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ABSTRACT The novel 63,558-bp plasmid pSA-01, which harbors nine antibiotic re-
sistance genes, including cfr, erm(C), tet(L), erm(T), aadD, fosD, fexB, aacA-aphD, and
erm(B), was characterized in Staphylococcus arlettae strain SA-01, isolated from a
chicken farm in China. The colocation of cfr and fosD genes was detected for the
first time in an S. arlettae plasmid. The detection of two IS431-mediated circular
forms containing resistance genes in SA-01 suggested that IS431 may facilitate dis-
semination of antibiotic resistance genes.
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Staphylococcus arlettae is a member of the coagulase-negative staphylococci (CoNS)
that can serve as a reservoir for various resistance genes, including cfr, and may

facilitate the dissemination of resistance genes between different staphylococcal spe-
cies or even between staphylococci and other bacterial genera (1, 2). The multiresis-
tance gene cfr, which mediates resistance to five antimicrobial classes, including
phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptogramin A (3), was
first described in 2000 (4) and has been identified in a number of staphylococcal species
(1, 2, 4–8). Plasmids seem to play an important role in the intra- and intergenus transfer
of this gene (9). Thus far, many cfr-carrying plasmids have been described, which
differed in structure, size, and presence of additional resistance genes (7). Most of them
carry additional resistance genes coding for phenicol resistance (fexA, fexB) (5, 6, 10),
macrolide-lincosamide-streptogramin B (MLSB) resistance [erm(B), erm(C), erm(33)] (6,
11, 12) or gentamicin-kanamycin-tobramycin resistance (aacA-aphD) (6). Lately, fosfo-
mycin has gained attention, as it has remained active against both Gram-positive and
Gram-negative multidrug-resistant bacteria (13). To date, some fosfomycin resistance
genes have been described in various bacteria (13–15). The fosD gene, which mediated
fosfomycin resistance, was reported previously in Staphylococcus aureus (16) and
Staphylococcus rostri (1). In this study, we reported a novel multiresistance plasmid
cocarrying cfr and fosD in S. arlettae.

S. arlettae isolate SA-01, identified by the BD Phoenix-100 diagnostic systems
(Sparks, MD), was collected from a fecal sample from a commercial chicken farm in China
in July 2015. Antimicrobial susceptibility testing, performed according to the protocols of
the Clinical and Laboratory Standards Institute (CLSI) (17–19), indicated that it exhibited
high MIC values for florfenicol (�256 mg/liter) and fosfomycin (�128 mg/liter) and showed
a linezolid MIC value of 16 mg/liter (Table 1). PCR analysis confirmed that it carried the
florfenicol resistance genes cfr, fexA, and fexB, using previously described primers (5, 20) and
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the fosfomycin resistance gene fosD, using primers F1 (5=-AACTCTAACTTGTGTCCGTCAG-3=)
and F2 (5=-GTGGCTTATGGGTTGCGTTA-3=).

Conjugation by filter mating (21) and electrotransformation using purified plasmid
DNA were performed with S. arlettae SA-01 as donor and S. aureus RN4220 (22) as
recipient. Florfenicol (10 mg/liter) or fosfomycin (32 mg/liter) was used as a selection
marker. Conjugation assays were failed, but electrotransformation of the plasmid DNA
from SA-01 to RN4220 was successful. Compared with RN4220, the transformant
(designated RN4220�pSA-01) exhibited drastically increased MICs for florfenicol (�256
mg/liter), erythromycin (�128 mg/liter), kanamycin (128 mg/liter), and fosfomycin (128
mg/liter) (Table 1). PCR results revealed that cfr, fexB, and fosD were detected in the
transformant RN4220�pSA-01.

