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SLC14A1: a novel target for human urothelial cancer
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Abstract Urinary bladder cancer is the second commonly

diagnosed genitourinary malignancy. Previously, bio-

molecular alterations have been observed within certain

locations such as chromosome 9, retinoblastoma gene and

fibroblast growth factor receptor-3. Solute carrier family 14

member 1 (SLC14A1) gene encodes the type-B urea

transporter (UT-B) which facilitates the passive movement

of urea across cell membrane, and has recently been related

with human malignancies, especially for bladder cancer.

Herein, we discussed the SLC14A1 gene and UT-B protein

properties, aiming to elucidate the expression behavior of

SLC14A1 in human bladder cancer. Furthermore, by

reviewing some well-established theories regarding the

carcinogenesis of bladder cancer, including several genome

wide association researches, we have bridged the mecha-

nisms of cancer development with the aberrant expression

of SLC14A1. In conclusion, the altered expression of

SLC14A1 gene in human urothelial cancer may implicate

its significance as a novel target for research.

Keywords Urothelium � Cancer � Urea transporter � Gene
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Introduction

Urothelium is the epithelium that covers the urinary tract

from renal pelvis to urethra. Human urothelial cancer may

occur at any position in the urinary tract, yet with a higher

frequency of existence in the urinary bladder. Urinary

bladder cancer (UBC) is the second most commonly

diagnosed genitourinary malignancy in the United States. It

is estimated that 76,690 new cases as well as 16,390 deaths

will occur in 2016 [1]. Amid various histological types,

transitional cell carcinoma accounts for most of the cases

[2, 3]. Approximately 70% of the non-muscle invasive

transitional cell carcinoma will relapse within 5 years after

the first standard transurethral resection of the bladder

tumor (TURBT) [4]. Therefore, it demands intensive

surveillance procedures, including long-term periodical

cystoscopy screening, adjuvant intravesical chemotherapy

and immunotherapy, which makes the disease one of the

most expensive and suffering cancers worldwide [5].

During the past decades, significant progresses have been

made in unveiling the mechanisms associated with cancer

initiation, development and metastasis. Potential culprits

include the deletion in chromosome 9 [6–8], point muta-

tions of the fibroblast growth factor receptor-3 (FGFR3)

[9, 10] and alterations in tumor suppressor gene TP53 and

RB1 [11, 12]. However, ascribed to the repercussion of a

‘two-hit’ or even multiple hits based on the Knudson

hypothesis [13], the bewildering story of cancer is far more

complicated than we thought. Therefore, when the recent

genome wide association studies (GWAS) revealed one of

the solute carrier family gene, SLC14A1, is related to the
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carcinogenesis of UBC [14–17], it seems a new piece has

just been added to the puzzle.

SLC14A1 gene and UT-B protein

Human solute carrier family 14 member 1 (SLC14A1)

gene contains approximately 30 kb nucleotides, and is

located on chromosome 18q12.1-21.1 [18]. SLC14A1

encodes type-B urea transporter (UT-B), which resides in

tandem with another urea transporter, UT-A, coded by

SLC14A2 [19]. Urea transporter facilitates the rapid and

passive cross-membrane movement of urea [19, 20].

Moreover, human UT-B (hUT-B) also serves as the

determinant antigen of Kidd blood group on erythrocytes

[19, 21]. The coding sequence of SLC14A1 consists of 11

exons [18]. So far, there have been two documented hUT-B

isoforms, namely hUT-B1 and hUT-B2. hUT-B1 was first

cloned from human bone marrow and shares 62.4% iden-

tity with the rabbit UT-A2 [22]. The coding sequence of

hUT-B1 initiates from exon 4 and ends at exon 11, com-

prising 1170 nucleotides that encode a 389aa protein. It has

been verified that hUT-B1 transcript exists in multiple

tissues including brain, heart, lung, kidney, bladder, and

prostate [23–27]. hUT-B2, however, was first identified

from bovine rumen and designated as bovine UT-B2 (bUT-

B2), with an additional 55-amino acid encoded by exon 3

splicing into the N-terminal of the UT-B1 sequence [28].

At first, hUT-B2 mRNA has only been identified in caudate

nucleus (Genbank NM_001146037) [29]. However,

recently, hUT-B2 mRNA was discovered in the human

urothelium [25] (Table 1).

