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Experimentally simulating the dynamics of
quantum light and matter at deep-strong coupling
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A. Endo2,3 & L. DiCarlo1,2

The quantum Rabi model describing the fundamental interaction between light and matter is

a cornerstone of quantum physics. It predicts exotic phenomena like quantum phase tran-

sitions and ground-state entanglement in ultrastrong and deep-strong coupling regimes,

where coupling strengths are comparable to or larger than subsystem energies. Demon-

strating dynamics remains an outstanding challenge, the few experiments reaching these

regimes being limited to spectroscopy. Here, we employ a circuit quantum electrodynamics

chip with moderate coupling between a resonator and transmon qubit to realise accurate

digital quantum simulation of deep-strong coupling dynamics. We advance the state of the

art in solid-state digital quantum simulation by using up to 90 second-order Trotter steps and

probing both subsystems in a combined Hilbert space dimension of ∼80, demonstrating

characteristic Schrödinger-cat-like entanglement and large photon build-up. Our approach

will enable exploration of extreme coupling regimes and quantum phase transitions, and

demonstrates a clear first step towards larger complexities such as in the Dicke model.
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Targetted digital quantum simulations1 are likely to provide
the first demonstrations of quantum advantage for small-
scale quantum computers, with applications in fields such

as quantum chemistry2, 3 and condensed-matter physics4–7. In a
digital quantum simulator, sequences of discrete interaction
components synthesise the evolution of an artificial Hamiltonian,
allowing access to more exotic dynamics than the simulator can
realise naturally. Systems involving ultrastrong light-matter
interactions raise significant challenges for both theoretical ana-
lysis8–13 and experimental study14, making them ripe candidates
for exploration via quantum simulation.

Ultrastrong coupling (USC)9 of light and matter has been
achieved in a range of physical systems, including circuit quan-
tum electrodynamics (cQED)15–17, semiconductor quantum well
systems18, terahertz electron cyclotron transitions19–21 and pho-
tochromic molecules22. Some experiments have demonstrated
spectroscopic signatures deep into USC16, 17, 20 where the
coupling-to-frequency ratio g/ω≳ 1 (at so-called deep-strong
coupling, or DSC23), but a dynamical signature has only been
measured at g=ω � 0:0921.

The standard quantum Rabi model (QRM)8 describes the
coupling of a two-level atom (energy �hωR

q ) to a quantum har-
monic field mode (energy �hωR

r ) by a field–dipole interaction
(energy ħgR):

HR

�h
¼ �ωR

q

2
σz þ ωR

r a
yaþ gR aþ ay

� �
σþ þ σ�ð Þ; ð1Þ

where a ¼ ffiffiffi
n

p
n�1j i nh j and σ� ¼ gj i eh j are annihilation

operators for field mode and atom, respectively (with creation
operators a† and σ+), and σz ¼ gj i gh j� ej i eh j is the Pauli z-basis
operator. Under small coupling ðgR � ωR

q ;ω
R
r Þ, this reduces to

the Jaynes–Cummings (JC) model via the rotating-wave
approximation:

HJC

�h
¼ �ωq

2
σz þ ωra

yaþ g aσþ þ ayσ�
� �

; ð2Þ

which contains only the excitation-number-conserving interac-
tion terms, aσ+ and a†σ−, and has an exact solution. In the USC

regime ðgR � ωR
q ;ω

R
r Þ, however, the excitation-nonconserving

terms aσ− and a†σ+ cannot be neglected and only total parity
½σz

P
n ð�1Þn nj i nh j� is conserved23. Without the strong symmetry

of number conservation, the full QRM becomes difficult
to solve10, predicting phenomena such as ground-state
entanglement and large ground-state photon populations, which
have not yet been observed experimentally. Theory suggests that
simulations of the QRM could explore widely varied coupling
regimes in architectures like cQED24–26, cold atoms27 and trap-
ped ions28. Simulated QRM dynamics have been observed in
restricted regimes in trapped ions, including the Dirac equation
(ωR

r ¼ 0, ωR
q≠0)

29, 30 and coupling only (ωR
r ¼ 0, ωR

q ¼ 0)31, 32

regimes. A classical analogue simulation of evolution in a
restricted subspace of the QRM has been performed in photonic
waveguide systems23, 33.

