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Short-term reward experience biases inference
despite dissociable neural correlates

Adrian G. Fischer® 2, Sacha Bourgeois-Gironde ® 3% & Markus Ullsperger @ 2

Optimal decision-making employs short-term rewards and abstract long-term information
based on which of these is deemed relevant. Employing short- vs. long-term information is
associated with different learning mechanisms, yet neural evidence showing that these two
are dissociable is lacking. Here we demonstrate that long-term, inference-based beliefs are
biased by short-term reward experiences and that dissociable brain regions facilitate both
types of learning. Long-term inferences are associated with dorsal striatal and frontopolar
cortex activity, while short-term rewards engage the ventral striatum. Stronger concurrent
representation of reward signals by mediodorsal striatum and frontopolar cortex correlates
with less biased, more optimal individual long-term inference. Moreover, dynamic modulation
of activity in a cortical cognitive control network and the medial striatum is associated with
trial-by-trial control of biases in belief updating. This suggests that counteracting the pro-
cessing of optimally to-be-ignored short-term rewards and cortical suppression of associated
reward-signals, determines long-term learning success and failure.
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ammalian brains are well-accustomed to learning how

to maximise reward based on the immediate evaluation

of potential outcomes. Such learning by reward
experience is model-free, fast, computationally simple, and can be
successfully employed in many ecological environments"2. Yet in
modern times, we are often provided with information about
desirable long-term outcomes, regardless of the immediately
rewarding property of an experience. These long-term
consequences are sometimes too distant to be experienced at
all, but still they influence us. Learning to infer the long-term
consequences of actions when immediate rewards are bad indi-
cators of future successes, requires inference based on a model.
How humans accomplish this inference, and which neural
processes transform potentially biased information regarding
short-term rewards into the formation of beliefs about long-term
goals, is only beginning to be investigated. For example, people
regularly consume fast-food—despite abundant information on
the negative long-term consequences—as it feels pleasurable in
the short term>. This behaviour, in turn, may bias their estimates
of the consequences of healthy eating in general. The relative

influence of information over reward on learning leading to
subjective decisions is at the heart of problems such as the global
obesity epidemic in children and adults®, but extends to drug-
and many other forms of addiction and disorders>®°.

Cognitive neuroscientists have only recently begun to investi-
gate the neural processes that enable humans to form inferences
by employing models of the world and derive actions from these
inference-based beliefs. Previous studies have used computational
models of decision-making processes to show that model-free and
model-based learning are behaviourally dissociable, yet share
common neural substrates”®. In addition, the definition of what
exactly constitutes a model, is broad’, and results may strongly
depend on the model used to solve the task. In most previous
studies, participants learned models of the complex contingencies
of context, choices and outcomes, such that the model itself had
to be established and successively employed to solve the task.
Here, we provide participants with full knowledge about the
model itself, such that long-term inferential belief formation is
feasible without learning. By manipulating congruence between
short-term rewards and inference, we study how reward
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Fig. 1 Task design. Schematic of an example trial and event timing of the task a. All participants were informed b about the exact probability of each
possible event in two lotteries (represented by urns yellow and blue) in relation to their long-term valence by presentation of two pie charts. Good
urns had a long-term expected value above and bad urns below zero. In this example a, a participant obtained a positive pay-out of 40 points, equivalent to
1.2€. However, this event is more likely to occur if the chosen urn indeed was associated with a long-term pay-out below zero (b, likelihood-ratio between
urns 0.4). Therefore, a participant could infer that the likelihood of this urn to be good should be lowered by this experience, despite having just
experienced winning 40 points. We prompted participants about their beliefs explicitly to the inferences performed (lowest display shows belief bar). Most
events in the task (Table 1) carried long-term information as well as valenced short-term pay-out, which could either be congruent (short- and long-term
valence align) or incongruent (short- and long-term valence mismatch). Between blocks of 20 trials (d), participants could earn bonus points if they
correctly identified the true long-term pay-out of both urns (5 bonus points per correct answer). However, participants were also given the choice to avoid
this gamble (c). On average, participants identified the true long-term valence of good urns correctly in 92 + 2% and bad urns in 86 + 5% and chose not to
guess at all in 6 + 3% of the cases. Note that the pie charts illustrating possible event distributions were constantly available to the participant in order to
avoid high working memory loads which could interfere with learning and could render the task very difficult to solve
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Table 1 Event structure of the task

Short-term Long-term Informativity Congruency Event distribution  Payout
valence valence

Good urn Bad urn Variant 1 Variant 2 Variant 3 Variant 4
Negative Negative Informative Congruent 10% 25% -50 =50 -30 -30
Negative Positive Informative Incongruent 25% 10% -40 =40 =20 =20
Negative None Non-informative ~ None 10% 10% -30 -60 -10 =40
None None Non-informative ~ None 10% 10% 0 0 0 0
Positive None Non-informative ~ None 10% 10% +30 +60 +10 +40
Positive Negative Informative Incongruent 10% 25% +40 +40 +20 +20
Positive Positive Informative Congruent 25% 10% +50 +50 +30 +30

Payouts in the task varied over blocks, and can be categorised via the following criteria: informative events (column 3) had unequal probabilities to occur in good or bad lotteries (urns). Thus, they can be
used to derive, or update (column 2), the conditional probability of a lottery to be good or bad in the long-term. This update was de-correlated (Fig. 2e) from the valence (positive or negative) of an event
(column 1) and those events where the direction of long- and short-term valence align, are termed congruent (column 4), and incongruent where they mismatch. The long-term valence results from
congruent events always having larger absolute payouts, which, however, in relation to the actual event is small (difference +10 points, maximal payout in the task 60 points per outcome). In addition,
non-informative valence events did have the highest absolute payout in half of the blocks. The likelihood-ratio of informative events in good and bad lotteries (2.5 or 0.4) was constant throughout the
experiment. In total 30% of possible outcomes did not carry information about long-term valence (rows three to five), and 10% additionally had no short-term outcome (payout of O cents, row 4), and
these thus were non-informative. Note that in some blocks both urns could be good or bad, respectively (with the same pay-outs)

experience influences inference. Furthermore, we employed a
Bayesian framework that allows us to compare human to nor-
mative, ideal inference!”.

To this end, we designed a novel binary learning task in which
participants had to learn if the long-term valence of urn lotteries
was good or bad in a block-wise fashion. All participants were
given full information about the probability of events depending
on whether a good or bad urn was chosen, and this information
could be employed for inference. Both negative and positive
outcomes could indicate that an urn was good, i.e., had a positive
long-term expected value. We were thereby able to contrast the
informational content of a trial from its current rewarding nature.
For example, a specific rewarding outcome could be more fre-
quent in the bad urn, leading to a positive reward prediction error
(RPE) for the current outcome, and a (potentially Bayesian)
inference that this urn is likely bad. To study belief formation
directly, we prompted participants about their explicit belief
estimates of whether or not an urn was good or bad in the long-
term. This design allowed us to contrast actual inference from the
experienced reward associated with an event.