The hUT-B protein, with both intracellular amino and

carboxy termini, contains ten transmembrane spanning

domains that are integrated into two internal hydrophobic

repeats connected by a glycosylated extracellular loop

(Fig. 1) [22, 30]. Initially, there were two predicted

N-glycosylation sites in the hUT-B protein when it was

first cloned, Asn211 and Asn291 [22]. However, the site

Asn291 was later proved to be unrelated with glycosylation,

yet its mutation as observed in Finns did affect the

transport activity and membrane expression level [31].

Therefore, Asn211, whose N-glycan chain also carries the

ABO blood group antigens, is the only glycosylation site in

hUT-B protein [31]. But the mutation of Asn211 neither

affects the protein expression level nor its transport activ-

ity, as observed on Xenopus oocytes [32]. Another feature

of hUT-B is that the protein does not conserve the potential

protein kinase A (PKA) or protein kinase C (PKC) phos-

phorylation site as in UT-A2 [22], whereas 7 cysteine

residues of UT-B are aligned at equivalent positions of UT-

A2. Another 2 cysteine residues, Cys25 and Cys30, together

are essential for the plasma membrane addressing,

according to a mutagenesis and functional study in Xeno-

pus oocytes [32].

When analyzed by Western blot, the glycosylated hUT-

B demonstrates a 46–60 kDa smear band in erythrocytes

[33] and a 41–54 kDa band in the kidney [23], both of

which can be deglycosylated with peptide-N-glycosidase F

(PNGase F) and reduced to a 32 kDa core protein [23].

Recently, a hUT-B specific signal has been detected in

human bladder, which presents as a 40–45 kDa smear band

that reduces to 30 kDa when deglycosylated with PNGase

F [25]. Therefore, this human bladder specific UT-B is

similar with that has been identified in rodents. The gly-

cosylated urothelium UT-B is approximately 41–54 kDa in

mice [34] and 35–56 kDa in rats [35], whereas the degly-

cosylated forms of UT-B are 29 and 32 kDa in mice and

rats, respectively [34, 35]. Nevertheless, whether it is hUT-

B1 or hUT-B2 that is expressed on urothelium remains a

mystery, since the mRNA of both isoforms has been

located in the urothelial cells. Additionally, the antibodies

used in the previous researches was designed for the hUT-

B C terminus, which are incapable of identifying hUT-B1

and hUT-B2 that are distinguished in the N terminus where

the truncation is a part of normal physiological regulation

[25, 36].

In 2009, the crystal structure of a UT homologue from

the bacterium Desulfovibrio vulgaris (dvUT) was revealed

by X-ray crystallography, which offered us a better

understanding on how urea transporter works (Fig. 1) [37].

Table 1 Properties of UT-B1 and UT-B2

Human UT-B1 Human UT-B2

Coding gene SLC14A1 (Exon 4–11) SLC14A1 (Exon 3–11)

Amino acids

(nucleotides)

389AA (1170 bp) 445AA (1338 bp)

Glycosylation site Asn211 Asn211

Initial isolation Human bone marrow [22] Bovine Rumen [28]

Tissue distribution Brain, heart, lung, intestine, erythrocyte, kidney, bladder, prostate,

testis, etc. [23–27]

Caudate nucleus (Genbank NM_001146037) [29],

Bladder [25]
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The dvUT is a homotrimer. Each promoter contains two

homologous halves of the protein that has a cleft in the

center. At the entrance, the parallel aromatic side chain of

phenylalanine on each side forms a slot-like shape that

enables only the planar urea molecule to enter [38, 39].

Inside the cleft, three linearly lined oxygen atoms consti-

tute the bilateral oxygen ladders that continuously interact

with the urea molecules via hydrogen-binding sites

[37, 38]. Thus, urea molecules exhibit a stepwise move-

ment while crossing the transporter.

Urea is a highly polarized molecule. As stated in most

text books, it is freely permeable across cell membranes

while the process is extremely slow [40]. Considering the

transient time in which urine passes the collecting ducts of

the kidney, this passive diffusion process may not be effi-

cient enough to set up the intrarenal osmotic gradient solely

and rapidly [20]. It has been observed in UT-B knock-out

mice that urine urea concentration is decreased while urine

output is increased [41, 42]. Actually, different types of

urea transporters are expressed along the renal tubules and

the vasa recta. A high urea concentration is constituted in

the inner medulla collecting duct (IMCD) when urine flows

through the collecting duct and water is absorbed by

aquaporins. Therein, urea is reabsorbed by a vasopressin-

regulated process via two types of urea transporters—UT-

A1 and UT-A3 [43, 44]. The reabsorbed urea enters the

ascending vasa recta (AVR) through micropores on the

endothelium, and is transferred to the descending vasa recta

(DVR) via UT-B subsequently [45, 46]. This process forms

a countercurrent exchange and helps to preserve the urea

concentration gradient in the inner medulla.

