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ABSTRACT Sensors for imaging brain activity have been under development for almost 50 years. The development of some
of these tools is relatively mature, whereas qualitative improvements of others are needed and are actively pursued. In partic-
ular, genetically encoded voltage indicators are just now starting to be used to answer neurobiological questions and, at the
same time, more than 10 laboratories are working to improve them. In this Biophysical Perspective, we attempt to discuss
the present state of the art and indicate areas of active development.
Optical measurements of brain activity are attractive
because they allow for simultaneous and noninvasive moni-
toring of activity from many individual neurons or from
many different brain regions (population signals). In 1937,
Sherrington imagined points of light signaling the activity
of nerve cells and their connections. During sleep, only a
few remote parts of the brain would twinkle, but, at
awakening, ‘‘Swiftly the head-mass becomes an enchanted
loom where millions of flashing shuttles weave a dissolving
pattern’’ (1). In the 80 years since, there has been significant
progress: optical measurements of neural activity are now a
reality. This perspective is restricted to imaging activity in
mammalian preparations. For earlier reviews and perspec-
tives, see (2–5).
A large parameter space for imaging activity

Different preparations. Even considering only mammalian
preparations, the variations in imaging possibilities and
scientific goals are large. Neurons in culture can be studied
with wide-field optics and very intense illumination. Brain
slice and in vivo preparations are both strongly scattering
and, except for cells and processes that are very close to
the surface or in situations of very sparse genetically en-
coded voltage indicator (GEVI) expression, single cell
resolution requires two-photon microscopy. Illumination
intensities for in vivo measurements are limited by
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the damage that results from high intensities. Podgorski
and Ranganathan (6) found that continuous illumination
of a 1 mm2 area produced a temperature increase of
1.8�C/100 mW.

Different measurement goals: individual neurons and
population signals. For some scientific aims, single cell res-
olution of activity is important. For others, population
signals are preferable. For example, the input to each
glomerulus in the olfactory bulb is carried by >1000 axons
from receptor cells in the nose. Measuring the activity from
individual receptor nerve terminals is not presently feasible
and might not be that informative. However, measuring the
population average of the input to the glomerulus was
possible (7,8), and has proven to be useful in studying olfac-
tory bulb function (e.g., (8–10)).

Different sensors: organic dyes and genetically encoded
voltage and calcium sensors. The development of organic
voltage- and calcium-sensitive dyes started in the 1970s
(11–13). Presently available organic voltage-sensitive dyes
are very fast (t � <<1 ms) and have large signals
(>50%/100 mv). They remain the sensors of choice in
some measurements; for example, recording activity in indi-
vidual dendrites and spines in in vitro preparations (e.g.,
(14,15)). Those measurements were made after injecting
the dye into an individual neuron, thereby eliminating inter-
ference from fluorescence of surrounding cells and pro-
cesses. In addition, organic calcium-sensitive dyes often
remain the sensors of choice for in vivo two-photon
measurements of individual neuron activity. However, an
important limitation of organic dyes is the absence of
cell-type specificity. Bathing an in vitro or an in vivo prep-
aration with an organic voltage-sensitive dye will stain the
external membranes of all of the neurons, the glia, and the
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vasculature. Disambiguating the source of the signal in these
measurements is difficult. In contrast, there are many
mammalian transgenic animals with cre recombinase ex-
pressed in individual cell types. This has been accompanied
by the development of GEVIs and genetically encoded cal-
cium indicators (GECIs) that can take advantage of these
transgenic animals and provide individual cell type speci-
ficity in the measurement of brain activity.
Three types of GEVIs

The first GEVI developed in a laboratory was a mosaic
constructed by inserting a fluorescent protein (FP) into a
voltage-sensitive protein that resided in the plasma
membrane. The sensor, FlaSh (16), was a voltage-gated po-
tassium channel with GFP inserted after the sixth transmem-
brane segment. Aside from its importance as a proof of
principle, FlaSh had the useful feature of a steep, sigmoidal
fluorescence-versus-voltage relationship that could be tuned
to select for different ranges of membrane potential. How-
ever, FlaSh also had drawbacks; its signal was relatively
slow (t � 100 ms), and small (DF/F < 5%). But, most
importantly, FlaSh, and the analog Flare (17), worked in
frog oocytes but not at all in mammalian cells. In mamma-
lian cells, Flare’s expression was mainly intracellular (18).
This obstacle was overcome by the Knöpfel laboratory,
who changed the membrane resident voltage sensor to the
voltage-sensitive domain of the Ciona intestinalis voltage-
sensitive phosphatase (19).
Comparison of GEVI structures

