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Abstract

Purpose of Review Degenerative skeletal disorders including
osteoarthritis (OA) and osteoporosis (OP) are the result of
attenuation of tissue regeneration and lead to painful condi-
tions with limited treatment options. Preventative measures to
limit the onset of OA and OP remain a significant unmet
clinical need. MicroRNAs (miRNAs) are known to be in-
volved in the differentiation of stem cells, and in combination
with stem cell therapy could induce skeletal regeneration and
potentially prevent OA and OP onset.

Recent Findings The combination of stem cells and miRNA
has been successful at regenerating the bone and cartilage
in vivo. MiRNAs, including miR-146b known to be involved
in chondrogenic differentiation, could provide innovative tar-
gets for stem cell-based therapy, for the repair of articular
cartilage defects forestalling the onset of OA or in the gener-
ation of a stem cell-based therapy for OP.

Summary This review discusses the combination of skeletal
stem cells (SSCs) and candidate miRNAs for application in a
cell-based therapy approach for skeletal regenerative
medicine.

Keywords miRNA - Skeletal stem cell - Cartilage - Bone -
Osteoarthritis - Osteoporosis
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Introduction

Degenerative skeletal disorders are specific diseases associat-
ed with the ageing bone. These disorders can be divided into
two main diseases: osteoarthritis (OA) and osteoporosis (OP).
Given OA and OP are the result of the loss of the regenerative
capacity of the skeletal tissues, skeletal stem cells (SSCs) have
been investigated with the aim of harnessing their potential to
improve the symptoms and treatment of these pathologies.

Ageing Cartilage and the Onset of OA

OA is a prevalent chronic disease and can be described as a
heterogeneous condition, which results in joint signs and
symptoms associated with defective integrity of the articular
cartilage and changes to the bone at joint margins [1].
Articular cartilage is composed of non-migratory and non-
proliferative resident chondrocytes embedded within an avas-
cular, alymphatic and aneural specialised extracellular matrix
(ECM), factors which following injury are likely to account
for the limited capacity of articular cartilage to intrinsically
repair [2]. Articular cartilage injury is likely to be causative
to the onset of OA. Damage to the articular cartilage may
appear asymptomatic but it is extremely likely that over time
degenerative changes will result. Messner et al. demonstrated
that athletes with isolated chondral lesions did not require
treatment following initial injury. However, 14 years later,
some of the athletes displayed with a reduction of the joint
space, indicating that despite the initial chondral lesions hav-
ing been asymptomatic, degradation of the articular cartilage
supervened leading to permanent knee damage [3]. Cartilage
damage is typically succeeded with long-term articular carti-
lage deterioration and OA.

Articular cartilage deterioration and onset of OA could po-
tentially be prevented by repair of the initial articular cartilage
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defect. A number of research groups have looked to identify
the presence of chondroprogenitor cells within the articular
cartilage and in tissues directly surrounding the articular car-
tilage, such as the synovium [4], the groove of Ranvier [5], the
intrapatellar fat pad [6, 7] and the articular cartilage superficial
zone [8, 9]. However, the source of progenitor populations for
articular cartilage repair needs to be readily accessible and
must not induce damage to the articular cartilage or tissues
during isolation. Harnessing SSCs from bone marrow offers
an option which does not involve further damage directly to
articular cartilage or any surrounding tissue. The ability to
direct bone marrow-derived SSCs to differentiate towards
the chondrogenic lineage is a propitious option for articular
cartilage regeneration. Thus, exploitation of mechanisms
which govern chondrogenic differentiation of human SSCs
could have significant implications for methods to induce
novel articular cartilage formation and, potentially, help to
prevent OA.