Previous neuroimaging studies hinted at a common repre-
sentation of both these short- and long-term learning mechan-
isms in the medial striatum®. These common effects contrast with
findings on different mechanisms of motivated behaviour which
have dissociated representations across different parts of the
striatum!! 1%, We used functional magnetic resonance imaging
(fMRI) to investigate how 24 young healthy participants assign
the relative weight of reward experience and information about
long-term net outcome to generate beliefs that guide behaviour.
The novel two-urn task provided an ideal Bayesian solution to the
inference problem and was easily accessible by the participants.
This design allowed to assess how far individual participants
deviated from optimal belief updating and to map short-term
learning and inference about long-term outcomes onto compu-
tationally defined functions. The task fully orthogonalised both
learning mechanisms and thus provided ideal preconditions to
search for their possibly separable neural correlates. We found
that human inference, measured via belief updates, was biased
away from ideal Bayesian inference and towards short-term
reward experience. On a neural level, we found a dissociation
between reward representations and belief inference in the ventral
to dorsal striatum, which we reproduced in an independent
sample. Activity in the frontopolar cortex (FPC) and dorsal
striatum counteracted reward-induced biases on inference. Fur-
thermore, medial striatal representations of both learning
mechanisms show gradients in opposite directions, and the
individual degree of representational overlap of biasing short-
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term rewards with model-based long-term inference in medio-
dorsal striatum corresponds to approximately optimal belief
updating of that participant. In summary, we describe a novel
task that can be employed to study the contribution of reward-
biases on inference on neural and behavioural levels in healthy
and possibly pathological states. The results we report elucidate
that distinct regions in the striatum and FPC enable humans to
draw reward-independent inferences.

Results

Task description and behaviour. On every trial of the two-urn
task (Fig. 1a), participants had to decide from which lottery (urn)
they wanted to sample by drawing an event (a ‘marble’). Every
choice resulted in a pay-out of a specific number of points that
directly translated into monetary incentives (10 points equalled
30€ cents), and which could be positive, negative, or zero. The
immediate, short-term experience of pay-outs thus consisted in
valenced monetary rewards, which ranged from 0 to + 60 points.
In addition, the exact value of the pay-out could be employed to
infer whether an urn was good or bad to sample from repeatedly
in the long-term. This inference should be based on the dis-
tribution of pay-outs conditional on the long-term valence of an
urn. The event distributions of the possible urns were shown as
pie charts (Fig. 1b) and continuously stayed on screen during the
entire experiment to minimise working memory demands. In
addition, before each block, participants were explicitly instructed
about all possible events that could occur in the next block and
how likely each event was in urns that were either good or bad.
This part of the task was untimed so that participants could take
the time they needed to understand the provided information.
This ensured that they could infer (via the likelihood ratio of
observing an event conditional on the long-term valence) if a
specific pay-out indicated that the chosen urn was more likely to
be good or bad. Thus, pay-outs simultaneously carried a short-
term reward as well as information regarding whether the chosen
urn was actually good or bad, constituting a potentially congruent
or incongruent dual-signal (see Fig. 1 for an inference example).
The same pay-outs could be observed when drawing from either
urn, yet with different probabilities (Fig. 1b). This ensured that
each event only provided a certain amount of information about
the long-term valence of an urn and that participants had to
integrate information via inference into a belief of how likely they
thought an urn was to be good or bad. Notably, the short-term
reward was irrelevant to solve the task in an ideal way, and ideal
Bayesian inference would rely purely on the differences in the
probability distributions.
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Fig. 2 Modelled and observed behaviour in the task. The Bayesian learner a updates equally on congruent and incongruent informative events, and does not
update on non-informative events (rightmost three entries). b Reward prediction errors (RPE) that update the model-free reinforcement-learner (RL) do
not differentiate informative and non-informative events, and instead mainly reflect the valence of the outcome. ¢ Human participants update their beliefs
positively on positive congruent and negative incongruent events and vice versa for negative updating. They also do not update their belief estimates
significantly on non-informative valence events, but instead show characteristics of biased updating by model-free learning: they update beliefs significantly
less on incongruent pay-outs (see Supplementary Fig. 1 for a more in-depth analysis of the congruency effect). d Results of within-participant regression
analyses comparing the influence of both learning models. All participants in the study were described by the update predicted by the Bayesian model, yet
additionally a significant positive covariation between participants' belief estimate updates and the model-free RPE was seen. Factor edge controlled for the
tendency of some participants to decrease updating at extreme values of possible beliefs (i.e., zero or one, t,3=-3.0, p=0.0063). e Correlation of
Bayesian belief update and normalised RPE across the task in one random example participant illustrating that both regressors were de-correlated.
Predictions of both models are based on 5000 random trial sequences. Error-bars represent SD in plots a and b, and SE in ¢

After every trial, participants were prompted to enter their ~were good or bad via repeated sampling of events for which
current beliefs about whether the urn was good or bad by setting  probability distributions were provided.
a marker between 0 (bad) and 100 (good). Some events were Participants could maximise their winnings in two ways. First,
equally likely in both types of urns, and therefore did not carry by preferentially choosing the good urns and avoiding bad urns
information. These are termed non-informative in contrast to  within the blocks. Second, correct evaluation of the long-term
pay-out events that are informative (Table 1). Note that non- valence of an urn was rewarded at the end of each block with
informative events could still consist in winning or losing points, bonus points if the true valence of an urn was correctly identified
and thus provided reward experience but could not be used for in an additional gamble (Fig. 1c). We introduced this bonus to
inference. The long-term valence of an urn could be determined encourage exploration of good as well as bad urns and keep the
by calculating its expected value via multiplication of each event’s  task, as well as analyses more balanced. The experiment consisted
probability and pay-out sum. This, however, was not something in 12 blocks of 20 trials (Fig. 1d). In 10 blocks, one urn was good
participants had to do because they were explicitly given and the other one bad. In one block, both urns were good, and in
information which distribution represented good or bad urns. another block, both were bad, which was always the third block in
To summarise, participants had to infer whether each of two urns  the experiment to avoid that participants generalised beliefs of
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Fig. 3 Effects of model-based inference and model-free experience. a Shows positive covariation with Bayesian model update (D, blue) and reward prediction-
error (RPE, red). D, was associated with activity in the intraparietal sulcus (IPS; peak Montreal Neurological Institute coordinates —14, =70, 54 mm, peak z-
score = 6.00), posterior mesial frontal cortex (pMFC; O, 27, 50 mm, z-score = 5.40), left dorsolateral prefrontal cortex (dIPFC; =45, 25, 27 mm, z-score = 6.03),
and left frontopolar cortex (FPC; =35, 60, 6 mm, z-score 5.07). In addition, the dorsal striatum (caudate nucleus) covaried with Dy, (right 9, 17, 6 mm, z-score =
5.07; left =9, 16, 2 mm, z=4.94), whereas the ventral striatum covaried with RPE (right 14, 9, =8 mm, z = 5.51; left =9, 13, =8 mm, z-score = 5.00), for which an
additional effect was seen in the ventromedial prefrontal cortex (vmPFC -4, 61, 3 mm, z-score = 4.89) extending into the medial FPC. A complete list of
activations can be found in Supplementary Table 1. Spatial gradient analysis comparing functional main effects against anatomical location along the bilateral
z-axis from ventral to dorsal striatum (x =11, y + 10 mm) in 5 mm steps (indicated by the colour-marks in b that correspond to the z-axis in € and plotted in d).
Within-participant multiple regression time-courses of beta weights of an analysis comparing BOLD activity within these marked voxels against Dy, and RPE per
trial (including regressors of no-interest). ¢ displays mean regression-weights from 3 to 7 s (grey area) which are compared against the z-axis marked in b in an
across-participants regression model. The time-course of this signal is plotted in d. In the left and right striatum, RPE representation gradually decreases along
dorsal position (both p < 0.0005), while Dy, representation increases (both p < 0.0125), resulting in significant contrasts within both hemispheres at most
ventral and dorsal seed regions (all p values < 0.007). Effects in a are thresholded at p < 0.0001, colour bars indicate z-scores, error-bars in ¢ and shades in
d reflect SEM of individual participants” regression weights, lines in ¢ reflect the OLS regression slopes of the averaged regression values for illustration purpose

only. For an analysis of decision related neural correlates see Supplementary Fig. 6

one urn to the other one. The pay-out values and distributions
changed from block to block, such that the same event could be
informative or non-informative in different blocks. The expected
value for each urn was constant at + 30 points (equal to 0.9€) per
block, meaning that if participants would only sample from the
good urn, they would gain 1.5 points per trial. The exact order of
events was predetermined with regard to the information
conveyed (congruent, incongruent, non-informative), but the
valence depended on which urn a participant chose (e.g., a
congruent event would be positive if a good urn was chosen on
that trial). Note that magnitude and relative pay-out between
informative and non-informative events were varied across the
task (Table 1), yet the likelihood ratio of informative events
remained constant over blocks, which facilitated task
performance.