In extra-renal tissues, UT-B is believed to prevent the

intracellular urea intoxication, since relevant physiology

studies in UT-B null mice have observed depression-like

behavior and premature ofmale reproductive system [24, 47].

As a urine reservoir, the bladder is constantly exposed to the

high concentration of urea, which is 20–100 times higher than

that of the blood [48]. Notably, UT-B exists throughout the

layers of the urothelium except for the apicalmembrane of the

umbrella cells [25]. Additionally, it has been suggested that

during the process of urine replenishing and voiding, ureamay

enter the apical urothelial cells via the endocytic trafficking

pathway [49]. Therefore, as observed in the urothelial cells of

UT-B null mice, the cell cycle delay, apoptosis, and DNA

damage caused by oxidative stress can be explained [50],

since high urea concentration may cause the damage of DNA

[51] and the disruption of the hydrophobic bonds within the

protein [52].Considering this, the abundant existenceofUT-B

on the bladder urothelium may imply that the potential pro-

tective role of this urea transporter.

Fig. 1 Protein structure of UT-B1 and UT-B2. Human UT-B protein

contains 10 transmembrane spanning domains that are integrated into

two internal hydrophobic repeats connected by a glycosylated

extracellular loop, whose both amino and carboxy termini are

intracellular. Asn211 is the only glycosylation site in human UT-B

protein. The coding sequence of UT-B1 initiates from exon 4 and

ends at exon 11, encoding a 389aa protein. UT-B2 has an additional

55-amino acid encoded by exon 3 splicing into the N-terminal of the

UT-B1 sequence. Based on the structure theory of dvUT, urea

transporter functions in the form of a homotrimer. Each promoter

contains two homologous halves of the protein that has a cleft in the

center. At the entrance, the parallel aromatic side chain of

phenylalanine on each side forms a slot-like shape that enables only

the planar urea molecule to enter
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Molecular pathogenesis of bladder cancer

Urinary bladder cancer (UBC) is derived from the uroep-

ithelium that covers the urinary tract from the renal pelvis

to urethra. The most commonly diagnosed type of UBC is

transitional cell carcinoma, which is histologically distinct

from other types of UBC such as squamous cell carcinoma

(related with schistosomiasis or chronic bladder irritation

[53]) and adenocarcinoma (metastasized from prostate or

colon [54]). Generally, UBC can be classified by their

clinical behavior and the extent of cancer malignancy: non-

invasive carcinoma in which cancer confines within the

basement membrane (flat, papillary or inverted) and inva-

sive UBC [55].

Papillary carcinoma (pTa UBC) arises from hyper-pro-

liferation of the urothelium and leads to the urothelium to

fold into a polyp that protrudes into the bladder. Except for

papillary urothelial neoplasm of low malignant potential

(PUNLMP), either low grade or high grade pTa UBC has a

high tendency of recurrence [55]. The most prevalent

genetic alterations reported in papillary carcinoma includes

the deletions of chromosome 9, point mutations in fibrob-

last growth factor receptor 3 (FGFR3) and alpha catalytic

subunit of phosphatidylinositol 3-kinase (PIK3CA) [7, 56]

(Table 2).

FGFR3, member of the receptor tyrosine kinases family,

regulates cell proliferation, differentiation and migration.

The common structure of FGFR3 comprises an extracel-

lular domain which includes three immunoglobulin (Ig)

domains, a hydrophobic transmembrane region and an

intracellular tyrosine kinase domain [57]. In UBC, two

FGFR3-involved mechanisms may account for the tumor

genesis [9, 10, 58]: first, the somatic point mutation within

the FGFR3 creates a cysteine residue in the extracellular

region, and gives rise to the receptor dimerization via the

intermolecular disulphide bond formation followed by the

ligand-independent receptor activation [59, 60]; Second,

the overexpression of a wild-type receptor, which is more

frequently observed in higher grade tumors. The former

one is constantly associated with the low grade tumors. As

observed in clinical cases, frequently mutations of FGFR3

in UBC are S249C (66.6%) and Y375C (15.1%), in exons 7

and 10, respectively [61, 62].