Here, we implement an accurate experimental simulation of
quantum Rabi model dynamics well into the deep-strong
coupling regime using a cQED quantum simulator with only
moderate atom–cavity coupling. To achieve this, we implement a
digital protocol24 with up to 90 second-order Trotter steps. In
particular, we significantly extend the protocol by developing a
phase-controlled method for tuning the target system parameters
that allows us to explore a wide range of relative coupling
strengths with high precision. Combining this control with ver-
satile measurements of atom, cavity and joint system properties,
we carry out a comprehensive study of quantum Rabi dynamics
from ultrastrong to extreme deep-strong coupling. We first
investigate the restricted case with zero atomic frequency
ðωR

q ¼ 0Þ to demonstrate key signatures verifying the simulation
of deep-strong coupling. These include the characteristic
collapses and revivals in both atom and cavity parities, coherent
oscillations in cavity population reaching large photon numbers,
and opposing cavity phase-space trajectories. We then show that
the simulated deep-strong coupling leads to conditional non-
classical Schrödinger cat states in the cavity, which verifies the
presence of the atom–cavity entanglement arising from coherent
deep-strong coupling dynamics. Finally, we study deep-strong
coupling dynamics for several nonzero values of atomic frequency
(gR=ωR

q ≳ 1). This shows that our simulation is able to access the
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Fig. 1 Digital-analogue quantum Rabi simulation using phase-controlled parameter tuning. a Parity dynamics of the ideal quantum Rabi model in the
degenerate-qubit case ωR

q ¼ 0
� �

for qubit (green) and resonator (red) in coupling regimes: r ¼ gR=ωR
r ¼ 0:1 (dotted), 0.5 (dashed) and 1.0 (solid). In this

example, g was chosen to match the experimentally observed value of g/2π= 1.79MHz. b Two-transmon, three-resonator cQED chip (detailed description
in Supplementary Notes 2 and 3). c Sequence schematic for second-order Trotterisation. The rotating frame defining the simulated resonator frequency
(ωr) is controlled via the QR bit-flip pulse phases. d Example simplified experimental pulse sequence for 5 Trotter steps followed by a photon parity
measurement.
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full complexity of the quantum Rabi model, and allows us to
develop a heuristic understanding of the expected dynamics in
terms of a competition between deep-strong coupling and JC
dynamics.

Results
Digital quantum Rabi simulator with phase-controlled tuning.
Deep-strong coupling dynamics can produce nontrivial quantum
states and significant build-up of photon numbers23. Many
characteristic dynamical features of DSC can already be seen in
the degenerate-qubit limit ωR

q ¼ 0. Here, the interaction-picture
Hamiltonian

HR;int

�h
¼ σx gRe�iωR

r taþ gReiω
R
r tay

� �
ð3Þ

is a coherent drive on the oscillator mode, with an amplitude
± gReiω

R
r t conditioned on the σx basis state of the atom (σx= σ+ +

σ− is the Pauli x-basis operator). The conditional coupling ±gR

coherently displaces the field, but in a continuously rotating
direction given by eiω

R
r t , creating two diametrically opposite cir-

cular trajectories in phase space (see Supplementary Movie 1,
with the final frame showing ideal phase-space
trajectories, or see later figure on phase-space dynamics). Relat-
ing the diameter and circumference of these trajectories,
παmax ¼ _αTR, with the field displacement rate _α ¼ gR and period
TR ¼ 2π=ωR

r , gives a maximum amplitude αmax= 2r set by the
relative coupling ratio r � gR=ωR

r . Figure 1a illustrates the atomic
and photonic parity dynamics (σz and

P
n �1ð Þn nj i nh j, respec-

tively) for characteristic coupling regimes, starting in an eigen-
state of the uncoupled system, ej iq � 0j ir. Because this is a
superposition of the σx eigenstates ±j iq � gj iq ± ej iq, evolution
gives rise to an atom–field entangled state (Bell-cat state)34,
þ;þαj iq;r � �;�αj iq;r. For r � 1, the two trajectories remain
virtually indistinguishable, giving evolution closely approximating
simple JC dynamics with an atom-field detuning equal to ωR

r (cf.
Supplementary Note 7). As r increases, the curves start
distorting from the sinusoidal JC exchange oscillations (USC

regime), until reaching DSC (r≳ 1), where the parities exhibit a
characteristic Gaussian-shaped “collapse”, followed by flat pla-
teaus and periodic revivals at multiples of TR. The cross-over
between these dynamical regimes is related to the maximum
distinguishability of the two coherent states of the field. When the
paths separate completely, the qubit appears to be in a mixed
state, with parity 0.5.