Participants correctly identified the urns’ long-term pay-out
accurately and equally well for good and bad urns (good correct
=92 + 2%, bad correct = 86 + 5%, no significant difference, t,3 =
1.45 p=0.16, n for these and all following tests unless specified
otherwise = 24). This indicates that the participants understood
the task well and could integrate outcomes into long-term beliefs
by using the provided event distributions for good and bad urns.
The latter result was likely due to the fact that we incentivised

NATURE COMMUNICATIONS | 8:1690

participants to explore both urns and not purely exploit their
current belief about which urn may have the higher expected
value. We furthermore found that participants’ beliefs mediated
choices: the effect of experiencing positive and negative outcomes
on beliefs fully explained choice behaviour (following inclusion of
beliefs into a regression of learning duration on choices, more
time on task had no effect on choices of correct urns, see
Supplementary Fig. 2). This indicates that measuring beliefs is
sufficient to explain choice behaviour and most biases in the two-
urn task.

Short-term outcomes bias inference-based learning. Ideally,
inferential long-term belief updating should be independent of
the short-term valence of the pay-out and approach Bayesian
optimal updating (Fig. 2a). To test whether participants achieved
this ideal updating (or systematically deviated from it), we con-
structed two computational models that solved the task. The first
one was a Bayes-optimal learner'* that employed model-based
information (Fig. 2a), constituting a normative solution to the
task!. The second model relied on outcome information without
knowledge about the underlying pay-out distributions, as in
model-free reinforcement learning (RL, Fig. 2b)!°. From the
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Bayesian model, we extracted the signed trial-by-trial deviance
between prior and posterior belief, which measures how much
and in which direction beliefs should ideally be updated (Bayesian
ABelief), and which closely relates to the absolute change in
posterior belief, the Kullback-Leibler Divergence (Dgp, see
Methods for details). From the RL learner, we extracted the
signed RPE and regressed both in one multiple linear regression
onto the trial-by-trial belief update of the participants. This
confirmed that all participants updated their beliefs well in
accordance with predictions from the Bayesian model (-test of
within-participant ~regression weights  t,3=14.5, p<10713,
Fig. 2d), indicated by positive regression weights for each parti-
cipant. However, RPE derived from the RL model, which repre-
sents the difference between obtained and expected pay-out based
purely on previously experienced pay-outs, explained additional
variance in belief updating (t,3 = 3.86, p = 0.0008). This indicates
that long-term beliefs are systematically biased by short-term
reinforcement learning. This is also reflected in significantly lower
belief updates when short- and long-term information are
incongruent with each other (f,; =4.06, p =0.00049, Fig. 2c and
Supplementary Fig. 1). We found a comparable effect when we
used the actual outcome of the trial instead of the RPE (t,3 = 3.76,
p=0.001), indicating that in this task RPE effects are mainly
driven by the outcome term. Importantly, non-informative events
that carried no long-term information, yet still provided valenced
pay-out, did not lead to significant belief updating (both t-tests p
> 0.19)—ruling out the possibility that participants did not
understand the task. Failure to understand task instructions
would lead to updates always in accordance with the valence of
the pay-out (Fig. 2c).

Dissociable neural correlates. To search for separable neural
correlates of model-based and model-free learning, we included
predictions of the models as trial-by-trial regressors locked to the
onset of the pay-out into one general linear model (GLM) to
explain the fMRI signal time course of every participant across
the task. The predictors were Dy ', reflecting the overall degree
of change in the Bayesian model, as well as the RPE, reflecting
signed model-free outcome evaluation. Inclusion into one model
was unproblematic, because both predictors shared only 1.2%
variance (average r across all participants = 0.11, Fig. 2e).

Our results revealed evidence for separate neural representa-
tions of both learning mechanisms as well as for partial overlap in
distinct cortical and subcortical regions. We found that Dgy, was
associated with activity in the intraparietal sulcus (IPS; peak z-
score = 6.00, Fig. 3a, please see Supplementary Table 1 for
additional details for all effects), posterior mesial frontal cortex
(pPMFC; z-score = 5.40), left dorsolateral prefrontal cortex (dIPFC;
z-score = 6.03), and left FPC (z-score =5.07), as well as dorsal
striatum (caudate nucleus) (right z-score =5.07; left z-score =
4.94). The ventral striatum expectedly'” covaried with RPE (right
z=>5.51; left z="5.00), for which an additional effect was seen in
the ventromedial prefrontal cortex (vmPFC; z-score=4.89)
extending into the medial FPC.

Contrasts revealed that distinct cortical activity covarying with
model-free learning signals was seen in the vmPFC (z-score = 5.3,
Supplementary Fig. 3b) and ventral striatum (left z-score = 4.07;
right z-score = 3.21). All Dy effects were significant above RPE
effects (contrast at peak voxel in IPS z-score =5.04, dIPFC z-
score = 5.24, pMFC z-score =4.41). We furthermore confirmed
that all Dgy, main effects were seen over-and-above the possible
influence of surprise (formalised as Shannon Information, -test
of regression weights at peak voxels all p < 0.003, Supplementary
Fig. 3c-f). Shannon-Information is a possible confound in
analyses investigating Bayesian model update'®, because in most
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cases, unexpected events cause larger changes in beliefs. This
confirms dissociable neural correlates for model-free and
inferential learning. However, both processes were not completely
distinct. A cluster conjunction analysis of both learning-models’
predictions showed overlapping activity in the medial striatum at
a minimum z-score threshold > 3.1, as well as two cortical regions
(Supplementary Fig. 3a), including the lateral FPC and posterior
cingulate cortex (PCC).