Deemed as one of the primary target in the carcino-

genesis of UBC, chromosome 9 alterations are demon-

strated in more than half of the tumors considering all

grades and stages [6–8]. In previous studies, four main

regions of gene deletion on chromosome 9 have been

identified. On 9p21, it harbors the CDKN2A/ARF tumor

suppressor gene that encodes two cell cycle regulatory

proteins: cyclin-dependent kinase 2A (CDKN2A) and

ARF. CDKN2A (inhibitor of CDK4) interacts with CDK4/

6-cyclin D complex, maintaining the retinoblastoma (Rb)

protein in its hypophosphorylated growth-suppressive form

[63, 64]. The ARF, however, interacts with murine double

minute 2 (MDM2), thereby inhibiting the degradation of

p53 and holding the cell cycle in G1/S regulation point

[65, 66]. Deletion and methylation of the CDKN2A gene

inactivate both pathways, leading to an uncontrolled cell

proliferation, which occurs primarily in superficial bladder

tumors and is related to poor prognosis [67, 68]. On 9q22, a

marker located in the first intron of the PATCHED (PTC)

gene, a human ortholog of the drosophila PATCHED gene,

shows the highest percentage of deletion in superficial

UBC [69]. In an animal research, BBN (N-butyl-N-(4-hy-

droxybutyl) nitrosamine) induced bladder preneoplastic

and neoplastic changes were observed significantly earlier

in the PTC?/- mice comparing to wild-type, suggesting

that the PTC might act as a tumor suppressor in UBC [70].

In addition, within the DBC1 (deleted in bladder cancer 1)

gene on 9q33, occasional homozygous deletion and

methylation in CpG island have been reported in several

studies [71–73]. Another gene that shows loss of

heterozygosity in more than 50% of the transitional cell

carcinomas is the tuberous sclerosis complex 1 (TSC1) on

9q34. The missense mutations of TSC1 were identified in

Table 2 Well-established molecular pathways in UBC

Gene Alterations in UBC

FGFR3 (*70%) [9] Somatic mutation induced dimerization and auto-activation; wild-type overexpression [9, 10, 59, 60]

Chromosome 9 (*60%) [6, 8]

CDKN2A/ARF(9p21) Deletion and methylation [67, 68]

PTC(9q22) Deletion [69, 70]

DBC1(9q33) Deletion and methylation of CpG island [71–73]

TSC1(9q34) Loss of heterozygosity [74]

PI3K (*30%, early event) [77] PI3K/Akt pathway activation [76, 77]

P53 P53 nucleus accumulation [80]

P21WAF Loss of expression [83]
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14.5% of the tumors, which causes the disfunction of TSC1

by aberrant splicing or reduced protein stability [74].

Phosphoinositide-3 kinase (PI3K) catalytic unit p110

alpha (PI3KCA) interacts with the Ras protein in a GTP-

dependent manner, leading to the activation of PI3K/pro-

tein kinase B (Akt) pathway [75]. The PI3K/Akt signaling

pathway, which demonstrates a prevalent activation in the

entire spectrum of UBC, is considered to play a major role

in carcinogenesis. In T1 and T2 UBC, high frequency of

PI3KCA gene alteration has been observed. However, the

presence of PI3KCA gene alteration is significantly asso-

ciated with reduced recurrence of non-muscle invasive

UBC [76, 77].

Invasive UBC, which generates from the flat dysplasia

that leads to the CIS, comprises the tumors invading

through the lamina propria into the muscularis of, or

beyond, the bladder wall. Generally speaking, invasive

bladder tumors frequently show alterations in p53 and Rb

pathways [12, 78]. p53 is the most commonly mutated

genes in human cancer, including UBC. Missense point

mutations as well as the loss of a single TP53 gene allele

lead to the p53 protein resistance to normal regulatory

degradation by ubiquitin pathway and accumulation in the

nucleus [79]. It has been observed that the accumulation of

inefficient p53 in the nucleus is correlated with a worse

pathological outcome, increased risk of recurrence and

decreased overall survival rate [80]. p21WAF1 is an

important downstream target of the p53 pathway. p21WAF1

acts as a cyclin-dependent kinase and regulates the G1-S-

phase transition in the cell cycle [81, 82]. Loss of p21WAF1

expression is an independent predictor of UBC progres-

sion. Maintenance of its expression tends to counteract the

deleterious effects of p53 alterations on UBC progression

[83]. Meanwhile, alterations in both Rb and p53 pathway

have been observed to act in a cooperative manner to

promote cancer progression [11].