Loss of Regenerative Capacity of the Bone
and Development of OP

The human skeleton reaches peak bone mass at around
30 years of age and, thereafter, bone mass is gradually lost.
OP is a degenerative skeletal disorder, characterised by low
bone mass and generalised disorder of the bone
microarchitecture. OP is observed in men and women (in
postmenopausal women, exacerbated by a fall in oestrogen
production) and is a common cause of loss of bone mass
and subsequent fracture [10]. It is estimated that 70% of inpa-
tient fractures are a consequence of OP [11]. The regenerative
capacity of the bone is reduced with age, leading to a decrease
in bone mass [12—14]. Bone remodelling and therefore the
regenerative potential of the bone is controlled by a careful
balance between bone resorption, by osteoclasts, and bone
deposition by osteoblasts. In OP, this process of bone remod-
elling is unbalanced with bone resorption exceeding bone for-
mation resulting in the loss of bone mass observed in OP. The
loss of regenerative capacity of the bone is multifactorial in-
cluding (i) reduced stem cell potency/number, (ii) increased
osteoclastic bone resorption, (iii) metabolic/factor imbalance
and (iv) reduced osteoblast function [14, 15]. In addition, the
increase in bone marrow adiposity is believed to play an im-
portant role in OP, with osteoporotic patients exhibiting a
higher ratio of adipose tissue to total tissue volume in iliac
crest bone biopsies compared to healthy controls [16, 17].
Currently, OP is treated with drugs which aim to increase
bone density or inhibit bone resorption. Strategies include the
use of bisphosphonates [18, 19], selective oestrogen receptor
modulators [20], calcitonin [21, 22], sodium ranelate [23],
RANK ligand inhibitors [24], the recombinant form of para-
thyroid hormone, teriparatide [25] and, more recently, the anti-
sclerostin antibody, blosozumab [26, 27]. Although these
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drugs offer significant treatment options, development of ef-
ficacious anabolics for an increasing ageing population re-
mains a goal.

Potential for Stem Cells and microRNAs for Treatment
of Skeletal Disorders

Stem cells have been shown to be regulated in part by
microRNAs (miRNAs), which regulate genes involved with
differentiation post-transcriptionally. MiRNAs are processed
from longer primary transcripts which undergo processing in
the nucleus and the cytoplasm to form small non-coding
RNA, which average 22 nucleotides in length [28].
Sequence complementarity between a miRNA and its target
mRNA determines whether the miRNA induces post-
transcriptional inhibition or degradation of the mRNA, which
in turn prevents translation and protein synthesis [28]. This
ability of miRNAs to regulate translation can allow for the
potential exploitation of the function of miRNAs for use to
control cellular processes including differentiation. Several
miRNAs have been identified to play roles in chondrogenesis
and osteogenesis [29-31]. MiRNAs found to be involved in
these highly regulated processes, could therefore be exploited
for their use to either induce stem cell chondrogenic differen-
tiation for articular cartilage regeneration or osteogenic differ-
entiation for bone regeneration. In essence, stem cells could be
utilised for the regeneration of skeletal tissues in concert with
miRNAs to enhance the differentiation of transplanted stem
cells towards the chondrogenic or osteogenic lineages. Use of
miRNAs could prime transplanted stem cells, directing them
towards the desired cell fate. MiRNA modulation could serve
as a tool to enhance stem cell differentiation, a novel approach
to articular cartilage tissue reparation and bone regeneration.
Not only could this novel concept induce the regeneration of
skeletal tissues but, if applied early enough, could prevent the
onset and progression of OA and OP. This review will exam-
ine the use of stem cells to regenerate skeletal tissue and the
discovery of miRNAs which are involved in the chondrogenic
and osteogenic differentiation of stem cells, including our own
observations. Examples of studies which have demonstrated
the use of miRNA modulated stem cell transplantation in vivo
are discussed to reinforce the potential of miRNAs to direct
stem cells to regenerate skeletal tissues.

The Use of Stem Cells for the Treatment

of Degenerative Skeletal Disease

Properties of Skeletal Stem Cells

A stem cell is characterised by its ability to self-renew by

means of asymmetrical cell division and its potential to differ-
entiate into specialised types of cells, thereby retaining a pool
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of stem cells and simultaneously producing transit amplifying
cells [32]. Adult stem cells replace degenerating cells which
facilitates tissue homeostasis. Adult stem cells can therefore
be defined as the regenerators that follow the degeneration
process which may occur due to trauma, age or pathogenic
conditions [32].

The term skeletal stem cell (SSC), preferred by the authors
and used in this review in reference to our own data defines,
specifically, a self-renewing stem cell that resides in postnatal
bone marrow and can differentiate into cartilage, the bone,
haematopoiesis-supportive stroma and marrow adipocytes. It
is the SSC of the bone marrow stroma that is responsible for
the regenerative capacity inherent to the bone.