Striatum gradually reflects both learning signals. We then
investigated whether the observed difference in striatal correlates
of Dx; and RPE could be described by assuming a gradual in- and
decrease of one type of learning over the other, or reflected a strict
anatomical dissociation. Therefore, we conducted a spatial gra-
dient analysis and regressed the position along the ventro-dorsal
axis of the striatum (Fig. 3b) against the regression weights
reflecting covariation with either Dy or RPE. We found that
within both hemispheres the in- and decreasing expression of
Bayesian update and model-free learning, respectively, was well
described by assuming gradual change (Fig. 3d), which was
confirmed by significant regression slopes with reversed signs for
both factors along the MNI z-axis (Fig. 3c, t-test of slopes in both
hemisphere for Dgp ty3<-2.7, p<0.015; RPE #);>4.1, p<
0.0005). Although it is difficult to fully rule out artefacts as the
cause of gradual effects in fMRI, this finding is compatible with
previous research suggesting that information is integrated from
ventral to dorsal striatum via spiralling reciprocal ascending
midbrain projections!®,

Next, we tested if the effect for model-free signals obeyed to
sufficient criteria'® of a true prediction error signal. These criteria
demand that the actual pay-out correlates positively and the
expectancy of the pay-out (the expected value) negatively with the
signal. Yet, whether this expected value reflected in the ventral
striatum—which forms the basis for RPE calculations—is learned
purely via model-free mechanisms or incorporates more complex
learning strategies, is currently unclear®. Therefore, we included
the actual pay-out obtained and its expectancy (defined either as
learned via the RL model, or as a participant’s actual prior belief)
into one GLM focused on the ventral striatum. This analysis
revealed that, aside from the pay-out, ventral striatum negatively
covaried (left z-score=-2.21, right z-score=-3.09) with the
participant’s current belief, rather than the RL model’s expected
value (both p > 0.1, Supplementary Fig. 3g, h). This suggests that
model-free and inference-based learning are intertwined pro-
cesses which could be related to information transfer to the
striatum, specifically when learned outcomes need to be unified
with instructions®®. Thus, regions assumed to reflect mainly
model-free, short-term outcomes can be informed about the
current expected value by model-based learning and compute an
outcome prediction-error in relation to model-based values® or
beliefs. In addition, we found that the dorsal striatum represented
current beliefs at outcome relatively weakly (right caudate z-score
—2.67, left z-score = —0.43, Supplementary Fig. 3c-f), suggesting
that update terms and expectancy are at least partially processed
by different brain regions.

Correlates of more ideal updating. To further characterise the
trial-by-trial neuronal activity associated with more or less optimal
updating, we included a regressor coding the distance between a
participant’s actual update (prompted later) and the prediction
from the Bayesian model. Thus, Bayesianness was quantified as the
trial-by-trial similarity of reported updating to ideal updating such
that 1 equals exact Bayesian updating and 0 the opposite. By
adding Bayesianness, to the fMRI GLM, we seek regions in which
activity predicts more ideal belief updating over-and-above the
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Fig. 4 Trial-by-trial analysis of the degree of ideal Bayesian updating. Green = significant positive effects for regressor Bayesianness, indicating regions
where BOLD signals increased whenever belief updates were closer to Bayesian ideal updating. Notably, activity in ventral (right 14, 13, =9 mm, z-score =
4.27) and dorsal striatum (left 14, 13, =9 mm, z-score = 4.27), FPC (=4, 62, 9 mm, z-score = 4.05), anterior midcingulate cortex (aMCC, -9, 36, 27 mm,
z-score = 4.71), posterior cingulate cortex (PCC, =1,-19, 32 mm, z-score = 4.65) and midbrain overlapping with the substantia nigra (SN) and ventral
tegmental area (VTA, -2, =12, =12 mm, z-score = 3.80), was found to be higher whenever a participant’'s update was closer to optimal. See Supplementary
Table 1 for details about significant cluster activations. All these effects at least partly overlapped with main effects of Dy, (reproduced as in Fig. 3, depicted
in blue) despite whole brain FWER correction. Colour bars indicate z-scores, plots are cluster extent corrected at p < 0.05

bias of model-free learning (RPE), and in which activity varies
across the task that is unexplained by the Bayesian model itself*!.

The degree of optimality of an update on a given trial positively
covaried with activity in aMCC (z-score = 4.71), bilateral striatum
(z-score > 4.34), and left lateral FPC (z-score =4.29), all over-
lapping with the main effect of Dy (Fig. 4, see Supplementary
Table 1 for all results). This indicates that when these regions are
activated more strongly on a given trial, updating is closer to the
optimum, possibly because the model-free bias is reduced. A
notable additional finding are partly overlapping effects of update
optimality (peak coordinates —2, —19, —18 mm, z-score 4.05) and
Dy, (peak coordinates 0, —26, —22 mm, z-score 4.28) in brain
stem nuclei, indicating that activity here increased as optimal
updating increased. Although we lack the resolution to
differentiate between individual nuclei, we note overlap possibly
with the ventral tegmental area (VTA), substantia nigra (SN), or
raphe nuclei. This finding is physiologically plausible given the
tight reciprocal connections between these midbrain regions and
the ventral and dorsal striatum'8,

We further tested for an association with incongruence
between model-free reward experience and long-term inference.
First, we found that IPS (z-score 4.7), dIPFC (z-score 4.07) and
PMEC (z-score 3.54) displayed increased activity when reward
experience and long-term inference were incongruent with each
other (Supplementary Fig. 5), consistent with a role of these
regions in implementing cognitive control and suppressing
model-free biases®~24,
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Neural predictors of learning performance. We then asked
whether inter-individual differences in neuronal representations
of model-free and model-based learning relate to the ability to
overcome model-free learning biases. Importantly, just as in the
introductory examples relating to choosing fast-food or exercise,
we observed considerable variance in the ability to adhere to ideal
Bayesian updating across participants (Fig. 2d), as well as in the
bias induced by model-free learning. We therefore regressed
individual participants’ regression weights of Bayesian and RL
models on belief updating obtained from the behavioural
regression analysis (Fig. 2d) onto the contrast (Supplementary
Fig. 3b) of parameter coefficient estimates for Dy and RPE in a
whole brain analysis. Resulting parameter coefficients were then
again contrasted; therefore this contrast of contrasts tests the
hypothesis of any relationship between neural data and efficacy of
belief formation and influence of model-free biases. Surprisingly,
we found that the lower the difference between coding Dy, and
RPE was in bilateral dorsal striatum (z-scores > 4.41), as well as
FPC (z-score =4.59, Fig. 5a), the more was a participant’s belief
update explained by Bayesian compared to model-free learning,
i.e., the more optimal and the less biased was a participant. We
conducted separate cluster-based conjunction analyses (at z-score
threshold > 3.1) to test if this across-participants effect over-
lapped with regions revealed in the within-participants analyses
as coding: either Dy, RPE, or both. There was some overlap
within the medial striatum indicating conjunct effects for RPE
and behavioural correlation across participants, yet the overlap
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Fig. 5 Striatal and FPC activity predicts Bayesian updating performance. a Displays the effect of contrasting behavioural and neural effects across
participants forming a contrast of contrasts. The lower the difference between neural short-term (RPE) and long-term (D) representations in

bilateral caudate (right 9, 2, 10 mm, z-score = 4.43; left =11, 3, 13 mm, z-score = 4.41) and FPC (right 17, 66, 5 mm, z-score = 4.34; left =24, 64, 9 mm,
z-score = 4.59), the more participants updated their beliefs in accordance with predictions from the Bayesian, rather than the RL model. Conjunction
analyses b with the main effects of RPE (red) and Dy, (blue) showed overlap mainly within regions that were primarily activated by Bayesian model update,
although medial striatum and FPC activity additionally overlapped with the main effect of RPE. This was confirmed by a three-way conjunction analysis
which revealed that indeed the medial striatum, as well as a small region in FPC was significantly activated by model-free and inference-based learning
and reflective of the degree of influence both models exerted over participants’ belief updates when compared on group level (¢, yellow). Colour bars

indicate z-scores, plots are cluster corrected at p < 0.05

was clearly pronounced in the dorsal striatum with the main
effect of Dxyp (Fig. 5b). Last, the three-way conjunction (at a
minimum z-score of 2.3) revealed that the medial striatum was
activated by both main effects, as well as displaying significant
across participants’ covariation with the relative degree of Baye-
sian belief updating (Fig. 5c¢).