SLC14A1 and UBC, a complicated story

In 2011, Frullanti identified the down-regulated expression

of SLC14A1 in lung adenocarcinoma (ADCA) specimens

and A549 (ADCA) cell lines. Meanwhile, they also dis-

covered that transfecting the NCI-H520 (lung squamous

cell carcinoma) cell line with the SLC14A1 gene signifi-

cantly inhibited the colony formation [27]. In Markku’s

research, SLC14A1 gene was found down-regulated by

2.88-fold in the malignant prostate cancer tissues compared

with the benign ones using a genechip assay. Castration,

however, elevated SLC14A1 expression by 3.05-fold,

indicating that the expression of SLC14A1 gene in prostate

could be regulated by androgen [26]. Meanwhile coinci-

dentally, the expression level of SLC14A1 is also inden-

tified to be suppressed in UBC, which, more importantly, is

inversely proportional with the clinical grade and stage

[84].

So far, GWAS researches have revealed several suspi-

cious SNPs (single nucleotide polymorphism) within the

SLC14A1 gene that are strongly associated with bladder

cancer, such as rs1058396, rs2298720, rs11877062 and

rs17674580 [14–17]. Accordingly, the G allele at nucleo-

tide 838 of rs1058396 which encodes Asp280 defining

Jk(A) in the Kidd blood system turns out to be a risk allele,

and the transition from G to A (Asn280), which encodes

Jk(B), tends to be a protective allele [14]. Another pro-

tective allele indicated by GWAS is rs2298720 [14]. The

non-synonymous variant rs2298720 (Glu44Lys) defines a

weaker Jk(A) antigen-Jk(A)W. Compared to its wild type,

the Jk(A)W UT-B has a Val-Gly triplicate after Pro227 and

demonstrates a weaker signal when transfected and

expressed on the membrane of the Xenopus oocyte [85].

However, even though the in vitro experiment has

demonstrated that the urea transport facilitated by JK(A)W

is less effective than JK(A) [85], there is no direct evidence

currently indicating the differences in renal function among

the people bearing JK(A), JK(B) and JK(A)W [14]. In

2013, Koutros et al. discovered that people bearing another

risk SLC14A1 allele, rs10775480, manifest a decreased

urine specific gravity, which was independent of urination

frequency and urine output [86]. Therefore, the urinary

bladder, or human urothelium to be specific, could play an

important role in the urinary solute regulation, just as

previously described by Dr. Apodaca [49], and such reg-

ulatory malfunction could be the culprit for the develop-

ment of UBC.

In the UT-B knock-out mice, the ‘urea scavenger’ defi-

ciency has caused severe apoptosis and DNA damage in the

urothelial cells where the urea concentration is nine times

higher than that of the wild type [50]. This devastating

phenomenon possibly caused by urea accumulation coin-

cides with a previous study, inwhich high urea concentration

had caused cell cycle delay inG2/M andG0/G1phase aswell

as the apoptotic cell death [51]. Based on the chemical

reaction of Wöhler synthesis discovered in 1828, urea can

spontaneously transform into cyanate and ammonia at body

temperature and pH [87]. Cyanate then converts free amino

acids into carbamoyl amino acids, which can in turn interfere

with protein synthesis [88]. Additionally, urea can also

destabilize protein by decreasing the hydrophobic effect and

directly binding with the amide groups through hydrogen

bond [52]. In addition, plasma urea concentration of UBC

patients was observed to be significantly elevated [89].

Therefore, the suppressed expression of hUT-B in the

background of UBC could possibly lead to the urea accu-

mulation within the urothelial cells, which subsequently

induces the generation of cytotoxic reagents, severe protein

and DNA damage, and the eventual apoptosis. Intriguingly,

1442 Clin Transl Oncol (2017) 19:1438–1446
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cancer development in which proliferation is frequently

involved is divergent from programmed cell death in many

ways. However, it has been reported that during the process

of apoptosis, receptors such as FAS and TNF-related apop-

tosis-inducing ligand receptor (TRAILR) may present non-

apoptotic functions, including proliferation and invasion,

which can possibly induce the development of cancer

[90, 91]. Thus, in the future researches, the function of

TRAILR in UT-B knock-out models should be investigated.

Another effect of urea accumulation inside the

urothelium is the alteration of L-arginine metabolism,

which increases the intracellular level of inducible NO

synthase (iNOS) [50]. As a downstream target, hypoxia-

inducible factor-1 (HIF-1) is stabilized by the high con-

centration of nitric oxide (NO) synthesized via iNOS

catalyzing [92, 93]. Consequently, the sequestration of

urea within the urothelial cells stabilizes HIF-1, a nega-

tive regulator of argininosuccinate synthetase 1 (ASS-1)

[94]. The gene encodes ASS-1 is localized on chromo-

some 9q34. It has been reported that the ASS-1 may act as

a cancer suppressor, and was lost in approximately 40%

of the UBC, primarily caused by the transcriptional

suppression induced by HIF-1 or the well-known chro-

mosome 9 deletion [8, 95]. Meanwhile, HIF-1 also com-

petes with p53 for p300, a transcriptional activator [96].