Our circuit QED Rabi simulator uses a hybrid digital-analogue
encoding of the atom and field mode, respectively, in a transmon
qubit (QR)35 and a coplanar waveguide resonator (RR) (energies
ħωq and ħωr) (device shown in Fig. 1b). Because the transmon is
only weakly anharmonic ðω0�1

q � ω1�2
q � ω0�1

q Þ, directly increas-
ing the qubit resonator coupling g leads to a breakdown in its
qubit behaviour at small r, and full circuit quantisation shows that
DSC cannot be reached for any circuit parameters36. Instead,
building on the proposal in ref. 24, we perform a digital
simulation of the QRM for arbitrarily large r using a coupling
in the manifestly non-USC regime (r< 10−3). The full Rabi
Hamiltonian can be decomposed into two JC-like interactions24:

HR gR;ωR
r ;ω

R
q

� �
¼ HJC g;Δr;ΔJC

q

� �
þ HAJC g;Δr;ΔAJC

q

� �
;

where HAJC= σxHJCσx contains only counter-rotating interaction
terms, and the effective Rabi parameters gR = g, ωR

r ¼ 2Δr and
ωR
q ¼ Δq � ΔJC

q � ΔAJC
q are not related to the natural circuit

frequencies, but defined relative to a nearby rotating frame (Δ=
ω−ωRF), and can be arbitrarily small. Using the standard
method of Trotterization1, Rabi dynamics can therefore be
simulated into the DSC regime by decreasing Δr and Δq.
Figure 1c illustrates the second-order Trotter step used here (see
Methods section and Supplementary Note 9). An asymmetric
transmon with two flux-insensitive “sweet” spots35 is driven and
measured at its lower sweet spot (5.452 GHz) far below the
resonator (6.381 GHz), with digital π pulses being interleaved
with short analogue JC interaction blocks applied by fast
frequency-tuning flux pulses37. (See Supplementary Note 3 and
Supplementary Table 1 for details of the experimental scheme
and Supplementary Note 4 for details of how the flux-pulse
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Fig. 2 Qubit and resonator parity dynamics of the quantum Rabi model in the degenerate-qubit case. Measured dynamical landscapes for a qubit and b
photon parity dynamics for a broad range of parameters up to 60 Trotter steps, with the extreme DSC regime in the centre decreasing to weaker USC near
the edges. The data show clear Gaussian-shaped collapses for all r, along with the characteristic plateaus of DSC. Qubit revivals are observed up to r∼ 0.8,
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r =g
R between the red

and blue dashed lines in a, b, respectively. For r≳ 1.5, some deviation from the expected revival time in the photon parity results from a small residual Kerr-
type nonlinearity in the resonator (see also Supplementary Fig. 9) and is correlated with significant photon populations. Arrows in c, d show expected
revival times for each slice. In this and following figures, coupling ratios were calculated using the observed simulated coupling of g/2π= 1.79MHz.
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distortion compensations are calibrated.) Experimentally, a
rotating frame is usually defined by the frequency of a drive
tone. Here, the choice of rotating frame specifies the required
rotation axis of the π pulses which create the AJC interaction. By
appropriately updating the pulse phases, which are controlled
with high precision, we can therefore arbitrarily select the rotating
frame detuning from the resonator, even though these pulses are
applied far from both resonator and rotating frame (see Methods
section).

Numerical modelling of the digital Rabi protocol highlighted
several challenges for device design and fabrication (Supplemen-
tary Note 2). Most significantly, due to practical flux-pulsing
bandwidths which limit the shortest achievable Trotter step, it is
challenging to digitise fast compared with the dynamics. There-
fore, reaching acceptably low Trotter error in interesting regimes
of r required small qubit-resonator coupling (here,
g/2π= 1.95MHz). This also placed constraints on other device
parameters, including coherence (for long simulation times), flux-
tuning precision and qubit-resonator frequency targetting (due to
a very narrow resonance). An extra qubit QW was strongly and
dispersively coupled to RR to probe the intraresonator quantum
state via its photon-dependent frequency shift (−1.26MHz per
photon) using pulse sequences based on Ramsey interferometry.
We used QW to implement a range of photon measurements:
average photon number with a controllable dynamic range
(number meter), average photon parity38, 39 (parity meter) and,
combining parity measurements with coherent field displace-
ments through an external input coupler, direct Wigner
tomography of the resonator. (Full details of the operating
principles and calibrations of these different photon measure-
ments are provided in Supplementary Notes 5 and 6.) Qubits

were driven and measured through dedicated read-out resona-
tors. A full description of the experimental setup is provided in
Supplementary Note 1.

Comparing qubit and resonator parity dynamics. We first
experimentally simulate the QRM for the degenerate-qubit case
over a wide range of r, covering the USC and DSC regimes from r
~ 0.3 to r→∞ (Fig. 2). We use 60 Trotter steps to simulate 1.2 μs
of dynamics (gt= 4.68π) and measure either qubit or photon
parity after each step. (Simulations start in the state 1j iq � 0j ir for
all results in the main text, but Supplementary Note 8 shows that
the features of DSC dynamics are observed also for 0j iq � 0j ir.) A
simplified pulse sequence is illustrated in Fig. 1d. The qubit and
photon parity dynamics (Fig. 2a, b) show very similar qualitative
behaviour, consistent with parity conservation. At all large cou-
plings, the measurements exhibit the Gaussian-shaped parity
collapse (set by the simulated gR) and flat plateau which are a key
signature of DSC dynamics. Fitting the initial qubit data points,
we calculate an average gR ≈ 2π × 1.79MHz, slightly lower than
the expected gR = g≈ 2π × 1.95 MHz determined from indepen-
dent spectroscopy and vacuum Rabi oscillations. This is con-
sistent with a small residual flux pulse distortion and provides the
best estimate for the simulated gR achieved in these experiments.
The revival periods TR are in excellent agreement with the pre-
dictions of USC Rabi dynamics (dashed curves), and strikingly
different from those predicted for a pure JC interaction with the
equivalent qubit-resonator detuning ðT JC ¼ 2π =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4g2 þ Δ2