To test whether this contrast of contrast effect was driven by
increased RPE, or decreased Dy representations, as well as
whether it was mainly related to the influence of Bayesian or RL
model predictions, we conducted separate follow-up analyses
across participants on the respective main effects. We found that
increased expression of model-free learning signals in dorsal
striatum (z-scores >4.05) and FPC (z-score > 3.98) drove the
behavioural contrast (Supplementary Fig. 4), which may be
activity indicating suppression of reward-related signals. There-
fore, it was not the relative degree of expression of Bayesian
learning signals that explained inter-individual variance, but the
representation of model-free signals within regions coding
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inferential model update. Furthermore, when dissociating the
effects in the behavioural data, we found that behavioural
correlations with striatal activity were mainly related to
a reduction of the influence of RL learning on belief updating
(z-scores > 3.80, Supplementary Fig. 4c). Within the FPC, we
found dissociable effects such that stronger representation of RPE
in medial FPC was related to a reduction of model-free influences
(z-score =4.17), and in more lateral FPC related to increasingly
Bayes-optimal belief updating (z-score =4.18, Supplementary
Fig. 4c).

We furthermore examined whether inclusion of RPE coding
into more dorsal striatal regions was associated with a reduction
in biased belief updating, thereby excluding the possibility that
this effect was introduced by anatomical variance across
participants. To do this, we regressed individual regression-
weights of model-free and model-based learning on belief update
(Fig. 2d) onto the striatal gradients from ventral to dorsal regions
for RPE and Dy, representations (Fig. 3¢c) averaged over left and
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Fig. 6 Gradual RPE integration into the dorsal striatum reduces model-free biases. a Scatter plot of the overall correlation (r=-0.70, p = 0.00012) between
the individual slopes of the striatal gradients of RPE representation (as in Fig. 3c; averaged over both hemispheres) and the individual behavioural
influence of RPEs on belief updating (regression weights displayed in Fig. 2d middle). b Individual striatal gradient slopes (averaged over both
hemispheres), colour-coded according to the individual rank order of behavioural bias by RPE (short-term outcomes) on belief updating (red = strong
short-term bias, green =low short-term bias). ¢ Same as b with the intercept of the individual regression added to the plotted regression lines.

In sum, weaker representations of the RPEs in dorsal striatum were associated with stronger biases of a participant’s behaviour by model-free processing

of short-term outcomes

right hemispheres. We found a significant effect of the
behavioural influence of model-free predictions and the steepness
of the RPE gradient (Fig. 6): the more RPE signals were focused
ventrally and spared the dorsal striatum (steeper negative slope),
the more model-free learning biased belief update (robust
regression f, =-3.94, p=0.0008). There were no significant
effects (robust regression all p > 0.12) for model-based updating
on RPE or Dy; gradient slopes, nor for model-free updating on
the slope of Dy, gradients. These findings suggest that individual
differences in the degree of the efficiency of long-term belief
formation are not explained by variance in expressing model-free
learning signals in the ventral striatum, nor the degree of
representing Bayesian updating in dorsal striatum per se. Rather,
it seems that representation of model-free learning within dorsal
striatum is essential for unbiased formation of beliefs about future
outcomes, which functionally may represent repression or
counteracting of model-free signals.

Replication study. Finally, we performed a replication study in
an independent sample of 18 participants. We altered the task in
two ways: participants were only prompted about their beliefs on
every third trial, and the belief markers always returned to the
indifference point. Therefore, participants could predict when
they would be prompted about their beliefs and they had to
memorise the previous position of the belief bar. This ensured
that participants formed internal belief representations and tested
if simply anticipating that the position of the belief-bar would be
updated could explain the neural effects.

Behaviourally, participants successfully identified the urns’
long-term valence between blocks to obtain the bonus points
(Fig. 7a). For good urns, they were correct 10.9 + 0.3, wrong 0.6
+ 0.2 and for bad urns they were correct 11.1 + 0.2 and wrong 0.3
+0.14 times. None of these numbers were significantly different
from the original study (independent sample t-test, all t,5 < 1, all
p for comparisons > 0.2). We replicated the striatal dissociation
found in the original study (Fig. 7b). We also replicated all major
main effects seen for Dy and these overlapped with the Dyy
effects in the original study. We found significant effects in the
left (z=3.72) and right dorsal striatum (z-score =4.06), left IPS
(z-score = 4.07), left dIPFC (z-score = 4.9), pMFC (z-score = 4.6),
and left FPC (z-score=3.61). All these effects remained
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significant when we analysed only trials without a following
belief prompt (all z-scores > 3.1, Fig. 7c).

The effects for RPE were somewhat reduced, possibly because
of the worse fit possibility of the RL model because prompts were
present only every third trial. At a lower threshold, we still found
overlapping significant effects in the left (Fig. 7d, z-score = 2.50)
and right ventral striatum (z-score=2.77). Furthermore, we
found significant effects overlapping with the original cluster
spanning vmPFC (z-score = 2.26) and FPC (z-score = 2.67). The
only significant interaction effect between belief prompting and
Dy, or RPE was seen in the left IPS (z-score = 3.3), indicating
that Dy was more strongly reflected here when participants knew
that they would be prompted to enter their current belief estimate
afterwards.

This supports the view that the observed neural correlates of
belief updating relate to learning, although learning and the
formation of a decision about long-term valences are closely
intertwined processes and it cannot be excluded that part of the
neural signals relate closer to decision making compared to
learning?”. However, long-term inference and model-free reward
processing clearly demonstrated separable neural correlates,
suggestive of dissociable neural processes underlying both.

Discussion

As in the two-urn task, many real-life events carry multiple
meanings: in addition to a reward or punishment experience they
often convey information enabling us to update our internal
beliefs about the world and thus enable us to infer whether a
situation or course of action is generally favourable. Theoretically,
ideal inference from an event should be independent of the
reward experience it conveys. Our study suggests that the human
brain processes reward experience and inference about long-term
outcomes in distinct cortical and subcortical brain regions. The
network related to inference was dissociable from model-free
reward processing, and consisted of the dorsal striatum, frontal
cortex (dIPFC, pMFC, FPC), and IPS; reward itself was processed
in ventral striatum and frontal cortex. These distinct networks
overlapped in the dorsal striatum and FPC, two regions that
enable adaptive behaviour!>?°. By studying belief formation via
inference, we uncovered a cortical network that is similar to
networks previously identified when a task model had to be
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Fig. 7 Results of the replication study. We replicated the main results of the study in a second sample of 18 participants. In this version of the task,
participants knew beforehand that they would be prompted about their beliefs only every third trial. In addition, the belief marker was always reset to the
indifference point, forcing them to always memorise their beliefs. Participants validly identified if urns were good or bad in the long-term a. We replicated
the striatal dissociation (b, blue = Dy, red = RPE), as well as all Dx; main effects (¢, original = blue, replication = green) even on trials where participants
knew they would not be prompted about their beliefs afterwards. This minimises the possibility that Dy, effects are related to downstream decision making
about how to move the prompt cursor rather than to belief updating. RPE effects were weaker, but still present at lower thresholds, possibly because
the RL model could not be fit to participants without prompting their beliefs. Colour bars represent z-scores, replication effects are displayed at corrected

p < 0.001 for Dk, and uncorrected p < 0.05 for RPE effects, original effects as in Fig. 1. See Supplementary Note 1 and Supplementary Methods for

additional details about the replication study

explored’, or model-updating was dissociated from simple
surprisem.