The heterogeneous population of cultured plastic adherent
cells isolated from the bone marrow should be referred to as
bone marrow stromal cells (BMSCs). However, it is acknowl-
edged, the term mesenchymal stem cell (MSC), originally in
reference to a hypothetical common progenitor of a wide
range of “mesenchymal” (non-haematopoietic, non-epithelial,
mesodermal) tissues, is commonly used and in this review will
be retained where cited/used by others in the field.

Additional to their differentiation and proliferative proper-
ties, SSCs have been proposed to possess immuno-
modulatory properties which can regulate tumour evasion,
autoimmunity and regulation of transplantation tolerance
[33]. A combination of regulatory mechanisms exist within
SSCs which act upon several immune cells including dendritic
cells, T lymphocytes and natural killer (NK) cells [34]. Tse
et al. observed that SSCs failed to stimulate allogeneic periph-
eral blood mononuclear cells and T cell proliferation and ac-
tively inhibited T cell proliferation [35]. Le Blanc et al.
showed that alloreactive lymphocyte proliferative responses
were not elicited in undifferentiated and also osteogenic and
chondrogenic differentiated SSCs [36]. The immunosuppres-
sive properties of SSCs, theoretically, limit any rejection of
SSCs that could occur during therapeutic cell transplant. The
concept that fibroblast-like cells migrate to distal sites of inju-
ry was fist hypothesised by the German pathologist Cohnheim
[37]. Stem cells have the potential to home to sites of injury
where they are likely to induce repair, through direct differen-
tiation to replace damaged cells and/or secretion of mediators,
which creates a reparative environment with immuno-
regulatory function and anti-apoptotic regulation [38].

Therapeutic Potential of SSCs in Degenerative Skeletal
Disease

Osteoarthritis

Loss of chondrocytes and diminishment of the surrounding
specialised ECM is as a result of the inability for cartilage to
undergo spontaneous endogenous regeneration. The use of
cell-based therapies to repair articular cartilage defects aims

to produce a fully functional joint surface, capable of tolerat-
ing stress and strain.

Several studies have investigated the potential of SSCs in
regenerating cartilage in animal models. For example, Im et al.
induced osteochondral defects in to the patella grooves of
rabbits, and autologous bone marrow-derived MSCs were ap-
plied to the defect sites. Histological and molecular analysis
concluded that implantation of cultured MSCs could enhance
cartilage repair [39]. In experimentally induced OA joint stud-
ies, non-operative administration of MSCs has also shown
beneficial effects [40, 41]. A reduction in the degeneration
of articular cartilage was observed following injection of au-
tologous bone marrow-derived MSCs, in a hyaluronan solu-
tion, directly into OA-induced caprine knee joints [40].

A popular choice amongst research groups for investigat-
ing articular cartilage regeneration has been transplantation of
SSCs combined with a scaffold. Previously, osteochondral
progenitor cells expanded in vitro and dispersed into a type-
1 collagen gel were transplanted into a full-thickness surgical-
ly induced articular cartilage defect in rabbits. At 24 weeks,
the post-implantation subchondral bone was completely
repaired with overlying articular cartilage [42]. Furthermore,
Berninger et al. have suggested an experimental technique for
combining MSCs in fibrin clots, followed by transplantation
of pre-established fibrin-cell-clots into osteochondral defects
in lapine knee joints. Preliminary experiments observed an
intact and homogenous surface 12 weeks following implanta-
tion of the fibrin-MSC-clot into defect sites [43].

Previous clinical studies have reported the therapeutic ef-
fect of MSCs administration in patients [44—48]. Nejadnik
et al. found that patients administered with bone marrow stem
cells into chondral lesions demonstrated enhanced physical
chondrocyte implantation [44]. Follow-up inspection found
that transplantation of autologous expanded bone marrow-
derived MSCs combined with platelet-rich fibrin glue, to
full-thickness cartilage defects in five patients, resulted in im-
provement to symptoms in all patients. Complete defect filling
and surface conformity with native cartilage was observed in
three patients [45]. Kuroda et al. showed that administration of
autologous bone marrow stromal cells to an articular cartilage
defect in a young male athlete resulted in marked improved
clinical outcomes. At 7 months post-surgery, arthroscopy re-
vealed that the defect was completely covered with smooth
tissues, and histologically the defect was filled with hyaline-
like cartilage. Strikingly, 1 year post-surgery, the athlete
returned to his previous activity level and experienced no pain
with significant improvement in clinical symptoms [48].