Whole-genome sequencing for transformant RN4220�pSA-01 was performed on
the Illumina MiSeq (Majorbio, Shanghai, China) using a 400-bp paired-end TruSeq
library with a 2 � 300 run. The paired-end reads were assembled de novo using SOAP
v2.04 and GapCloser v1.12. The gaps between different contigs were closed by PCR and
sequencing. Sequence analysis was conducted using the BLAST program (http://blast
.ncbi.nlm.nih.gov/Blast.cgi). A 63,558-bp plasmid (designated pSA-01) with an average
GC content of 31.9% was obtained (Fig. 1). The cfr, fexB, and fosD genes were colocated
in pSA-01, which also harbored erm(C), erm(T), erm(B), tet(L), aadD, and aacA-aphD (Fig.
1). Cooccurrence of these genes may lead to the persistence and coselection of cfr
under selective pressure imposed by the use of aminoglycosides, MLSB compounds,
tetracycline, or fosfomycin. Although cfr has been reported to coexist with erm(B) (6,
11), erm(C) (6), fexB (12), or aacA-aphD (6) and so on, to our knowledge, this is the first
report for colocation of cfr and fosD in a plasmid from S. arlettae.

Based on its genetic content, pSA-01 was divided into two regions, A and B (Fig. 1).
Region A was 22,933 bp in size and consisted of the backbone of pSA-01. Three
replication genes, including repA and its flanked genes, showed over 97% identity to
corresponding regions of plasmid pStO2014-01 from Staphylococcus condimenti (Gen-
Bank accession no. CP018777) and pC2014-3 from Staphylococcus equorum (accession
no. CP013717), respectively. These genes are essential for plasmid replication. The
products of merR1 and merA showed 94% and 90% identity to proteins MerR1 and
MerA of the mer operon in Bacillus sp. YR31 (accession no. LC015493), respectively. The
genes arsB and arsC showed 85% and 86% identity to the gene coding for the arsenic
transporter of Sporosarcina psychrophila (accession no. CP014616) and the gene coding
for arsenate reductase of Staphylococcus equorum (accession no. CP013714), respec-
tively. These genes are associated with heavy-metal (mercury and arsenic) resistance
(23, 24). Additionally, the remaining 11 genes located in the backbone, including
hypothetical protein genes, appear to have been derived from various sources, as their
deduced amino acid identities ranged from 70% to 99% to corresponding proteins of
Staphylococcus spp., Bacillus spp., and Sporosarcina spp.

The 40,625-bp region B (nucleotides [nt] 16,317 to 56,941) harbored nine resistance
genes, which were carried by segments originating from various sources (Fig. 2). The
cfr–erm(C)-carrying segment, which showed 99.5% identity to plasmid pSS-03 (acces-
sion no. JQ219851) (6), was found to be inserted into a 4,413-bp fragment showing
99.8% identity to an Enterococcus faecium plasmid (accession no. CP011830) (25). This

TABLE 1 MICs for S. arlettae SA-01, S. aureus RN4220, and the S. aureus RN4220
transformants carrying plasmid pSA-01

Bacterial isolate

MICs (mg/liter) ofa:

FFC CHL ERY KAN FOF TET CIP LZD

SA-01 �256 �64 �128 128 128 128 �64 16
S. aureus RN4220 4 4 0.25 0.25 �1 �0.5 0.5 2
Transformant RN4220�pSA-01 �256 �64 �128 128 128 32 0.5 16
aFFC, florfenicol; CHL, chloramphenicol; ERY, erythromycin; KAN, kanamycin; FOF, fosfomycin; TET,
tetracycline; CIP, ciprofloxacin; LZD, linezolid.
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segment, spanning from Δrep to tet(L), was flanked by two IS431 copies (Fig. 2).
Moreover, a 7,240-bp segment comprising erm(T) and aadD was also bracketed by
IS431 and showed 99% identity to the chromosomal integrated plasmid pUR3912
(accession no. HF677199) (26, 27) with 80% query coverage. IS431 seemed to mediate
the integration of this segment, since pUR3912 could integrate into the chromosomal
DNA via IS431 (26). An 8,647-bp fragment containing fosD and fexB seemed to insert
into a 7,400-bp aacA–aphD– erm(B)-carrying fragment, which showed 99.8% identity to
the corresponding region of pNTUH_3874 (accession no. LC102479) (28). Within the
8,647-bp fragment, the fosD-carrying fragment (1,002 bp) exhibited over 99.9% identity

FIG 1 Genetic map of pSA-01. Positions and directions of predicted open reading frames are indicated by colored arrows according to their predicted functions.
Truncated coding sequences (CDS) are indicated with a Greek delta symbol.