Within the striatum, we found that model-free and inference-
based update parameters were represented in two independent
spatial gradients of reversed directions. Model-free reward
signals were strongest in the ventral striatum and decreased
in dorsal direction, whereas model-based Dy; was represented
most in the dorsal caudate and least in the ventral striatum.
Consistent with the idea of information transfer to the dopami-
nergic system?’, we found that the ventral striatum integrates
beliefs and pay-out. This finding suggests that the ventral stria-
tum does not reflect a learning mechanism that is strictly model-
free, i.e., based purely on reward experience, but incorporates
beliefs obtained by inference, compatible with previous studies®.
Relatedly, we found that the dorsal striatum only weakly repre-
sented current beliefs at outcome while reflecting updating,
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indicating that different brain regions may process values and
update terms?®.

As a side note, we found that activity in dopaminergic
midbrain regions, likely including VTA and SN, covaried with
belief-updating as well as the degree of how close to Bayes-
optimal an update was. It has previously been found that activity
in dopaminergic midbrain regions increases with task
demands®>*°. Given that inference requires cognitive effort, one
may speculate that increased midbrain activity could support
ventral-to-dorsal information transfer in the striatum. This is
anatomically supported by reciprocal connectivity between the
striatum and midbrain regions, in which it is hypothesised that
information is integrated into planning via spiralling projections
from ventral to dorsal striatum and VTA to SN, respectively'®.
This speculative, new hypothesis awaits to be tested in pharma-
cological challenge studies.
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Conceptually, the differentiation between reward experience
and inference is related to studies investigating model-free and
model-based learning®, because inference has to rely on a model.
However, the term model-based learning has been used broadly
for many situations in which any kind of internal model was
required. Most likely our investigation of abstract inference via
probability distributions is qualitatively distinct from, for exam-
ple, stimulus generalisation to obtain prospective rewards’.
Therefore, we note that neural correlates of model-based learning
likely depend on the actual model employed. Different models
may explain why previous studies using the two-step task® (in
which participants have to employ a model of state transitions)
found common neural correlates of model-free and model-based
learning only in the striatum. Although the two-step task allows
to study inter-individual variance in model-based learning
capacities®! as well, neural activity induced by the two-step task
has not shown the dissociation between ventral and dorsal
striatum we report here. Another unique aspect of the two-urn
task is that the model was always accessible in the form of the
probability distributions, and learning consisted in applying
the models to enable inference, whereas in most other tasks, the
model itself has to be learned. Using Bayesian inference as a
reference framework allowed us to compare behaviour and neural
activity to mathematically ideal predictions, constituting a nor-
mative framework!?. In contrast, ideal strategy employed in other
tasks may, under some circumstances, be to not apply a model at
all’2. In sum, these specific properties of the two-urn task can
explain why it allowed us to successfully dissociate the roles of the
ventral and dorsal striatum in inference- and reward-based
learning. To further investigate if this effect reflected general
inference, or was additionally related to single-trial inferential
processes, we compared participants’ inference with ideal Baye-
sian inference. In doing so, we found brain regions that, on a
trial-by-trial basis, displayed associations with the degree to
which belief updating adhered to predictions of the Bayesian
model over-and-above the effect of overall model-updating (Dxr).
This revealed, that activity in the medio-dorsal and ventral
striatum was associated with inferences closer to the Bayes
optimum. In addition, increased activity in aMCC and FPC, both
known to be involved in cognitive control, suggest that trial-wise
increases in cognitive control overcome inference biases®. This
effect was accompanied by increased activity in the PCC—spec-
ulatively associated with attentional focus on future decisions>*
and change detection®®. dIPFC neurons have been shown to
encode rewards that had not been directly experienced before, but
had to be inferred by monkeys®; taken together, these results
suggest that these regions contribute different facets to facilitate
inference. These within-participants effects line up with between-
participants effects. We found that inter-individual variance in
the ability to infer ideal long-term beliefs about the world relates
to the representation of model-free learning within regions
associated with inference, specifically the dorsal striatum and
FPC. In other words, the more RPE representation extends into
the dorsal caudate and the more it is reflected in the FPC, the
more optimal are an individual’s belief updates. This may seem
counterintuitive at first glance: common representation of model-
free and model-based update parameters in the medio-dorsal
caudate decreases the bias immediate reward exerts on belief
updates. Similarly, more overlapping representations of RPE and
Dy in (lateral) FPC was associated with more optimal belief
updates, consistent with FPC’s role in arbitrating between deci-
sion makin% strategies in other domains, such as exploration vs.
exploitation?®>738 However, this pattern of activity increases
paralleled by inferential updating and reward signals related to
the outcome, is well compatible with suppression of model-free
outcome signals. Counteracting outcomes thus seems to enable
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some participants to overcome belief-formation biases. These
results fit nicely to a recent study in which participants could
employ information conveyed either via real or hypothetical
outcomes, which both conveyed the same information. Parti-
cipants’ inferential learning was biased by real outcomes, yet
activity in lateral FPC and pMFC counteracted this bias. The
exact mechanism explaining how competition of short-term and
long-term information could be solved in overlapping or neigh-
bouring neuronal ensembles in the medio-dorsal caudate and the
FPC remains to be elucidated in future studies. These should
integrate biophysical models of learning and decision making
with knowledge about cortico-striatal circuits*’, as well as infor-
mation transfer between different striatal sub-compartments,
possibly via spiralling connections through the dopaminergic
midbrain'®, Taken together, these studies showing dynamic,
within-participants variance in belief-update and across-
participants covariation with reward-induced biases on infer-
ence, suggest that cortical control mechanisms in frontal regions
can overcome and suppress model-free learning biases, conver-
ging in processes reflected in striatal activity.

A functional dissociation between ventral and dorsal striatum
has been associated with the formation of habits, i.e., behaviour
resilient to outcome devaluation?!. In fact, the dorsal striatum is
supposed to control habitual responses. Interpreted in this fra-
mework, the activation in dorsal striatum we see may reflect
formation of a habitual response that could, over time, replace
active inference. It would be informative to test this hypothesis in
future studies by exposing participants to the same event dis-
tributions over longer time periods. This would allow participants
to directly associated events with belief changes, possibly
bypassing active inference.

The current task shares certain features with the Iowa Gam-
bling Task (IGT) which has been used widely to study the abilit
to integrate short-term outcomes into long-term predictions*”.
However, the IGT cannot deconstruct the intrinsic dual aspects of
events which contain information, as well as rewards, because
participants do not have an explicit model of underlying outcome
distributions. Although some participants might construct a
(subliminal) model in the IGT, it cannot be studied, when or if
participants employ this model, and how it translates into
behaviour. Imaging studies of the IGT indeed found broad
involvement of the ventral and dorsal striatum and frontal cor-
tex*3, yet specific contributions of these regions to learning can-
not be described using the IGT. Furthermore, we found that most
of the inter-individual variance maps onto neural correlates of
short-term outcome processing, which renders an explanation
based on individual processing capacity or task understanding
unlikely. Certainly, future studies should address which indivi-
dual factors map onto model-based and model-free learning in
the two-urn task, as well as how neurotransmitter levels may
modulate both forms of learning individually?*. In sum, the two-
urn task, which fully disentangles model-based and model-free
belief updating, is an easy-to-perform task and a promising tool
for clinical research on mental disorders. Future studies should
additionally disentangle which brain areas convey learned value
signals directly and which implement decisions based on values.