Osteoporosis
Given OP is the result of altered bone remodelling, improving

the efficiency or restoration of appropriate balance of this
process would appear a natural strategy for the treatment of
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OP. It is known that SSCs can be induced to form osteoblasts
when cultured on tissue culture plastic [49]. However, trans-
lation to a cell-based treatment requires careful control of the
differentiation of the stem cells. This could, potentially, be
achieved through the use of miRNAs to control osteogenic
differentiation. In addition, ensuring maximal osteogenic dif-
ferentiation, with minimal differentiation to other lineages,
remains a key challenge in translating skeletal stem and pro-
genitor populations from the bench to clinical application.
Various strategies have been proposed which would ensure
maximal osteogenic lineage commitment. These approaches
include selection of a specific stage of osteoprogenitor subsets
[50, 51]. Other approaches to select for osteoprogenitor cells
include the use of biomaterials to culture SSCs designed to
enhance osteogenic differentiation. Examples of biomaterials
include nanosurface geometries [52, 53] and osteoconductive
scaffolds [54].

The use of bone tissue, autograft (patient derived) and al-
lograft (donor), together with bone stem cells and progenitors
has been examined. Marcacci et al., in a study of four patients
with large bone defects, examined the potential of autologous
culture-expanded SSCs onto a ceramic scaffold [55]. No ma-
jor complications were reported after surgery and long-term
follow-up of 6 to 7 years showed good integration of the
scaffold [55]. Kim et al. studied the effect of osteoblast injec-
tion into long bone fractures to examine accelerated healing
[56]. Autologous osteoblasts were expanded from patients
with long bone fracture, and injected into the site of fracture,
with the control group receiving no treatment [56]. The results
demonstrated that osteoblast injection enhanced fracture
healing with little complication [56]. The success of these
important, albeit small, trials in humans emphasise the poten-
tial of SSC strategies for the treatment of bone fracture, bone
defects and potentially degenerative bone diseases. In partic-
ular, culturing SSCs with a high osteogenic differentiation
potential would prove important to generate the cell numbers
required for cell-based therapy [57].

MiRNA Expression During Skeletal Differentiation
of Stem Cells

In vitro models of stem cell differentiation have allowed for
the analysis of miRNAs involved with post-transcriptional
regulation of chondrocyte and cartilage development, as well
as osteocyte and bone development. Such miRNAs are re-
sponsible for gene activation or suppression during the pro-
cess of differentiation. A selection of miRNAs and their
mRNA targets studied to date, known to be involved in stem
cell differentiation, are listed in Table 1 (chondrogenic differ-
entiation) and Table 2 (osteogenic differentiation) and further
illustrated in Fig. 1. Comprehension of miRNA expression
profiles and the role that miRNAs play in regulation of gene
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expression during differentiation of stem cells allows for a
better understanding of molecular mechanisms which regulate
stem cell differentiation. Critically, miRNAs which influence
stem cell fate could be exploited to induce and enhance stem
cells, providing a novel cell-based therapy approach.
MiRNAs could induce and enhance transplanted stem cells
at articular cartilage defect sites to regenerate articular carti-
lage. MiRNAs could induce and enhance stem cell osteogenic
differentiation generating a cell-based therapy for OP treat-
ment. Through the application of miRNA mimics or miRNA
inhibitors, stem cell differentiation can be modulated to en-
hance direction towards the desired lineage. Tables 1 and 2
indicate potential miRNAs of which expression levels could
be increased or decreased, using miRNA mimics and miRNA
inhibitors, respectively, which could potentially enhance
chondrogenic and osteogenic differentiation.