Mosaic GEVIs. A number of recent GEVI developments
have focused on mosaic proteins using the voltage-sensi-
tive domain of the Ciona voltage-sensitive phosphatase
as well as analogs from other vertebrate species. Three va-
rieties of mosaic GEVIs are illustrated schematically in
Fig. 1 A. The left panel illustrates a single FP mosaic
(e.g., ArcLight (20)); the middle panel shows a mosaic
with a ‘‘butterfly’’ fluorescence resonance energy transfer
(FRET) pair of fluorescent proteins, where the two FPs
are on opposite sides of the voltage-sensitive domain
(e.g., VSFP-Butterfly 1.2 (21)); and the right panel is a
mosaic with a circularly permuted fluorescent protein in-
serted in the external loop between transmembrane seg-
ments 3 and 4 (e.g., ASAP1 (22)).

Bacterial rhodopsin-based GEVIs. A second type of
GEVI utilizes the voltage sensitivity of microbial rhodop-
sins (Fig. 1 B (23)). Both the absorption and fluorescence
of the microbial rhodopsins are voltage sensitive but their
fluorescence quantum efficiency is �100 times smaller
than GFP and thus single chromophore type 2 GEVIs
(left panel) require high intensity illumination to achieve
an adequate signal-to-noise ratio (e.g., Arch (24)). With
FIGURE 1 Schematic structures of three types

of GEVls. (A) Given here are mosaic sensors

combining the voltage-sensitive domain of a

voltage-sensitive phosphatase and a fluorescent

protein. (B) Given here are sensors based on the

voltage sensitivity of a microbial rhodopsin. (C)

Given here are sensors that are a combination of

two separate molecules. (B) Modified from (61).

(C) Modified from (32).
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in vivo mammalian CNS preparations, these illumination
intensities are expected to be damaging. By combining
the microbial rhodopsin in a mosaic with a second, bright,
fluorescent protein (Fig. 1 B, right panel), a voltage-sensi-
tive FRET quenching signal is obtained (e.g., Ace2N-
4AA)-mNeon (25)).

Two-component GEVIs. A third type of GEVI is a two-
component sensor that utilizes FRET quenching between a
membrane-bound fluorescent protein and a mobile charged
membrane resident molecule as the voltage sensor (Fig. 1 C;
e.g., hVOS (26)). The voltage sensor, dipicrylamine, in
hVOS must be externally applied by the experimenter.
Voltage versus calcium indicators

Beginning in 2003 (27), calcium signals have been used as
surrogates for a direct measure of action potentials in single
cell measurements based on the assumptions that action po-
tentials are the only source of the measured calcium changes
and that calcium changes occur during action potentials in
all types of neurons. These assumptions are certainly not
universally true (28,29). For example, subthreshold depolar-
izations elicited clear calcium transients in mitral cells (28).
Calcium influx can also occur through ligand-gated recep-
tors (30,31) and can be further modulated by release from
internal stores of calcium (32–34). In addition, the fact
that voltage-gated calcium channels only open at a certain
membrane potential creates a threshold effect. Also, many
GECIs have further nonlinearities resulting from Hill coef-
ficients that are as great as three (35). Calcium dynamics are
also slow in contrast to voltage changes; this blurs the rela-
tionship between the optical signal and spike rates except at
very low rates (36–38). Optical measurements from GECIs
can be further confounded by the kinetics of the protein
sensor (39,40). Finally, hyperpolarizations are likely to be
missed by GECIs whereas the mosaic sensor GEVIs
(Fig. 1 A) can be tuned to respond differentially to hyperpo-
FIGURE 2 In vivo population measurements. Comparing GEVls and GECls. (A

FP mosaic GEVI. The mitral-tufted cells were transduced by infection with an

repeated trials from a single glomerulus to the odorant ethyl tiglate presented duri

a comparison of ArcLight and GCaMP3 (B1) or GCaMP6f (B2) signals from o

presentations lasting two breaths. The ArcLight responses are faster. Modified
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larization or depolarization (41,42). Nonetheless, a combi-
nation of the large signal-to-noise ratios of GECIs and,
until recently, the quite small signal-to-noise ratios of
GEVIs led to the nearly universal use of GECIs. An addi-
tional advantage for GEVIs is that the calcium changes
and the resulting signals are much slower and thus are better
suited to the frame rates available in two-photon imaging.
Recent reviews of calcium imaging and GECIs are available
elsewhere (31,35,43).