Finally, our results are highly relevant for economic decision
theory. The economic consensus is that Bayes’s rule is the only
sensible way to update beliefs. Yet, even when full knowledge of
the informational context has been made available to participants,
we observed behavioural and neural biases. Thus, even without
uncertainty which in theoretical decision-sciences motivated the
introduction of post-Bayesian models*’, these types of biases
should be accounted for in decision theory. Why humans are
biased by short-term outcomes at all even when they should
optimally be ignored remains an open question. Relying on
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model-free outcomes is computationally inexpensive, such that
biases of model-based behaviour might be related to limited
processing capacities, or biases may have proven advantageous at
some stages of human evolution. Our paradigm provides a new
means to study whether belief formation is biased by recent
events, allowing for the potential assessment of pathological
deviations, an extension which could benefit the study of mental
disorders such as attention-deficit hyperactivity disorder. On a
neural level, we show that reward processing and inferential
learning can be dissociated and that dorsal striatum and FPC
enable reward-independent long-term inference.

Methods

Participants. Out of the 26 young, healthy human participants that partook in the
experiment, 24 participants were included into the final analysis. For one partici-
pant, the fMRI recording failed due to a broken head-coil, and one participant did
not understand the task instructions (continuously selected the urn presented on
the left side of the screen, leading to completely random choices). The final,
included sample comprised 10 female participants and the mean age was 26.1 +4.3
(SD) years (range: 18-34). Two participants were left-handed and all participants
gave written informed consent to participate in the study. Participants were
informed about possible risks of the measurements prior to participation, and all
procedures were carried out in accordance with the declaration of Helsinki. The
study protocol was approved by the ethics committee of the medical faculty of the
Otto-von-Guericke-University, Magdeburg (Germany). Details about the replica-
tion study are presented in the Supplementary Methods.

Task description. The goal of the task was to infer if a lottery, represented by an
urn, had a long-term expected reward above (good urn) or below zero (bad urn)
and use this information in order to maximise received pay-outs. Participants were
instructed to deliberately choose between two urns to draw an event from at the
beginning of each trial, and urn positions (left, right) were randomised. Following a
1s delay period, the pay-out was revealed to the participant indicating either a
monetary win or loss in points (range: 0-60 per trial) for 3-8 s (drawn from a
uniform distribution with 1s steps). At the end of the experiment, gained points
were converted to € cents by multiplication with 3 and paid out to the participant.
After the outcome was displayed, a belief prompt was shown in which participants
had to enter their current belief about the previously chosen urn to be good (100)
or bad (0) with a step-size of 10 by moving a marker up and down on the side of
the belief-bar (Fig. 1a). The urns were selected by pressing a button with the left
and right index finger, which also moved the belief marker up and down. The final
position of the belief bar was confirmed with the left or right middle finger and
trials were separated by display of a fixation cross for 1-3.5s (drawn from a
uniform distribution with 0.5 s steps). Participants were instructed that the prior
likelihood of an urn to be good or bad was 50% and the marker remained at the
previously confirmed position at the next trial when the same urn was chosen again
(note the difference compared to the replication study).

To determine the long-term valence of each urn, participants were instructed to
employ information about the conditional probability of each pay-out given that an
urn was either good or bad (Table 1). Informative pay-outs conveyed signals on
two dimensions: long- and short-term valence, which could align (congruent
event), or mismatch (incongruent event). The short-term valence simply reflects
the actual pay-out magnitude, whereas the information about the long-term
valence was to be derived from a difference in likelihoods of observing that event in
good or bad urns via inference. Therefore, a received reward can lower the long-
term expected values and a received loss can increase long-term expected values via
model-based inference, which we used to orthogonalise both dimensions of the
pay-out events. Non-informative events still had a short-term valence (participants
won or lost points), yet their likelihood-ratio between good or bad urns was always
1. On 10% of all trials, null-events were drawn that were non-informative and had
a pay-out of 0 points.

Before each block, participants received detailed instructions about the
distributions of all possible pay-outs in the upcoming block via pie charts (Fig. 1b)
and participants were instructed to memorise these distributions as well as possible.
However, to avoid misinterpretation of pay-outs, pie charts of the current pay-out
distributions were continuously shown at the right side of the display during the
whole experiment. Each block included 20 trials and the task consisted of 12 total
blocks, resulting in 240 trials. In 10 blocks, one urn was good and the other one was
bad, in two blocks both were good or bad, respectively. For all participants, the
third block in the experiment consisted of two bad urns. Participants were
informed that they could maximise their earnings by prioritising choices of good
urns during the blocks, but additionally gain bonus money (5 points each) if they
correctly identified the long-term valence of each urn at the end of a block in a
gamble (incorrect identification resulted in a loss of 5 points, avoiding to guess did
not change points). The exact expected value per block per urn was + 30 and —30
points in good and bad urns, respectively, or, vice versa + 1.5 points per choice.
The correct long-term assessment of an urn’s valence (i.e., its long-term EV) was
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additionally rewarded between blocks (Fig. 1b). Therefore, participants could earn
up to =+ 30 points per block of 20 choices, while correct identification of each urn at
the end of each block provided up to 10 additional points. During the task, the type
of event (informative, non-informative, congruent or incongruent) was
predetermined to keep the amount of information constant between all blocks and
participants. Thus, each trial was observed with a frequency matching its exact
probability in a block indicated in the pie charts. However, the pay-out depended
on participants’ choices, such that a congruent event was associated with a
positive pay-out if a good urn was chosen, and vice versa if a bad one was chosen.
Overall, participants displayed exploitative behaviour (average number of choices
of good urn =153 + 5 (SE), number of choices of bad urn 87 +5, t,; =6.60,

P =9.75x1077). However, they still sampled from the bad urn repeatedly even if
they estimated the other urn to be good, which can be interpreted as exploratory
behaviour (average number of choices of bad urn in blocks with one good and
one bad urn and belief of good urn > 0.6 =33 + 5, t-test against zero t,; =6.49,
p =127 x 107%). This resulted in participants being equally well able to evaluate the
good urns’ valence (correct =92 +2%) as well as the bad urns’ valence (correct =
86% + 5, for difference t,; =1.45 p=0.16) at the prompt between blocks (they
chose not to guess at all, a third option, in 6% + 3). On average, participants earned
174 + 13 points in the task (range: 80-280), out of which 67 (+£14) were earned via
exploitation within blocks, and 107 (+4) were earned by correctly estimating urns’
long-term valences during blocks as bonus pay-out. Prior to scanning, all
participants performed a training block of 20 trials after which they could discuss
possible questions with the experimenter.

Computational modelling. We first constructed an iterative Bayesian model that
learned the task in an ideal, or normative!’, way, reflecting unbiased model-based
learning. The model calculated the posterior belief (B.;) of an urn to be good
based on the prior belief (B,) associated with this urn and the conditional prob-
ability of the observed event (E;) under the provided pay-out distribution in a good
urn, scaled by the overall likelihood of observing this event incorporating the
complementary belief (1-B,), that is the belief that the urn was indeed bad, and the
provided pay-out distribution in these respective urns:

P(E;|Good) x B;

B, =
"' P(E,|Good) x B, + P(E;|Good) x (1 — B,)

Such iterative Bayesian models have been demonstrated to match human beha-
viour in multiple tasks well!%1446, Application of a delta rule leads to a measure of
signed belief update (AB,) per event:

AB; = |By1 — Bz‘

The Kullback-Leibler divergence (Dy;)'® reflects the absolute change in Bayesian
belief, or how much the model was updated per observation:

Dxi = |Bry1 — B

Please not that this Dy, derived from Bayesian updating is identical to a
symmetrical Dy Y. Please furthermore note that in our task, Dy; is not
confounded with surprise*$, or Shannon-Information'®, as the only events that
could be expected with higher probability than all other possible outcomes, were
informative and thus led to model update, whereas non-informative events never
led to model update, but were more rare, i.e., surprising. Furthermore, as we
additionally wanted to test if subjective model update was influenced by model-free
learning and investigate its neural correlates, we also applied the normative model
to each participant’s prompted prior beliefs (which will be called subjective
Bayesian model below).