q�r

q
Þ

(dotted curves) (Supplementary Note 7).
From the observation of parity revivals, combined with the

simulated gR, we can estimate the range of r reached in these
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simulations. For gR/2π = 1.79MHz and r= 1 (archetypal DSC),
the expected revival time is 0.56 μs. Line cuts for the qubit parity
dynamics (Fig. 2c) show revivals beyond 0.4 μs (r ~ 0.7). Photon
parity revivals, however, persist beyond 1.0 μs (r ~ 1.8) (Fig. 2d).
This difference again results from photon decay, as confirmed by
excellent agreement with numerical modelling which includes
cavity decay but no other decoherence (not shown). Photon decay
becomes increasingly critical at larger couplings, because even a
single decay destroys the qubit-resonator entanglement, and
losing a photon becomes increasingly likely for larger photon
numbers. The qubit parity revivals rely on entanglement being
maintained. This is supported by measurements of reduced qubit
entropy, which show that the qubit state collapses to the mixed

state, before displaying a revival in purity (Supplementary
Note 11). The resonator parity dynamics, however, are more
robust to decay and provide a more direct measure of DSC
dynamics. Photon parity collapses and revivals prove the field
undergoes large-amplitude excursions through phase space even
during a single cycle of the resonator period. The difference
between qubit and photon parity dynamics is a quantitative
signature of breakdown in parity conservation, caused by
resonator decay.

Resonator photon number dynamics. We next directly explore
the build-up of large photon populations (Fig. 3), another feature
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of DSC dynamics that contrasts strikingly with the excitation-
conserving dynamics expected under weak coupling. Using a
Ramsey pulse sequence with small separation τ, the excitation
probability in QW becomes a measure of average photon number
in the resonator (Supplementary Note 5). The dynamic range and
sensitivity of this number meter are controlled via τ (Fig. 3a, b).
Measured with a linear range of ~ 0–8 photons (Fig. 3c), the
resonator displays the complementary build-up of photons which
causes the collapse of qubit and photon parity, clearly demon-
strating the violation of number conservation expected for the
QRM. As with photon parity, clear oscillations can be seen out to
r ~ 1.8 (Fig. 3e). The large central feature appears to deviate from
the expected trend, but is in fact due to photon number exceeding
the dynamic range of the number meter. To explore this region
further, we extended the linear range to ~ 0–20 photons using a
number meter with a non-centred refocussing pulse (Fig. 3d) and
simulated up to 90 Trotter steps (gt= 7.0π), allowing photon
oscillations beyond 1.5 μs to be observed. This range operated at
the limits of approximately uniform driving given the bandwidth
of the 12 ns (4σ) QW pulses. At r≳ 2, the photon dynamics in
Fig. 3c, d are clearly skewed, causing the observed oscillations to
deviate from the expected revival period TR (also observable in
the photon parity (Fig. 2b). This results from a residual Kerr
nonlinearity in RR inherited from the dispersively coupled ancilla
qubit40.

Exploring the resonator oscillations more quantitatively, the
maximum photon number in each vertical (constant-r) slice
(Fig. 3f) compares well with the expected ideal behaviour. The
discrepancy between the two curves in the overlapping region
results from bandwidth limitations in the high-dynamic-range
(HDR) number meter and from limits in linearity of the number-
to-probability mapping for QW. Because of the sinusoidal
conversion, the calibrated value at either end of the range
compressed slightly towards the centre from the real photon
number. The measurement saturates at the highest r even for the
HDR meter, suggesting that we observe more than 30 photons
(average) building up in the resonator for the strongest DSC
regions. Given the Poissonian statistics expected for coherent
states, this accesses a resonator subspace of dimension ~ 40 (i.e., a
subspace larger than that of 5 qubits). This ability to access large
Hilbert spaces with a simple system is an advantage of the
analogue resonator encoding.