FIG 2 Schematic presentation of region B in plasmid pSA-01 in comparison with other plasmids. Regions of �99% nucleotide sequence identity are marked
in light gray, while dark gray represents region of 91.2% nucleotide sequence identity. Arrows indicate the positions and orientations of the genes.
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to the corresponding region of pJP2 (accession no. KC989517) (1), but downstream of
fosD a 2,320-bp segment containing a transposase gene showed just 91% identity to
pJP2. The 3,653-bp fexB-containing segment showed 99.9% identity to plasmid pEFM-1
from Enterococcus faecium (accession no. JN201336) (20). The common DNA segments
in these different plasmids suggested recombination between plasmids of different
pathogens; pSA-01 was a complex and hybrid plasmid.

In pSA-01, the presence of multiple copies of insertion sequence (IS) (three IS431and
one IS1216) were identified, which might facilitate intra- or interplasmid recombination.
Three IS431 copies (named IS431A, IS431B, and IS431C based on their positions) were
in the same orientation. Since direct repeats of IS may mediate dissemination of genes
via formation of the circular form (1, 10, 29), inverse PCR assays (see Table S1 in the
supplemental material for primers) were performed to detect whether IS431 mediated
the formation of the circular form. Two circular forms of 12,481 bp and 6,451 bp were
observed in SA-01 (Fig. 3). Both of the circular forms contained an intact IS431 and the
region between IS431A and IS431B (Fig. 3A) or region between IS431B and IS431C (Fig.
3B). To further confirm the formation of circular forms, PCR assays (primers shown in
Table S1) were performed to detect the structures that missed the corresponding
region of the circular form. The results of these PCR assays matched with inverse PCR.
Interestingly, although no circular form was observed between IS431A and IS431C, the
structure that missed regions spanning from Δrep to IS431C was detected (Fig. 3C). This
observation indicated that the two circular forms may form simultaneously. These

FIG 3 Formation of circular forms mediated by IS431. (A) Circular form derived from the region spanning from IS431A to IS431B and the structure that missed
the corresponding region of the circular form. (B) Circular form derived from the region spanning from IS431B to IS431C and the structure that missed the
corresponding region of the circular form. (C) Structure that missed the region spanning from Δrep to IS431C. The locations and orientations of primers (P1 to
P12) are indicated by arrows. Primers P1 to P6 were used for inverse PCR to detect circular forms (primers P3 and P4 for the 12,481-bp circular form and P5
and P6 for the 6,451-bp circular form; inverse PCR with primers P1 and P2 produced no product); primers P7 to P12 were used to detect structures that missed
the corresponding region of the circular form (P7 and P8 for structure that missed the region spanning from Δrep to IS431C; P9 and P10 for structure that missed
the corresponding region of the 12,481-bp circular form; and P11 and P12 for structure that missed the corresponding region of the 6,451-bp circular form).
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findings might suggest that the association of resistance genes with IS431 facilitated
their translocation. Besides, IS1216 might also have been involved in the recombination
of pSA-01, since it has been reported to play an important role in the dissemination of
antimicrobial resistance determinants (30) and in plasmid recombination (31).

In conclusion, pSA-01 was a complex, hybrid multiresistance plasmid. As far as we
know, the fosD gene was described in an S. arlettae plasmid for the first time. The
coexistence of cfr with other resistance genes, especially fosD, will limit antimicrobial
treatment options and may lead to coselection of these genes even in the absence of
direct selective pressure. The structures bracketed by IS431 were unstable and could be
looped out by IS-mediated recombination. The presence of IS elements might facilitate
intra- or interplasmid recombination and dissemination of resistance genes. Given that
the presence of the cfr–fosD-carrying multiresistance plasmid may seriously compro-
mise the effectiveness of clinical therapy and threaten public health, its occurrence and
dissemination need further surveillance.

Accession number(s). The complete nucleotide sequence of the 63,558-bp plasmid
pSA-01 characterized in this study was submitted to the GenBank database and
assigned accession number KX274135.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/AAC
.01388-17.

TABLE S1, PDF file, 0.4 MB.
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