Therapeutic Potential of Modulating miRNAs
for Skeletal Disorders

Given that miRNAs display the potential to regulate
chondrogenic and osteogenic differentiation of stem cells,
harnessing miRNAs offers an appealing strategy for skeletal
tissue repair of cartilage or enhancement of differentiation of
SSCs towards an osteogenic lineage for bone formation. The
potential of miRNAs to augment articular cartilage regenera-
tion has been demonstrated in a study conducted by Lolli and
colleagues [79+¢]. MiR-221 has been identified as a negative
regulator of chondrogenesis [77, 78]. Lolli et al. have previ-
ously shown that silencing miR-221 induced chondrogenic
differentiation of hMSCs [78]. hMSCs transfected with an
inhibitor of miR-221 were encapsulated in alginate. A carti-
lage defect in an osteochondral biopsy was then filled with the
transfected and alginate encapsulated cells, followed by im-
plantation of the biopsy into immunocompromised mice.
Compared to control untreated hMSCs and alginate only con-
trols, miR-221 silenced hMSCs enhanced cartilage repair
in vivo and cartilaginous tissue was generated with no sign
of hypertrophic associated type X collagen deposition [79].
This approach, combining hMSCs primed with miRNA inhib-
itor, in an in vivo cartilage defect model is the first of its kind
and suggests a translational strategy to localise stem cells to
defective cartilage sites and promote cartilage repair.

The potential of miRNAs to augment bone formation has
been demonstrated in a number of murine studies. With both
miR-138 and miR34a, a hydroxyapatite/tricalcium phosphate
(HA/TCP) scaffold was utilised in order to localise stem cells
subcutaneously. Chen et al. used a similar approach to study
the role of miR-34a, which is a negative regulator of bone
formation [83¢¢]. hMSCs were transfected with pre-miR-
34a, anti-miR-34a and control miR and loaded onto HA/
TCP scaffolds and implanted subcutaneously into
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Table 1 (continued)

Potential use of miRNA in inducing

chondrogenesis

Reported effect of miRNA modulation on

chondrogenesis

mRNA targets of miRNA and mRNA function in

chondrogenesis

Expression during
chondrogenesis

MiRNA

cartilage repair [79e¢].

chick limb bud mesenchymal

cells [77].
miR-495 was reported to be

Decrease endogenous miR-495 levels

Overexpression of miR-495 in hMSCs during

miR-495 was demonstrated to directly target

miR-495

with a miR-495 inhibitor.

chondrogenic differentiation, using miR-495
mimic, resulted in the down-regulation
chondrogenic differentiation, evidenced

the 3°UTR of SOX9 [80+]. SOXO is

down-regulated during

required for aggrecan [67], Col2al

chondrogenic differentiation

of hMSCs [80¢].

[68], Col9al [69] and Collla2 expression
[70] and binds to chondrocyte-specific

by down-regulation of SOX9, COL2A1

and AGCAN mRNA. Inhibition of

enhancer elements in all of these genes.

endogenous miR-495, using anti-miR-
495, resulted in the enhancement of

miR-495 is likely to be down-regulated

during chondrogenesis enabling

chondrogenic differentiation, evidenced

derepression of SOX9 expression.

by up-regulation of SOX9, COL2A1 and

AGCAN mRNA [80¢].

immunocompromised mice. Implantation of the scaffold with
hMSCs transfected with anti-miR-34a resulted in a more than
3.5-fold increase in bone formation [83e¢]. Eskildsen et al.
used lipofectamine to transfect pre-miR-138, anti-miR-138
and control miR into hMSCs [84]. The cells were loaded onto
HA/TCP scaffold and implanted subcutaneously into immu-
nocompromised mice. Implantation of the scaffold compris-
ing hMSCs transfected with anti-miR-138 resulted in a 2.2-
fold increase in bone formation. While, implantation of the
scaffold comprising hMSCs transfected with miR-138 mimic
resulted in a 6.7-fold decrease in bone formation, supporting
the observation that miR-138 is a negative regulator of osteo-
genic differentiation and bone formation [84]. This approach,
combining hMSC primed with miRNA inhibitor or mimic and
a scaffold, suggests translational strategies to localise stem
cells to the bone.