In concomitance with the inability of p53 caused by

genetic mutation, the HIF-1 becomes the dominantly

activated by p300 [97], and is also identified to enhance

the expression level of FGFR3 in non-muscle invasive

UBC [98]. Therefore, it seems that the urea accumulation

induced by hUT-B dysfunction in the urothelium may

trigger intracellular metabolic disorders that could inter-

act with canonical UBC pathways (Fig. 2).

Hence, it could be postulated that UT-B might act as a

tumor suppressor that is somehow down-regulated, induc-

ing intracellular urea accumulation which in turn causes

DNA damage and triggering the initiation of cancer via

multiple pathways. However, whether such down-regula-

tion of UT-B is an universal event that could impair its

capacity in orchestrating urine volume and frequency

remains unclear. It has been reported that urination fre-

quency and volume could be the potential causes for

urothelium neoplasms [99, 100]. Therefore, further

research should consider the urothelial UT-B and the DVR

Fig. 2 Illustration of the relationship between SLC14A1 and UBC.

UT-B may act as a tumor suppressor that is somehow down-regulated

by suppressive factors, inducing intracellular urea accumulation. In

addition to the elevated plasma urea level, intracellular urea overload

can cause protein/DNA damage and trigger and apoptosis. Subse-

quently, the apoptosis may induce the activation of TRAILR and the

initiation of cancer. On the other hand, urea accumulation could alter

the intracellular arginine metabolism, which activates HIF-1 via NO.

HIF-1 may interact with canonical UBC pathways including FGFR3,

chromosome 9 and p53. Notably, the DVR UT-B expression in the

background of UBC probably needs more attention in the future

research, since it serves to regulate urine volume and frequency,

which can be the causes for urothelium neoplasms
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UT-B wholly when evaluating the association between

SLC14A1 gene and UBC (Fig. 2).

Conclusion

The alternative expression of SLC14A1 in human UBC has

been observed in several studies, including large popula-

tion-based GWAS researches. Based on the literatures in

this review, we conclude that the impaired expression of

UT-B in human urothelial cells could lead to urea intra-

cellular accumulation and subsequent metabolic disorders.

Accordingly, we postulated that two potential downstream

pathways could be involved in the carcinogenesis under

such circumstances, including apoptosis-induced prolifer-

ation that activated by TRAILR, and NO triggered HIF-1

promoted oncogene expression and tumor suppressor gene

down-regulation. However, more comprehensive investi-

gations are needed to elucidate the underlying mechanisms

that initially caused the repression of SLC14A1 in UBC,

and to unveil the relationship between aberrant SLC14A1

expression and the carcinogenesis of UBC. Additionally,

the cooperation of renal and extra-renal UT-B in the

development of UBC should be considered as well, since

urination frequency and volume may also play an impor-

tant role. In sum, SLC14A1 and UT-B should be a novel

and promising research target in the field of urothelial

cancer.
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Cappellen D, Graff G, Thiery JP, Chopin D, Ricol D, Radvanyi F. Oncogenic
properties of the mutated forms of fibroblast growth factor receptor 3b. Car-
cinogenesis. 2006;27(4):740–7. doi:10.1093/carcin/bgi290.

62. Rieger-Christ KM, Mourtzinos A, Lee PJ, Zagha RM, Cain J, Silverman M,
Libertino JA, Summerhayes IC. Identification of fibroblast growth factor
receptor 3 mutations in urine sediment DNA samples complements cytology
in bladder tumor detection. Cancer. 2003;98(4):737–44. doi:10.1002/cncr.
11536.

63. Weinberg RA. The retinoblastoma protein and cell cycle control. Cell.
1995;81(3):323–30.

64. Serrano M, Hannon GJ, Beach D. A new regulatory motif in cell-cycle control
causing specific inhibition of cyclin D/CDK4. Nature. 1993;366(6456):704–7.
doi:10.1038/366704a0.

65. Dominguez-Brauer C, Brauer PM, Chen YJ, Pimkina J, Raychaudhuri P.
Tumor suppression by ARF: gatekeeper and caretaker. Cell Cycle.
2010;9(1):86–9. doi:10.4161/cc.9.1.10350.

66. Inoue K, Fry EA, Frazier DP. Transcription factors that interact with p53 and
Mdm2. Int J Cancer. 2016;138(7):1577–85. doi:10.1002/ijc.29663.

