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Metallo-�-lactamases (MBLs) threaten the clinical utility of �-lactam antibiotics by
hydrolyzing penicillins, cephalosporins, and carbapenems. Moreover, they can

also hydrolyze all clinically used inhibitors (e.g., clavulanic acid, sulbactam, and tazo-
bactam) that protect �-lactam antibiotics from the activity of multidrug-resistant
bacteria (1). Even the diazabicyclooctane (DBO)-based serine-�-lactamase (SBL) inhib-
itor avibactam, which was recently approved by the FDA, is hydrolyzed slowly by some
MBLs (2).

The combination of avibactam and the monobactam antibiotic aztreonam has
recently passed phase II clinical trials for the treatment of infections by multidrug-
resistant Gram-negative bacteria producing MBLs (3). While SBL-mediated resistance to
aztreonam has long been known via the evolution of SBLs (4), MBLs are not thought
to hydrolyze aztreonam (5–7). Due to structural similarities between avibactam and
aztreonam (Fig. 1A), particularly with respect to the sulfonate/sulfate substituent on
the �-lactam/urea nitrogen, we were interested in examining the interaction between
more recently discovered MBLs and aztreonam and the potential for new clinically
relevant MBLs with monobactam hydrolyzing activity.

We tested the hydrolysis of aztreonam by recombinant enzymes covering all three
subclasses of MBLs (i.e., B1, B2, and B3). Following overnight incubation of a 1:10 ratio
of MBL and aztreonam, the extent of hydrolysis was determined by nuclear magnetic
resonance (NMR) spectroscopy. While Verona integron-encoded MBL-1 (VIM-1) (sub-
class B1), VIM-4 (B1), CphA (B2), and L1 (B3) did not hydrolyze aztreonam (within our
limits of detection), the model MBL BcII (B1) showed partial hydrolysis, and New Delhi
MBL-1 (NDM-1) (B1) fully hydrolyzed aztreonam under our assay conditions (Fig. 1B).
The BcII data are in broad agreement with the previously observed “nonproductive”
binding of aztreonam to BcII (8). Interestingly, no interaction between aztreonam and
NDM-1 was observed by 19F-NMR analysis (9), suggesting that the binding interaction
(e.g., Km) is quite weak. Therefore, more detailed kinetic analyses were performed.

The hydrolysis of aztreonam by NDM-1 was monitored over a shorter time scale (Fig.
1C), yielding a specific activity of 3.7 � 0.4 nmol min�1 mg�1 using 10 �M NDM-1 and
1 mM aztreonam. The dependence of aztreonam hydrolysis on NDM-1 activity was
confirmed by inhibition in the presence of EDTA and D-captopril, both inhibitors of
MBLs (Fig. 1C). The hydrolysis of avibactam by NDM-1 was also shown by NMR analysis,
which indicated that avibactam is hydrolyzed more quickly than aztreonam (Fig. 1C).

The kinetics of avibactam and aztreonam hydrolysis by NDM-1 were further inves-
tigated by UV-visible (UV-Vis) spectroscopy and NMR spectroscopy (Fig. 1D). Due to
poor substrate turnover and the limitations associated with these detection methods,
a full kinetic characterization was not possible; while the values obtained are expected
to be imprecise, they may serve as estimates of substrate affinity and turnover.
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Although apparent Km and kcat values of �3 mM and �0.02 s�1 were obtained for the
hydrolysis of avibactam by NDM-1 as monitored by UV-Vis, the limited substrate
concentrations prevented accurate nonlinear regression analysis (Fig. 1D). Instead,
based on the NMR studies which employed a wider range of substrate concentrations,
avibactam had an apparent Km of �24 mM and an apparent kcat of �0.15 s�1 with
NDM-1.

