
mice display incomplete follicular maturation and anovulation
[38]. The SDC2 gene is involved in cell proliferation and
cytoskeletal organization [22]. Enhanced expression of
GREM1, HAS2, PTGS2, and STAR in CC has been reported
to be associated with better oocyte and embryo development
in human, bovine, and sheep [6, 7, 20, 31, 39]. An association
between the cumulus expression of SDC2 and oocyte quality
is suggested previously [22]. Our study revealed that the cu-
mulus expression of GREM1, HAS2, PTGS2, STAR, and
SDC2 was variable between the oocytes of different quality
and at different stages of IVM. It was evident that the expres-
sion of these favorable genes except PTGS2 was significantly
downregulated in the CC of the poor as compared to the com-
petent oocytes at the completion of IVM. The results indicate
the roles of these genes in the ovine oocyte maturation pro-
cess, especially at the late stage.

FSH and LH play important roles in the regulatory mech-
anisms of oocyte maturation through their binding to specific
receptors (LHR and FSHR), which are expressed on the sur-
face of CC [8, 9, 40]. A significant downregulation in the
expression of LHR and FSHR in the CC of the poor oocytes
at the completion of IVMwas evident in the current study. The
results indicate that at the late maturation stage, the cumulus
expression of these two genes is important for the ovine oo-
cytes to acquire developmental competence.

FGF2 and FGF10 have been established as oocyte compe-
tent factors as they play important roles in the oocyte matura-
tion process [41–43]. In the present study, a significant varia-
tion in the cumulus FGF2 expression between the experimen-
tal groups at different stages of IVM suggests its involvement
in the oocyte maturation process in ovine. In contrast, similar
cumulus FGF10 expression along the maturation period in
both the experimental groups suggests that it is probably not
a key factor contributing to the maturation process of ovine
oocytes.

An inverse relationship exists between the proliferation and
apoptosis of CC [44]. BCL2 and BAX are anti- and pro-
apoptotic proteins respectively that participate in the
mitochondria-dependent apoptosis pathway [12]. In human
and buffalo, greater BCL2 and lesser BAX expressions in CC
have been shown to contribute to the developmental compe-
tence of oocytes [12, 13]. In the current study, similar cumulus
BAX expression in both the experimental groups along the
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Fig. 3 Variations (mean ± SE) in the relative expression of targeted genes
in the cumulus cells (CC) of the BCB- (developmentally poor) as
compared to the BCB+ (developmentally competent) ovine oocytes at
different stages (0, 12, and 24 h) of in vitro maturation (IVM). The
asterisk indicates a significant difference at p < 0.05
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maturation period indicates that ovine oocyte development
during maturation was not influenced by the cumulus BAX
expression. In contrast, a significant downregulation in the
cumulus BCL2 expression at the completion of IVM and as-
sociated poor oocyte development indicate its decisive role in
imparting oocyte developmental competence.

The role of IL-7 in oocyte maturation is not well defined
currently. Nevertheless, the recent evidences suggest that IL-7
regulates the replication of CC and the cumulus expression of
its receptor mRNA increases with oocyte maturation in mouse
[14]. The current study revealed a significantly different cu-
mulus IL7RA expression at the beginning and completion of
IVM in the poor oocytes suggesting its likely involvement in
the ovine oocyte maturation process.

The HSPA1A gene encodes HSP70 protein that protects
cells against heat damage [45]. HSPA1A is also expressed in
CC, oocytes, and embryos under non-heat stress condition and
evidences suggest that it plays critical roles in fertilization and
embryo development, most likely through its protective action
against apoptosis [15–17]. In the current study, a significantly
greater cumulus expression of HSPA1A and anti-apoptotic
BCL2 was found in the CC of the poor as compared to the
competent oocyte at the beginning of IVM. Further, it was
observed that in the CC of the poor oocytes, the expression
of BCL2 was reduced at the mid and late maturation stages
that was coincided with the reduced cumulusHSPA1A expres-
sion in the same group at both the time points. The results
suggest the likely involvement of HSP70 in regulating apo-
ptosis of the ovine CC.

IFNT is primarily involved in the maternal recognition of
pregnancy. Although the expression of IFNT has been detect-
ed previously in bovine CC [18], its involvement in the oocyte
developmental process is not known currently. In the current
study, a significant downregulation in the cumulus expression
of IFNT at the mid and late maturation stages and associated
poor oocyte development suggest the possible involvement of
cumulus expressed IFNT in the oocyte maturation process.

In conclusion, the current study revealed noticeable differ-
ences in the cumulus gene expression profile at different
stages of IVM between the ovine oocytes of differential de-
velopmental ability. It was evident that as maturation
progressed, the cumulus expression of most of the favorable
genes (GREM1, HAS2, STAR, SDC2, LHR, FSHR, FGF2,
BCL2, and IFNT) was gradually reduced and was found sig-
nificantly downregulated in the poor oocytes at the comple-
tion of IVM. The results indicated that the loss of cumulus
gene expression along the maturation period in the poor oo-
cytes was related to their intrinsic poor quality in the ovarian
follicle. Further, under unoptimized in vitro condition, they
were unable to follow a normal gene expression pattern as
compared to the good oocytes. Future studies on the influence
of the cumulus expression of these favorable genes on the
post-fertilization developmental ability of individual oocytes

are required if these genes are to be used as definitive markers
for predicting embryo development in ovine.
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