With the development of GEVIs with improved signal-to-
noise ratios and faster response times, GEVI measurements
of activity are starting to be used to answer neurobiological
questions (e.g., (9,25,44–46)). Future GEVI improvements
would increase the range of experiments where GEVIs
can make an important contribution.
Comparison of GEVIs and GECIs in mammalian
preparations

Population signals. Fig. 2 A illustrates six repeated mea-
surements of the in vivo response to ethyl tiglate from a
single glomerulus in a preparation where the mitral/tufted
cells and their dendritic tufts in the glomerulus expressed
the GEVI ArcLight (20). The repeated trials overlap;
thus, over this timescale, phototoxicity was minimal.
Fig. 2 B shows paired recordings of ArcLight and GCaMP3
(Fig. 2 B1) and ArcLight and GCaMP6f (Fig. 2 B2) in
opposite hemibulbs in response to two inspirations of ethyl
tiglate. The odor presentations resulted in breath-coupled
responses that were obvious with ArcLight, but can only
be discerned with difficulty using GCaMP3 and were rela-
tively small with GCaMP6f. On the other hand, ArcLight
had a smaller DF/F and signal-to-noise ratio than the
GCaMPs (40). Carandini et al. (47) compared GEVI sig-
nals (VSFP-Butterfly 1.2) and GECI signals (GCaMP3)
in visual cortex. In some circumstances (brief stimuli),
the GECI had a larger signal-to-noise ratio, whereas for
) Shown here are in vivo population measurements using ArcLight, a single

AAV1 virus containing ArcLight DNA. An overlay of the responses to six

ng seven breaths. There was little change from trial to trial. (B) Given here is

pposite olfactory bulbs in the same preparations over response to odorant

from (12).
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steady-state stimuli the GECI and GEVI signal-to-noise ra-
tios were similar.

Single cell signals. ArcLight, the GEVI used In Fig. 2, re-
sponds to a step change in membrane potential with two
time constants; the fast one is �10 ms. Thus, the response
to a neuronal action potential (�3%) is much smaller than
the response to a long voltage step in HEK293 cells
(�40%). A faster GEVI would be more efficient. Fig. 3
(22) shows that a much faster GEVI, ASAP1 (t � 2 ms),
can follow individual spike potential changes with good
temporal resolution. ASAP1 and other faster GEVIs can
provide precise spike timing at spike rates much higher
than is possible using GECIs.

ArcLight’s ability to report odor-evoked activity in single
trials and Ace2N-4AA-mNeon ability to follow individual
spikes in individual cortical neurons shows that GEVIs
could be a useful tool for in vivo measurements (see below).
That said, GEVIs and GECIs are complementary tools,
where the appropriate choice depends on whether the
improved temporal resolution and membrane potential
sensitivity of GEVIs is more important than the better
signal-to-noise ratio and calcium sensitivity of the GCaMPs.
GEVI sensor choice

Population recordings. In population recordings, a large
signal is likely to be more important than a fast response.
In that situation, ArcLight, a relatively bright sensor with
a relatively large DF/F and signal-to-noise ratio, would be
a good choice. ArcLight AAV virus preparations are avail-
able from the Penn Vector Core (https://pennvectorcore.
med.upenn.edu/).

Single cell recordings. Here a relatively bright GEVI
with a fast response (t � 1 ms) is important. FlicR1 ((48),
FIGURE 3 Imaging neural activity in current clamp-dissociated hippo-

campal cultures. ASAP1 followed a spontaneous AP train in a cultured hip-

pocampal neuron (DF/F¼�6.25 0.5%mean5 SE, n¼ 10 APs). ASAP1

follows the membrane potential changes with high fidelity. Modified

from (22).
Ace2N-mNeon (25), ASAP1 (22), or Bongwoori-R3 (49))
had good signal-to-noise ratios in cultured neurons.