Resonator phase-space dynamics. Combining the parity mea-
surement with coherent displacements from an external drive
allows observation of resonator phase-space dynamics using
direct Wigner tomography38, 39. Figure 4a shows unconditional
maximum-likelihood tomograms (ignoring the state of QR; see
Methods section) measured after each Trotter step with r ~ 0.9
(full movie available in Supplementary Movie 1), with the full
trajectory obtained from two-dimensional double-Gaussian fits of
the raw data. The resonator state displays the clear signatures of
DSC dynamics, first separating into two distinct Gaussian
(coherent state) peaks which follow opposite circular trajectories
before re-coalescing at the origin. The peaks do not return per-
fectly to the origin because of photon decay, in agreement with a
numerical simulation at gR/2π= 1.79 which includes T1,r= 3.5 μs
(green curves).

Demonstrating qubit-resonator entanglement. By capturing the
complete resonator quantum state, the Wigner function also
enables the demonstration of coherence in DSC dynamics, by
contrast with photon parity and number measurements, which
are largely insensitive to coherence. Observing this requires cor-
relating the resonator and qubit states, because the coherence is

stored in entanglement. We did this in two ways. First, we
measured the Wigner function after 10 Trotter steps for r ~ 0.9
with QR initialised in states gj i, ej i, þj i and �j i (Fig. 4b–e). This
showed that the resonator and qubit were correlated, consistent
with the expected Bell-cat entanglement. Second, we ran the
simulation for r ~ 0.9 and 2.1 (8 Trotter steps) with the qubit
prepared in the excited state, conditioning the QW measurement
on the state of QR in the σz basis (Fig. 5). For the expected Bell-cat
state, an outcome of g eð Þj i for QR leaves the resonator in an odd
(even) Schrödinger cat state αj i � �αj ið Þ. Numerical modelling
shows that only in the DSC regime is negativity in the Wigner
function observed for both QR measurement outcomes. The
negative regions observed in all the Wigner functions demon-
strate nonclassicality for all resonator cat states, which arises from
coherence in the underlying Bell-cat entanglement. Reduced
visibility is again caused primarily by photon decay, but also by
single-shot read-out infidelity (here, ~85–90%) and experimental
drift over the long measurements. These different measurements
provide clear evidence of qubit-resonator entanglement arising
from coherent DSC dynamics.

Quantum Rabi dynamics in the nondegenerate-qubit case.
Finally, by detuning the qubit frequency during the AJC half of
the Trotter steps [Fig. 1c], we also experimentally simulate
dynamics for the nondegenerate-qubit case of the QRM for
effective qubit frequencies gR=ωR

q ~ 4, 2 and 1 (Fig. 6). Deviation
from the degenerate-qubit case occurs primarily when ωR

r ≲ωR
q
41

and these regimes access the full complexity of QRM dynamics.
To develop a rough intuition for the expected dynamics, we
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Fig. 5 Nonclassical resonator cat states from conditioned DSC-driven
entanglement (degenerate-qubit case). The plots show Wigner functions of
nonclassical Schrödinger cat states in the Rabi resonator, reconstructed
from maximum-likelihood state tomography for two different DSC coupling
strengths with gR=ωR

r � 0:9 (top, n= 10 Trotter steps) and gR=ωR
r � 2:1

(bottom, n= 8 Trotter steps), conditioned on measuring QR in 0j i (left) and
1j i (right). The regions of negativity and visibility of several fringes between
the well-resolved coherent state peaks are clear signatures of
nonclassicality in the Rabi field mode and demonstrates the coherence and
entanglement of the underlying qubit-resonator state. Combined with the
qubit conditioning shown in Fig. 4, observing clear cat states for both
outcomes of the QR measurement is a clear signature of coherent DSC
dynamics.
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overlay the plotted landscapes with the expected revival times for
both pure degenerate-qubit QRM dynamics and pure
nondegenerate-qubit JC (exchange) dynamics (centred around
the effective qubit frequency). This illustrates that the ideal
dynamics (no decay) (Fig. 6 (right)) can be thought of as a
competition between the two cases. As qubit frequency increases,
standard JC dynamics begin to emerge, with qubit population
oscillations (and increasingly pronounced positive-parity regions)
appearing in the collapse-revival dynamics characteristic of the
DSC regime. This interpretation and trend become clearer for
qubit frequencies ωR

q larger than the coupling gR, where the
standard JC exchange dynamics start to dominate (numerical
modelling shown for gR=ωR

q � 0:48 in Supplementary Fig. 12).
The measured dynamics (Fig. 6 (left)) capture many features of
the ideal case (Fig. 6 (right)), even up to r 	 1. Numerical
modelling of the digital QRM simulation including the measured
T1,r (Fig. 6 (centre)) confirms that simulation fidelity is primarily
limited by resonator decay.