Next, to assess model-free learning, we used a simple Rescorla-Wagner based
reinforcement learning model'® to estimate single trial reward-prediction errors
(RPE,; = §;) over the course of task progression based on the discrepancy between
the experienced pay-out and the expected value of the outcome on each trial (EV,):

6 = pr — EV,

All pay-outs were scaled to the highest possible outcome per block to account
for likely range adaptation effects*>" and the expected value was updated with the
trial-wise prediction-error scaled by a fixed learning rate (a):

EV,.; = EV, +ax §;

Based on each participant’s sequence of choices, we minimised the log distance
between the models expected value and each participants’ subjective belief (Bgyp;)
using maximum likelihood estimation (MLE) of the only one free parameter (a):

LD = ) log(1 — [Bubj — EVy|)

T
=1
Resulting mean MLE a values were 0.0613 (+0.013) across participants,

indicating that slow integration of outcomes, reflected in a relatively low learning
rate, was required in the task to match observed beliefs of the participants. This is
plausible given the large discrepancy between an urns long-term expected value

and the outcome magnitude of each trial (long-term expected values were always +
30 points per block, whereas each trial’s pay-out could be + 60 points). Please note
that we fit models to beliefs, rather than choices, as beliefs mediated choices in our
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task (Supplementary Fig. 2) and we intentionally decoupled choices by encouraging
explorative behaviour.

Behavioural regression model. For all comparisons of model predictions, we
conducted multiple linear regression analyses on each individual participant’s
normalised belief updates (calculated as the difference between posterior and prior
belief prompt), always accounting for edge (beliefs =0 or 100) as a factor of no
interest and additionally normalising model predictions. Resulting regression
weights were then tested against zero at group level. First, comparison of a model
including only RPE; as an additional predictor (negative log likelihood (-LL) =
8.029) and a model including normative Bayesian update (~LL = 6.611), revealed a
much better fit for the Bayesian model (difference of summed —LL scores 2.837,
likelihood-ratio test p = 0 within machine precision). However, both factors exerted
a significant positive effect on participants’ belief updating (both p < 107). For the
final model (Fig. 2d), we used the subjective Bayesian model described above from
which we also derived predictions for the fMRI analysis (Dxp, AB,) as it showed the
best fit (-LL difference to normative Bayesian model 242, likelihood-ratio test p =
0) and also likely fits neural data better in cases when participants incorrectly
updated their beliefs (due to model-free biases or otherwise). Similar results as
reported in the manuscript were, obtained when we compared normative Bayesian
and RL models’ predictions, or standardised regression coefficients instead of
normalised predictors. Furthermore, the influence of RPE on participants’ beliefs
was mainly driven by the outcome component of the RPE and we found very
similar results when we replaced the RPE regressor with the signed outcome per
trial (t,3=3.76, p=0.001, compare to Fig. 2d).

MRI data acquisition and analysis. Functional MRI data were acc%uired ona3T
Siemens TRIO scanner and pre-processing was carried out in FSL>!, The task was
presented using Presentation (Neurobehavioral Systems). For fMRI recording, an
isotropic resolution of 3 mm was used with a repetition time (TR) =2's, echo time
(TE) =30 ms, and a flip angle of 80°. The number of volumes acquired was
dependent on participants’ behaviour and the mean number was 1549 (range
1352-1790) resulting in an average task duration of 52 min. Field maps were
acquired using dual-echo gradient echo sequences with echoes at 4.92 ms and
7.38 ms using a repetition time of 600 ms and a voxel size of 1.9 x 1.9 x 3.0 mm? in
a grid of 240 x 240 x 112 mm?. Structural T1 images were acquired using an
MPRAGE sequence with 1 mm isotropic resolution, TR = 2500 ms, TE = 4.77 ms,
inversion time (TI) = 1100 ms, and a grid of 256 x 256 x 192 mm?.

fMRI data were motion corrected using rigid-body registration to the central
volume®? and aligned to the structural images warped into MNI space using affine
registration®>, while applying field map based geometric undistortion. Low-
frequency shifts were removed using a 100 s high-pass filter and slice time
acquisition differences were corrected using Hanning windowed sinc interpolation.
A Gaussian filter with 5 mm full width at half maximum was applied for spatial
smoothing. To account for temporal autocorrelation, the GLM was fit into pre-
whitened data, and all regressors were convolved with the standard hemodynamic
response gamma-function (SD = 3, mean lag=65).

The GLM included three parametric regressors of interest consisting out of Dy,
RPE,, and AB; at time of outcome presentation, which were derived from the
computational models described above. Additional regressors modelled the main
effect of outcome onset, the onset of the following belief prompt, and the response
given prior to feedback, as well as the motion parameters from the motion
correction. If not stated otherwise, all reported results are thresholded at p < 0.001
cluster-based correction for multiple comparisons with a cluster-extent threshold
of p < 0.05. Conjunction analyses reflect regions that passed this threshold in each
constituent analysis with effects of the same sign.

Across participants, effects were tested using a second level model including for
each participant the behavioural regression weights for the influence of the
Bayesian and RL models, as well as the intercept on the contrast of coefficient
estimates between Dy, and RPE. We then calculated the contrast for Bayesian
influence over RL learning to identify brain regions where the relative degree of
coding model-based and model-free update covaried with the relative influence of
Bayesian updating compared to model-free biases across participants. In order to
determine whether this effect was driven by increased RPE or Dy, representations,
we followed this analysis up by comparing the effect of individual results for Dy;, or
RPE instead of their contrasts within regions found in the first analysis
(Supplementary Fig. 4a, b). Similarly, we assessed the same question on the
behavioural side by conducting a control analysis using each behavioural regression
weight in a separate analysis (Supplementary Fig. 4c).

Time courses for regression analyses were derived from individual participants
from a region-of-interest analysis from MNI coordinates placed along a dorsal to
ventral gradient in the striatum with 5 mm distance between each other (Fig. 3b),
or reflecting peak activity of the respective main effects in the other analyses
(Supplementary Fig. 3c-h). Activity of one voxel per analysis was extracted and
transformed to each individual participant’s space by using the same registration as
in the whole brain analyses. Extracted time courses of 10 s duration were locked to
payout onset and oversampled by a factor of 10 and multiple regression was then
applied to every pseudo-sampled time point separately. Therefore, time courses
reflected averaged beta weights across participants (shaded areas = SE). Regression
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models for the gradient analysis included the same control regressors as the whole
brain GLM, and all other models as described in the corresponding sections.

For the analysis of single-trial Bayesianness of updating, we calculated
Bayesianness as:

Bayesianness, = 1 — |AB; — AIBU;|

where AB; reflects each trial’s ideal update derived from the Bayesian model (see
above) and AIBU, is the difference between a participants prior and prompted
posterior belief on each trial (IBU individual belief update).

For the across-participants gradient analysis, we derived the slope (beta weight)
from each participants’ regression analysis of beta weights for the respective factors
(Dk1» RPE) against the z-axis (ventral negative, dorsal positive), averaged over left
and right hemisphere. These were then predicted in a multiple robust regression
model by the behavioural regression weights for Bayesian updating, RL influence,
and the intercept of the behavioural model.

Data availability. All data and code is available from the authors upon reasonable
request.
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