67. Orlow I, LaRue H, Osman I, Lacombe L, Moore L, Rabbani F, Meyer F,
Fradet Y, Cordon-Cardo C. Deletions of the INK4A gene in superficial
bladder tumors. Association with recurrence. Am J Pathol.
1999;155(1):105–13. doi:10.1016/S0002-9440(10)65105-X.

68. Berggren P, Kumar R, Sakano S, Hemminki L, Wada T, Steineck G, Adolf-
sson J, Larsson P, Norming U, Wijkström H, Hemminki K. Detecting
homozygous deletions in the CDKN2A(p16(INK4a))/ARF(p14(ARF)) gene in
urinary bladder cancer using real-time quantitative PCR. Clin Cancer Res.
2003;9(1):235–42.

69. Aboulkassim TO, LaRue H, Lemieux P, Rousseau F, Fradet Y. Alteration of
the PATCHED locus in superficial bladder cancer. Oncogene.
2003;22(19):2967–71. doi:10.1038/sj.onc.1206513.

70. Hamed S, LaRue H, Hovington H, Girard J, Jeannotte L, Latulippe E, Fradet
Y. Accelerated induction of bladder cancer in patched heterozygous mutant
mice. Cancer Res. 2004;64(6):1938–42.

71. Nishiyama H, Takahashi T, Kakehi Y, Habuchi T, Knowles MA. Homozy-
gous deletion at the 9q32-33 candidate tumor suppressor locus in primary
human bladder cancer. Genes Chromosomes Cancer. 1999;26(2):171–5.

72. Habuchi T, Luscombe M, Elder PA, Knowles MA. Structure and methylation-
based silencing of a gene (DBCCR1) within a candidate bladder cancer tumor

Clin Transl Oncol (2017) 19:1438–1446 1445

123

http://dx.doi.org/10.1007/978-94-017-9343-8_8
http://dx.doi.org/10.1007/s12031-011-9594-3
http://dx.doi.org/10.1152/ajprenal.00284.2014
http://dx.doi.org/10.3892/mmr.2012.956
http://dx.doi.org/10.1002/ijc.27426
http://dx.doi.org/10.1152/ajpregu.00127.2005
http://dx.doi.org/10.1152/ajpregu.00127.2005
http://dx.doi.org/10.1111/j.1476-5381.2011.01377.x
http://dx.doi.org/10.1111/j.1476-5381.2011.01377.x
http://dx.doi.org/10.1074/jbc.M205073200
http://dx.doi.org/10.1152/ajpregu.00286.2004
http://dx.doi.org/10.1152/ajprenal.00442.2003
http://dx.doi.org/10.1007/978-94-017-9343-8_4
http://dx.doi.org/10.1038/nature08558
http://dx.doi.org/10.1038/nature08558
http://dx.doi.org/10.1073/pnas.1207362109
http://dx.doi.org/10.1038/462733a
http://dx.doi.org/10.1074/jbc.M200207200
http://dx.doi.org/10.3389/fphys.2012.00217
http://dx.doi.org/10.1681/ASN.2006030246
http://dx.doi.org/10.1152/ajprenal.00690.2009
http://dx.doi.org/10.1007/s00424-012-1157-0
http://dx.doi.org/10.1007/s00424-012-1157-0
http://dx.doi.org/10.1002/cphy.c100030
http://dx.doi.org/10.1152/ajpcell.00608.2006
http://dx.doi.org/10.1152/ajprenal.00367.2004
http://dx.doi.org/10.1152/ajprenal.00367.2004
http://dx.doi.org/10.1046/j.1600-0854.2003.00156.x
http://dx.doi.org/10.1371/journal.pone.0076952
http://dx.doi.org/10.1371/journal.pone.0076952
http://dx.doi.org/10.1016/j.aju.2016.07.001
http://dx.doi.org/10.1016/j.eururo.2012.09.063
http://dx.doi.org/10.1016/j.eururo.2012.09.063
http://dx.doi.org/10.1146/annurev.pathol.4.110807.092230
http://dx.doi.org/10.1146/annurev.pathol.4.110807.092230
http://dx.doi.org/10.1210/er.2003-0040
http://dx.doi.org/10.1007/s00345-007-0213-4
http://dx.doi.org/10.1007/s00345-007-0213-4
http://dx.doi.org/10.1038/sj.onc.1210399
http://dx.doi.org/10.1093/carcin/bgi290
http://dx.doi.org/10.1002/cncr.11536
http://dx.doi.org/10.1002/cncr.11536
http://dx.doi.org/10.1038/366704a0
http://dx.doi.org/10.4161/cc.9.1.10350
http://dx.doi.org/10.1002/ijc.29663
http://dx.doi.org/10.1016/S0002-9440(10)65105-X
http://dx.doi.org/10.1038/sj.onc.1206513


suppressor region at 9q32-q33. Genomics. 1998;48(3):277–88. doi:10.1006/
geno.1997.5165.