Discussion
Demonstrating stabilisation by decreasing step sizes will be an
important part of validating the behaviour of future complex
digital simulators achieving quantum advantage42. In Supple-
mentary Notes 9 and 10, we showed that using second-order
Trotterisation and decreasing the Trotter step size both sig-
nificantly improved performance. This indicates that the simu-
lation is not limited by an error-per-gate noise floor as in previous
cQED simulations7, and enables us to linearly increase the
number of Trotter steps for increasing simulated time, rather
than keeping the number fixed3, 6, 7. This is an important step
towards the quadratic scaling needed for universal quantum
simulation1. In combination, these achievements advance solid-
state quantum simulators based on cQED to a digital perfor-
mance previously attained only in trapped-ion systems5.

Interestingly, a QRM simulator even has some direct advan-
tages over natural USC systems. Although large couplings can
lead to ground-state entanglement and significant ground-state
photon populations, these potentially interesting ground states
are not readily accessible in natural USC systems14, 36, 43 without
the ability to rapidly (nonadiabatically) tune or switch off the
ultrastrong coupling. In systems where the coupling reaches
many gigahertz, tuning system parameters on this timescale
represents a significant technical challenge16, 17. In our simulator,
however, cavity photons are always real (not virtual), detectable
and usable, and it is straightforward to nonadiabatically tune
system parameters to implement quantum quenches44. This
makes a cQED chip with natural JC interactions an ideal platform
to explore the preparation of interesting ground states in future
experiments. The challenge is that the simulator decay processes
differ from those in a natural USC system and do not move the
system towards the USC ground state11. This highlights the need
to improve T1,r so that photon decay does not limit the dynamics.
It should be possible to improve T1,r 10-fold using novel pro-
cessing methods45. However, an interesting next step will be to
determine the effective USC decay resulting from simulator-
frame resonator decay.

Finally, the phase technique we have developed to define a
rotating frame via single-qubit pulses introduces a precise and
flexible paradigm for engineering artificial Hamiltonians which
can be applied across architectures such as trapped ions and cold
atoms5, 27, 28. In combination with the number of Trotter steps
demonstrated, the technique will allow accurate simulation of the
time-dependent Hamiltonians5, 7, 46 required to perform adiabatic
preparation of USC ground states. It is therefore ideally suited for
exploring novel quantum phase transitions relying on extreme
coupling regimes recently identified for the QRM27, 47, 48. Fur-
thermore, by extending to small-scale Dicke model systems24, 26,
it will avoid the problem of additional nonlinear evolution
terms26 which have been suggested to prevent the onset of a long-
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with the ideal QRM and show excellent agreement with the numerical Trotter simulation with decay, indicating that the fidelity of the measured results to
the ideal case is limited primarily by resonator decay.
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predicted superradiant phase transition in a range of physical
systems12, 13, 36, 49.

Methods
Phase-controlled Trotterisation of the quantum Rabi model. In the digital QRM
simulation proposed in ref. 24, the effective parameters of the simulated Rabi
Hamiltonian are gR= g, ωR

r ¼ 2Δr and ωR
q ¼ ΔJC

q � ΔAJC
q , where Δr= ωr −ωRF and

Δq=ωq −ωRF are defined relative to a rotating frame. This rotating frame is
essential to reaching DSC with weakly anharmonic transmon qubits, by allowing us
to tune the simulated ωR

r and ωR
q . Typically, the frequency of a rotating frame is set

by a physical generator or drive signal that defines a rotation or a measurement
basis. In the digital simulation, the rotating frame is still abstract, since no drive is
used to induce an interaction. Here we describe a method we have developed for
controlling the frequency of the rotating frame which is simple, high-resolution
and flexible.

The basic intuition is that the bit flips in ref. 24, which convert every second JC
interaction into an effective AJC interaction, are the only concrete operations
which take place in the otherwise abstract rotating frame. In any Trotter step, the
frequency of the rotating frame is therefore defined by the rotation axes of the bit-
flip pulses (i.e., the absolute pulse phase), but these flips are driven by microwave
pulses at a frequency far (~1 GHz) below the resonator, at the qubit’s bottom sweet
spot. Nevertheless, while the drive generator’s phase continuously and rapidly
rotates relative to the resonator, the drive pulses can be effectively locked to the
resonator frequency by discretely updating the pulse phase at each pulse. This is
achieved by advancing the phase of each pulse by an amount proportional to the
elapsed time between pulses. An arbitrary offset frequency from the resonator is
then straightforwardly achieved by correcting this phase advance by an amount
proportional to the Trotter step size. Interestingly, in the scheme of ref. 24, because
the simulated resonator frequency (but not the qubit frequency) is sensitive to the
absolute detuning from the rotating frame, this effective qubit offset frequency
tunes the frequency of the resonator (but not the qubit).