Aztreonam had an apparent Km of �9 mM and an apparent kcat of �0.014 s�1 with
NDM-1 under the NMR assay conditions. By comparison, BcII had an approximate
maximal kcat of �3 � 10�4 s�1 with aztreonam, while the other MBLs tested (for which
we did not observe aztreonam hydrolysis by NMR) had calculated maximal kcat values
of �6 � 10�5 s�1 based on the sensitivity limits of the NMR assay. To provide context
with other �-lactamases, the kcat values for avibactam and aztreonam with NDM-1 are
comparable to those determined previously for class D �-lactamases with carbapenems
(10) and for class C �-lactamases with cephalosporins (11); these classes of enzymes are
thought to contribute to resistance to these antibiotics in vivo.

The hydrolysis of avibactam and aztreonam was tested with a panel of 12
�-lactamases, as monitored by NMR (Fig. 1E and F). The �-lactamases tested belong to
classes A (TEM-1, CTX-M-15), B (BcII, NDM-1, VIM-1, VIM-4, CphA, L1), C (AmpC), and D
(OXA-10, OXA-23, OXA-48). While aztreonam was hydrolyzed efficiently by the class A

FIG 1 Hydrolysis of avibactam and aztreonam by NDM-1. (A) Structures of avibactam and aztreonam. (B) Extent of aztreonam (100 �M) hydrolysis by VIM-4,
BcII, and NDM-1 (all 10 �M) after 16 h. Hydrolysis was monitored by NMR spectroscopy (700 MHz); the peaks labeled with an asterisk correspond to the
aztreonam proton indicated with an asterisk in panel A, while the peaks labeled with two asterisks indicate the hydrolyzed product. (C) Extent of hydrolysis
of a mixture of aztreonam (ATM; 1 mM) and avibactam (AVI; 1 mM) by NDM-1 (10 �M) after 50 min with 100 �M ZnCl2–50 mM Tris-d11 (pH 7.5)–10% D2O. The
addition of D-captopril (500 �M) or EDTA (2 mM) or removal of ZnCl2 inhibited aztreonam hydrolysis. (D) Preliminary kinetic characterization of avibactam and
aztreonam hydrolysis by NDM-1 as monitored by NMR and UV-Vis analysis. The NMR studies used 10 �M NDM-1, 100 �M ZnCl2, and the indicated concentration
of avibactam or aztreonam in 50 mM Tris-d11 (pH 7.5)–10% D2O. The UV-Vis studies (monitored at 230 nm) used 10 �M NDM-1, 20 �M ZnCl2, and the indicated
concentration of avibactam in 5 mM HEPES, pH 7.5 (2). Nonlinear regression analyses were performed using Prism 7 (GraphPad). (E and F) Hydrolysis of (E)
aztreonam and (F) avibactam by a panel of �-lactamases covering classes A (black), B (red), C (blue), and D (green). Hydrolysis was measured by NMR after 24
h for samples consisting of enzyme (10 �M) and avibactam (400 �M) or aztreonam (1 mM) in 50 mM Tris-d11 (pH 7.5)–10% D2O.
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and class D �-lactamases tested, the class C �-lactamase AmpC (from Pseudomonas
aeruginosa) poorly catalyzed aztreonam hydrolysis. As indicated above, while most
MBLs tested did not hydrolyze aztreonam, NDM-1 (and BcII to a lesser extent) displayed
activity. Although no avibactam hydrolysis was observed for the class A, C, and D
�-lactamases tested, MBLs belonging to subclasses B1, B2, and B3 all catalyzed avibac-
tam hydrolysis (Fig. 1F).

These results challenge the widely held view that MBLs cannot hydrolyze aztreo-
nam. Although the hydrolysis of avibactam and aztreonam by NDM-1 at the rate that
we observed may well not be clinically relevant, the evolution of MBLs to more
efficiently hydrolyze both substrates is likely. This proposal is analogous to what has
been observed with the TEM SBLs; while TEM-1 does not efficiently hydrolyze aztreo-
nam, TEM mutants with increased aztreonam hydrolyzing activity have been identified
(12). Furthermore, MBL variants with greater activity may already exist in clinical
isolates. Therefore, the potential for MBL-mediated resistance should be considered in
evaluating the clinical use of avibactam and aztreonam, individually or in combination,
as well as of other DBOs and monobactams.
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