Two-photon imaging. Chamberland et al. (50) have
compared the signals from five recently developed GEVIs
in detecting fast responses using two-photon imaging from
single L2 cells in the Drosophila visual system. There was
no detectable response to a visual stimulus using MacQ-
mCitrine. With Ace-2N-2AA-mNeon there was a 1% signal.
ASAP1, ASAP2s, and ArcLight had 5% signals. However,
the response of both ASAP1 and ASAP2s declined to the
baseline before the end of the visual stimulus in Drosophila
and declined during the action potential in cardiomyocytes.
Brinks et al. (51) measured two-photon lifetimes as a probe
of absolute membrane voltage.
Mechanisms

There are different types of GEVIs with unique mechanisms
that convert changes in membrane potential into optical sig-
nals (Fig. 1). Rhodopsin-based probes have a chromophore
in the plasma membrane that responds to changes in the
voltage field rapidly, compared to other types of GEVIs
(Fig. 1 B, type 2). Thus far, these chromophores have very
low quantum efficiencies requiring high intensity illumina-
tion for imaging (24,52,53). There have been no reports of
the use of this kind of probe in mammalian central nervous
system in vivo imaging, presumably because of the damage
that such high intensities would cause. Addition of a cyto-
plasmic fluorescent protein improved the quantum effi-
ciency and provides an optical signal via FRET quenching
between the opsin chromophore and the fluorescent protein
(25,54,55). Voltage-sensing domains from voltage-gated
channels and the voltage-sensing phosphatase have also
been used in the development of mosaic GEVIs (Fig. 1 A)
(16,19,20,22,56,57). These GEVIs have the fluorescent
chromophore outside of the voltage field. This usually
resulted in slower probes (t � 10 ms) with the important
exceptions of ElectricPk (58), ASAP1 (22), and Flicker
(a red-shifted GEVI) (48).

In addition to differing voltage-sensitive domains, GEVIs
also use different fluorescent protein designs. FRET pairs can
exist as tandem fluorescent proteins at the carboxy-terminus
(19,57,59,60) or flanking the voltage-sensitive domain
(Fig. 1 A, butterfly pair) (21,61). Conformational changes
of the voltage-sensitive domain in response to altered volt-
ages causes a change in the distance and/or the orientation
of the FRET chromophores, resulting in an optical signal.
Voltage-sensitive domains can also be fused to a single fluo-
rescent protein (Fig. 1 A, single FP) (20,41,62–64) or a circu-
larly permuted form of the fluorescent protein (Fig. 1 A,
circularly permuted) (22,48,58,65). Conformational changes
of the voltage-sensitive domain alter the strain in the b-can
structure of the cpFP, resulting in an optical signal.
GEVIs with a single FP usually give small signals of 1–2%
DF/F/100 mVunless there is a negative charge on the outside
Biophysical Journal 113, 2160–2167, November 21, 2017 2163
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of the b-can structure of a pH-sensitive FP. The A227D
mutation of superecliptic pHluorin increased the size of the
signal to >40% DF/F/100 mV in ArcLight (20,66).

A striking discovery. The mechanism that converts mem-
brane potential changes into optical signals was not obvious
for GEVIs that fuse a single FP onto a voltage-sensitive
domain (Fig. 1 A, single FP), but, remarkably, dimerization
(63) of environmentally sensitive FPs (67) seems to be
important. Reducing the affinity for dimerization of the FP
resulted in a substantial loss of the voltage-dependent opti-
cal signal (Fig. 4). Three mutations to the fluorescent protein
(A206K, L221K, and F223R) disrupted the dimerization of
the FP (68). The discovery of ArcLight involved an A227D
mutation, which may have resulted in altered affinity for
dimerization. Introduction of the other two monomeric-fa-
voring mutations (L221K and F223R) resulted in very small
voltage-dependent signals. These results suggested that the
conformational changes in the voltage-sensitive domain
move the FPs in relation to each other, thereby altering their
environment and resulting in an optical signal. A schematic
model of a dimer structure is illustrated in Fig. 4 B.

Important spectral properties of mosaic GEVIs have not
been measured. These include detailed absorption and emis-
sion spectra, determining whether the signal arises from a
change in absorption cross section or a change in emission
quantum efficiency, and fluorescence lifetime measurements.
Larger and faster

Multiple characteristics of a GEVI contribute to the optical
signal. The size of the signal depends in part on the voltage
FIGURE 4 The Effect of monomeric mutations at the dimerization site of

a single FPmosaic GEVI. (A) The GEVI triple mutant with 206A-221L-223F

that favors dimerization has the largest signal (orange). Individual mutations

favoring the monomer at the three sites reduced the signal (green and purple);

double mutations cause a further reduction (red and black). (B) Given here is

a schematic model of a triple mutant dimer. Modified from (54).
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sensitivity, the range of voltages over which the sensor re-
sponds, and the speed of the probe. Probes with a sigmoidal
fluorescence-voltage relationship have a maximum optical
sensitivity at the voltage where the signal is 50% of
maximum. The speed of the probe determines the percent-
age of the maximum optical signal that will be obtained
for brief voltage changes. For instance, a probe that
exhibits a 10% signal when the membrane potential changes
from�70 toþ30 mV with a t of 2 ms would yield a roughly
6% signal for an action potential. Modifying the optical
response for specific voltage ranges would improve the
selectivity of population signals for action potentials or for
subthreshold activities.