We now derive the analytical relation between the bit-flip pulse phases and the
rotating frame frequency in the simulation. We start by writing down the full
Trotter step and then derive the effective Hamiltonian implemented by this step
given the lowest-order Trotter approximation. The symmetric, second-order
Trotter step for the digital QRM simulation is:

UTr
R τð Þ ¼ U

1
2
JC τð ÞUAJC τð ÞU 1

2
JC τð Þ; ð4Þ

where UJC(τ)= exp(−iHJCτ/ħ) and an arbitrary AJC step

UAJC τð Þ ¼ Rϕ2
πð Þexp �iHJCτ

�h

� �
Rϕ1

πð Þ; ð5Þ

is defined by the phases used to set the rotation axes ϕ1,2 of the bit flips Rϕ(π).
Writing the JC Hamiltonian in the rotating frame of the resonator, and using the
identity Rϕ(π)= Rz(ϕ)Rx(π)Rz(−ϕ) = Rz(2ϕ)σx= σxRz(−2ϕ), gives:

UAJC τð Þ ¼ Rz 2ϕ2ð Þσx exp �iΔq�rτσz=2� iϵ aσþ þ ayσ�
� �	 


σxRz �2ϕ1ð Þ; ð6Þ

¼ exp �iΔϕσz=2ð Þexp �iϕΣσz=2ð Þexp iΔq�rτσz=2� iϵ aσ� þ ayσþ
� �	 


exp iϕΣσz=2ð Þexp �iΔϕσz=2ð Þ; ð7Þ

¼ exp �iΔϕσz=2ð Þexp iΔq�rτσz=2� iϵ aσ�e�iϕΣ þ ayσþeiϕΣ
� �	 


exp �iΔϕσz=2ð Þ; ð8Þ

where ϵ= gτ, ϕΣ= ϕ1 + ϕ2, Δϕ= ϕ2 − ϕ1, Δq�r ¼ ΔJC
q�r � ΔAJC

q�r , and we have set
ΔJC

q�r ¼ 0. Equation (8) is reached by noting that e�iϕΣσz=2σ ± eiϕΣσz=2 ¼ σ ± e± iϕΣ .
Next, noting that Δϕ ¼ πωR

r τ � 1 if τ � 1=ωR
r , and providing the Trotter

conditions ϵ ¼ gτ � 1 and Δq�rτ � 1 are fulfilled, we can combine exponentials
in Eq. (8) using a Trotter approximation to give:

UAJC τð Þ 
 exp �iΔϕσz þ iΔq�rτσz=2� iϵ aσ�e�iϕΣ þ ayσþeiϕΣ
� �	 


: ð9Þ

Combining the JC and AJC steps with a further Trotter approximation then gives
the full Trotter step

UTr
R τð Þ 
 exp i �2Δϕþ Δq�rτ

� � σz
2
� iϵ aσþ þ ayσ� þ aσ�e�iϕΣ þ ayσþeiϕΣ

� �h i
:

ð10Þ

So far, we have considered arbitrary ϕ1 and ϕ2. In the experiment, however, we
keep Δϕ constant for all sequential pairs of bit flips. Specifically, for the nth Trotter
step, the two phases are ϕ1= ϕ0 + (2n − 2)Δϕ and ϕ2= ϕ0 + (2n − 1)Δϕ, where the
choice of ϕ0 has no effect on the dynamics. Setting ϕ0= 3Δϕ/2 gives ϕΣ= 4nΔϕ,
and the nth Trotter step can be rewritten in terms of a frequency ω0= 2Δϕ/τ and a

simulated time tn= nτ:

U nð Þ
R τð Þ ¼ exp i �ω0 þ Δq�r

� �
τ
σz
2
� iϵ aσþ þ ayσ� þ aσ�e�i2ω0 tn þ ayσþei2ω0 tn

� �h i
:

ð11Þ

which corresponds to an effective Hamiltonian:

~Heff

�h
¼ ω0 � Δq�r

� � σz
2
þ g aσþ þ ayσ� þ aσ�e�i2ω0 t þ ayσþei2ω0 t

� �
: ð12Þ

Until this point, the calculation has been carried out with both qubit and
resonator in a frame rotating with the resonator. We now transform ~Heff into a
rotating frame where both qubit and resonator are rotating at frequency (−ω0), i.e.,
with H0= −ħω0(−σz/2 + a†a), giving a new effective Hamiltonian:

Heff

�h
¼ �Δq�r

σz
2
þ ω0a

yaþ g aþ ay
� �

σþ þ σ�ð Þ: ð13Þ

This completes the mapping of the phase-controlled Trotterisation into the
form of a simulated Rabi Hamiltonian and we can now identify the effective
simulated parameters gR= g, ωR

q ¼ Δq�r and ωR
r ¼ ω0 ¼ 2Δϕ=τ. Note that the

final frame transformation takes place in the simulated Hilbert space, i.e., with
frequency ω0 defined relative to simulated time. Consequently, the frequency of the
abstract rotating frame in ref. 24, defined in the laboratory reference frame of the
cQED simulator, is less by a factor 2, i.e., ωRF=ω0/2.