Li et al. used a miRNA intravenous therapy approach,
without the use of the scaffold, to investigate the role of the
positive regulator of osteogenic differentiation, miR-2861, on
bone formation in mice [90]. When antagomiR miR-2861 was
intravenously administered to induce miR-2861 silencing, a
decrease in femur mineral density and trabecular thickness
was observed. Following on from this work, Li et al. studied
the role of miR-2681 in the development of OP in human
patients with primary OP. The authors identified in a human
sibling pair, both suffering from OP, an undetectable expres-
sion level of miR-2861 in their bone. A homozygous single
nucleotide polymorphism (SNP) in pre-miR-2861 was identi-
fied and was suggested to be accountable for negligible miR-
2861 expression levels and likely to be the confounding factor
in the pathogenesis of primary OP. The authors suggest that
dysregulation of miR-2861 is likely to induce defective oste-
oblast differentiation and subsequently contribute to OP. This
mutation was found to be heterozygous in the parents of the
sibling pair and these family members also suffered from OP.
However, when extended to a larger cohort of 369 patients,
the same SNP in pre-miR-2861 was not identified, indicating
that the SNP was uncommon and not reflective of the general
osteoporotic population. Nevertheless, the importance of
miR-2861 in osteogenic differentiation and OP was highlight-
ed, indicating its potential as a therapeutic approach.

For successful use of miRNA in stem cell therapeutics, it
will be important to localise and minimise any miRNA off
target effects. Qureshi et al. developed a technique for
photoactivation of nanoparticle conjugated miR-148b [91¢];
miR-148b has previously been reported to up-regulate osteo-
genic differentiation, increasing ALP activity in hMSCs [92].
The non-toxic conjugate remained inert until photoactivation
by UV light, which was confirmed by an observed increase in
ALP and OCN expression in photoactivated hADSCs com-
pared to non-UV treated cells. In addition, the specific use
of nanoparticle conjugated miR-148b resulted in delivery of
miR-148b to the intracellular compartments of hADSCs,

@ Springer
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Fig. 1 miRNAs involved in
osteogenic and chondrogenic
differentiation of SSCs isolated
from human bone marrow.
Following routine total hip
replacement, the femoral head is
removed and bone marrow
sample donated for isolation of
SSCs. From the bone marrow
sample, mononuclear cells are
isolated by density centrifugation
and the cell population enriched
for SSCs by magnetic separation.
MiRNAs involved in either
chondrogenic or osteogenic
differentiation are indicated by
association with the relevant
arrow. MiRNAss in red negatively

N -

Bone
Femoral P
Routine total head +
v sample
hip replacement
—

Pre-operative Post-operative Isolation of bone

regulate differentiation and in femur femur marrow mononuclear
green positively regulate cells
differentiation /
K —
Skeletal Stem Cells
miR-145 — . +— miR-29a
miR-29a ——] <+—— miR-146a
miR-146a — miR-23a —— "\ miR-218
miR-146b ——]| . miR-140-3p miR-34a — <—— miR-346
miR-193b —— miR-140-5p miR-138 ——| <+— miR-2861
miR-194 —— miR-637 —— <+—— miR-148b
miR-221 — | // '
miR-495 ——|
Chondrocytes Osteocytes

without the need for additional, potentially damaging,
chemical-based methods of transfecting stem cells.

Conclusion

The problems associated with degenerative skeletal disorders
highlighted in this review indicate how miRNA could be used
to treat these musculoskeletal conditions. The underlying
aetiology of OA remains unknown which makes development
of a treatment for this debilitating disease difficult. However,
if initial chondral lesions can be targeted, the potential for a

@ Springer

preventative approach in OA will become a clinical possibil-
ity. If the original chondral lesion can be repaired using stem
cells enhanced to undergo chondrogenic differentiation effi-
ciently with use of miRNAs modulation, inducing regenera-
tion of the articular cartilage and reinstating integrity, then the
degenerative changes, typical of OA could be reduced. Thus,
an attractive approach, with knowledge of different miRNAs
expression during chondrogenic differentiation, would be to
administer specific miRNAs transfected stem cells to chondral
defect sites to enhance articular cartilage regeneration capac-
ity. The bone regeneration balance lost in osteoporosis can
benefit from an SSC-based cell therapy which could
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potentially restore bone microarchitecture and composition to
a healthy state. The approach of priming these SSCs with
miRNA could lead to enhanced direction of SSCs towards
osteogenic differentiation. MiRNAs have been shown to en-
hance bone formation in murine trials, and known mutations
in miRNAs have been identified in human osteoporotic pa-
tients. This cell-based approach could be advantageous when
applied at early stages of the disease in order to prevent further
bone loss and minimise any potential fracture risk that can
occur with disease progression. While consideration of
miRNAs in skeletal disease therapy is still in its infancy, with
considerable research still to be undertaken, the potential for
the use of miRNA in a therapeutic context offers an exciting
treatment option for a growing ageing population.
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