There are three relatively separate regions—the voltage-
sensitive domain, the FP, and the linker between the two re-
gions—and these regions have been modified to improve the
optical signal. Mutations to the voltage-sensitive domain
can improve the signal size and speed, and adjust the voltage
sensitivity of type 1 (Fig. 1) GEVIs (19,41). Mutations to the
FP can increase the signal size and alter the speed of the
signal (20). Mutations to the FP can even invert the polarity
of the optical signal causing the probe to get brighter instead
of dimmer during depolarization of the plasma membrane
(64). Using brighter FPs for electrochromic FRET improved
the signal-to-noise ratio (25). Mutations to the linker region
between the voltage-sensing domain and the FP also can
improve the size of the signal and change the voltage-range
of the probe (42,49). Altering the linker length of the Ace-
mNeon family was used to optimize the plasma membrane
expression in in vivo and in vitro preparations (25).
An internal signal

One advantage of imaging activity is that one can get informa-
tion from regions that are not easily accessible to microelec-
trodes. Recently, in an attempt to alter the voltage sensitivity
of a GEVI, mutations were introduced near the transition of
transmembrane segment’s a�helixes and the random coil
structures of the loops connecting them. Nearly 40% of cells
expressing these modified GEVIs show a high degree of inter-
nal expression as well as substantial plasma membrane
expression. This is not unusual as misfolded protein is often
retained in the endoplasmic reticulum. What was unusual
was that these cells exhibited an internal optical signal in
response to whole cell voltage-clamp steps. The signal was
of opposite polarity from that seen in the plasma membrane
of the same cell. Although these results are preliminary,
they raise the exciting possibility that internal membranes
can sense the voltage changes in the plasma membrane
(M.S.R., L.B.C., O.B., and B.J.B., unpublished data).
Future perspectives

Efforts are presently underway along several directions to
increase the utility of GEVIs.
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Larger signal-to-noise ratios. These can come from
several kinds of GEVI improvements: 1) larger and/or faster
movements of the voltage-sensitive domain, 2) better
coupling of the fluorescent protein to the voltage-sensitive
domain, 3) increased brightness of the fluorescent protein
(although some of the fluorescent proteins already in use
have high quantum efficiencies), and 4) maximizing the
monomer-dimer interaction in single FP mosaics.

Red-shifted GEVIs. These are important to allow mea-
surements from more than one cell type or a measurement
and an opto-genetic activation in the same brain region.
Many of the presently available GEVIs are based on GFP
fluorescent proteins and thus measurements from two cell
types are not possible. There are new (and interesting) red
GEVIs but their signal size is smaller than presently avail-
able green sensors (48).

Action potential or inhibition-only GEVIs useful in popu-
lation measurements. Many mosaic (Fig. 1 A) GEVIs have
nonlinear (sigmoidal) signal versus voltage relationships.
Furthermore, the range of their voltage responses can be
adjusted along the voltage axis (41) and thus they can be
selectively sensitive to the membrane potential ranges that
occur during action potentials or during inhibition. Further-
more, there is preliminary evidence that the steepness of the
signal versus voltage relationship can be modified by inhib-
iting the movement of S4 in one direction (69) or by altering
the charge in the linker region between the voltage-sensing
domain and the FP (B. J. Yi, S. Braubach, and B. J. Baker,
unpublished data).

Targeting the GEVI to defined subcellular domains. Pres-
ently available GEVIs express everywhere in the neuron.
This is unattractive in many circumstances. If the object is
to record activity from the cell body, then the signals from
processes degrades the signal-to-noise ratio. If the object
is to record from the nerve terminal, then the signal from
the axon interferes. If the object is to record the activity
from the mitral cell dendritic tufts in an olfactory cell
glomerulus, then the expression in the lateral dendrites in-
terferes. Clearly, the neuron knows how to target specific
proteins to specific subcellular domains. We hope that the
same subcellular targeting specificity can be developed for
GEVIs.

Increased optical efficiency. There have been improve-
ments in one- and two-photon optics that increased the
recording speed or field of view (e.g., Sofroniew et al.
(70)), but we are not aware of ideas for improving the optics
in a way that will increase the fundamental signal-to-noise
ratio of the sensor response.
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