Here, we have shown how to engineer a virtual rotating frame by applying
virtual phase corrections via updating the rotation axis of subsequent drive pulses50

in the stroboscopic context of Trotterised digital quantum simulations. This
technique should be broadly applicable in the context of Trotterised quantum
simulations, although some details or interpretation may vary depending on the
specific simulation. For example, it could be applied virtually unmodified to
implement the digital Ising model simulations with interacting spins from ref. 6,
where phase gates were instead implemented via physical detunings of the qubits
(as also done in ref. 5). More generally, in Trotterised dynamics, a continuous
frequency detuning is to lowest order identical to a discrete phase gate applied in
each Trotter step. In any case where a gate is implemented using an exchange-type
interaction, frequency detunings can therefore be effectively transferred between
different circuit elements and mapped onto the most easily controllable element.
This turns the theoretical aide of moving between interaction pictures into a
concrete experimental tool. If the Trotter step also includes single-element control
pulses, then these can often be modified to also incorporate the phase gate. If this
option is not available (e.g., see the digital JC simulation in Supplementary Note 7)
then the phase correction can still be implemented directly. In our case, a simulated
frequency detuning was applied to a resonator (which was not easily tunable) by
virtually applying a discrete phase update to the qubit via the drive phase of the bit-
flip pulses.

Trotter step. For a second-order Trotter step with simulated time τ, the Trotter
step consists of three flux pulses (τ/2, τ and τ/2) and two single-qubit rotations with
buffers separating the different gates. Adjacent τ/2 flux pulses from neighbouring
Trotter steps are implemented as a single flux pulse of length τ. Each flux pulse was
followed by a 5 ns phase-compensation flux pulse (Supplementary Note 7). For
most of the data presented in this work, the simulated τ= 20 ns. The qubit drive
pulses on QR were 16 ns total duration (4σ) and the pulses buffers were 10 ns. The
total Trotter step for τ= 20 ns was therefore τstep= 122 ns. In addition to the drive-
pulse phase advance required to define ωR

r , another linear phase advance Δϕ ¼
ωdrive
q � ωr

� �
τstep=2 is required to compensate the rapid rotation of the qubit drive

with respect to the resonator frequency.

Qubit control. Qubit rotations were implemented using DRAG pulses51, 52, with a
Gaussian envelope in the X quadrature and a derivative-of-Gaussian envelope in
the Y quadrature. The 4σ pulse durations were 16 ns for QR and 12 ns for QW. The
performance of the Trotter sequences, which contained up to 180 bit-flip pulses,
was very sensitive to details of the QR pulse calibrations. In particular, the drive
amplitude was calibrated using a sequence of 50 π-pulse pairs preceding a single π/
2 pulse. All parameters were typically calibrated just before launching a long
measurement. The drive amplitude was intermittently recalibrated during the
scans. Because only two or three pulses were applied to QW for the photon mea-
surements, it was optimised using the AllXY sequence53 of 21 combinations of two
σx and σy rotations (either π/2 or π). The frequency of QW was regularly calibrated
during photon measurements using Ramsey sequences.

Wigner tomography reconstructions. Tomograms shown in Figs. 4 and 5 are
maximum-likelihood reconstructions54, 55 of the resonator quantum state from
direct Wigner tomography measurements39. The Wigner function at a phase-space
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position α is:

W αð Þ ¼ 2
π
Tr ΠDy αð ÞρrD αð Þ	 
 ¼ 2

π
Tr Mαρr½ �; ð14Þ

where ρr is the resonator density matrix, Π ¼ P
n �1ð Þn nj i nh j is the photon parity

operator and D(α) is the coherent displacement operator. For each measured α, we
calculated Mα=D(α)ΠD†(α) using an operator dimension much larger than the
largest αj j2 in the measured phase space, to avoid edge effects when calculating D
(α). The Mα were then truncated to a maximum photon number sufficient to
capture all of the reconstructed state, but small enough to allow fast reconstructions
and ensure an informationally complete set of operators (nmax= 12 and 8 for
tomograms in Figs. 4 and 5, respectively). The maximum-likelihood reconstruction
was carried out using convex optimisation56, 57. In Fig. 4, a systematic phase
correction was applied to the density matrices to correct for a miscalibration of the
resonator drive phase used in the coherent displacement. Finally, the reconstructed
density matrix was then used to calculate the plotted Wigner functions.

Data availability. Data and related analysis are available from the corresponding
author on request.
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