73. Salem C, Liang G, Tsai YC, Coulter J, Knowles MA, Feng AC, Groshen S,
Nichols PW, Jones PA. Progressive increases in de novo methylation of CpG
islands in bladder cancer. Cancer Res. 2000;60(9):2473–6.

74. Pymar LS, Platt FM, Askham JM, Morrison EE, Knowles MA. Bladder
tumour-derived somatic TSC1 missense mutations cause loss of function via
distinct mechanisms. Hum Mol Genet. 2008;17(13):2006–17. doi:10.1093/
hmg/ddn098.

75. Ching CB, Hansel DE. Expanding therapeutic targets in bladder cancer: the
PI3K/Akt/mTOR pathway. Lab Invest. 2010;90(10):1406–14. doi:10.1038/
labinvest.2010.133.

76. Calderaro J, Rebouissou S, de Koning L, Masmoudi A, Hérault A, Dubois T,
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97. Schmid T, Zhou J, Brüne B. HIF-1 and p53: communication of transcription
factors under hypoxia. J Cell Mol Med. 2004;8(4):423–31.

98. Blick C, Ramachandran A, Wigfield S, McCormick R, Jubb A, Buffa FM,
Turley H, Knowles MA, Cranston D, Catto J, Harris AL. Hypoxia regulates
FGFR3 expression via HIF-1a and miR-100 and contributes to cell survival in
non-muscle invasive bladder cancer. Br J Cancer. 2013;109(1):50–9. doi:10.
1038/bjc.2013.240.

99. Jiang X, Castelao JE, Groshen S, Cortessis VK, Shibata DK, Conti DV, Gago-
Dominguez M. Water intake and bladder cancer risk in Los Angeles County.
Int J Cancer. 2008;123(7):1649–56. doi:10.1002/ijc.23711.

100. Villanueva CM, Cantor KP, King WD, Jaakkola JJ, Cordier S, Lynch CF,
Porru S, Kogevinas M. Total and specific fluid consumption as determinants
of bladder cancer risk. Int J Cancer. 2006;118(8):2040–7. doi:10.1002/ijc.
21587.

1446 Clin Transl Oncol (2017) 19:1438–1446

123

http://dx.doi.org/10.1006/geno.1997.5165
http://dx.doi.org/10.1006/geno.1997.5165
http://dx.doi.org/10.1093/hmg/ddn098
http://dx.doi.org/10.1093/hmg/ddn098
http://dx.doi.org/10.1038/labinvest.2010.133
http://dx.doi.org/10.1038/labinvest.2010.133
http://dx.doi.org/10.1002/ijc.28518
http://dx.doi.org/10.1002/mc.22125
http://dx.doi.org/10.1002/cncr.11281
http://dx.doi.org/10.1002/cncr.11281
http://dx.doi.org/10.1056/NEJM199411103311903
http://dx.doi.org/10.1056/NEJM199411103311903
http://dx.doi.org/10.1016/j.prp.2014.09.012
http://dx.doi.org/10.1002/ijc.28325
http://dx.doi.org/10.1046/j.1523-1755.2001.59780102.x
http://dx.doi.org/10.1046/j.1523-1755.2001.59780102.x
http://dx.doi.org/10.1016/S0899-9007(03)00055-8
http://dx.doi.org/10.1038/nrc.2016.58
http://dx.doi.org/10.1101/cshperspect.a008797
http://dx.doi.org/10.1042/BJ20031155
http://dx.doi.org/10.1096/fj.09-137489
http://dx.doi.org/10.1158/0008-5472.CAN-13-1702
http://dx.doi.org/10.1042/BJ20031299
http://dx.doi.org/10.1038/bjc.2013.240
http://dx.doi.org/10.1038/bjc.2013.240
http://dx.doi.org/10.1002/ijc.23711
http://dx.doi.org/10.1002/ijc.21587
http://dx.doi.org/10.1002/ijc.21587

	SLC14A1: a novel target for human urothelial cancer
	Abstract
	Introduction
	SLC14A1 gene and UT-B protein
	Molecular pathogenesis of bladder cancer
	SLC14A1 and UBC, a complicated story

	Conclusion
	Acknowledgements
	References




