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ABSTRACT The increasing prevalence of nosocomial infections produced by multidrug-
resistant (MDR) or extensively drug-resistant (XDR) Pseudomonas aeruginosa is fre-
quently linked to widespread international strains designated high-risk clones. In this
work, we attempted to decipher the interplay between resistance profiles, high-risk
clones, and virulence, testing a large (n = 140) collection of well-characterized
P. aeruginosa isolates from different sources (bloodstream infections, nosocomial
outbreaks, cystic fibrosis, and the environment) in a Caenorhabditis elegans infection
model. Consistent with previous data, we documented a clear inverse correlation be-
tween antimicrobial resistance and virulence in the C. elegans model. Indeed, the
lowest virulence was linked to XDR profiles, which were typically linked to defined
high-risk clones. However, virulence varied broadly depending on the involved high-
risk clone; it was high for sequence type 111 (ST111) and ST235 but very low for
ST175. The highest virulence of ST235 could be attributed to its exoU™ type lll secre-
tion system (TTSS) genotype, which was found to be linked with higher virulence in
our C. elegans model. Other markers, such as motility or pigment production, were
not essential for virulence in the C. elegans model but seemed to be related with
the higher values of the statistical normalized data. In contrast to ST235, the ST175
high-risk clone, which is widespread in Spain and France, seems to be associated
with a particularly low virulence in the C. elegans model. Moreover, the previously
described G154R AmpR mutation, prevalent in ST175, was found to contribute to
the reduced virulence, although it was not the only factor involved. Altogether, our
results provide a major step forward for understanding the interplay between
P. aeruginosa resistance profiles, high-risk clones, and virulence.

KEYWORDS Pseudomonas aeruginosa, Caenorhabditis elegans, virulence, multidrug
resistant, extensively drug resistant, high-risk clones

seudomonas aeruginosa, a ubiquitous microorganism, is one of the most relevant
pathogens causing human opportunistic infections (1). Due to its impressive met-
abolic plasticity and versatility, P. aeruginosa is capable of infecting/colonizing a wide
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range of ecological niches, including aquatic and soil habitats, animals, and plants (2).
Moreover, P. aeruginosa is a leading cause of severe nosocomial infections, particularly
in critically ill and immunocompromised patients, and is the most frequent driver of
chronic respiratory infections in patients suffering from cystic fibrosis (CF) or other
chronic underlying diseases (3, 4).

Multiple virulence factors contribute to the pathogenesis of acute and chronic
P. aeruginosa infections (1), and many of them are found to be located in the accessory
genome as part of pathogenicity (PAPI) or genomic (PAGI) islands (5). One of the most
relevant P. aeruginosa virulence factors is the type Ill secretion system (TTSS), of which
ExoU determines a greater impact in bacterial virulence. In a recent multicenter study
of P. aeruginosa, we showed that the TTSS genotype is a major differential factor that
needs to be considered when analyzing the clinical outcome of P. aeruginosa bacte-
remia (6). Motility systems and pigment production are also well established as
virulence determinants of P. aeruginosa (7-9).

The increasing prevalence of nosocomial infections produced by multidrug-resistant
(MDR) or extensively drug-resistant (XDR) P. ageruginosa strains severely compromises
the selection of appropriate treatments and is therefore associated with significant
morbidity and mortality (10-12). This growing threat results from the extraordinary
capacity of this pathogen for developing resistance to nearly all available antibiotics by
the interplay of the selection of mutations in chromosomal genes and the increasing
prevalence of transferable resistance determinants, particularly those encoding class B
carbapenemases (metallo-B-lactamases [MBLs]) or extended-spectrum B-lactamases
(ESBLs), which are frequently cotransferred with genes encoding aminoglycoside-
modifying enzymes (13). Even more concerning are recent reports which have provided
evidence of the existence of MDR/XDR clones of P. aeruginosa disseminated in multiple
institutions worldwide, denominated epidemic high-risk clones (14). Among them,
sequenced type 1111 (ST111), ST175, and ST235 are those likely to be most widespread
(15-18).

Understanding the interplay between high-risk clones, antimicrobial resistance, and
virulence is of paramount relevance for the analysis of the outcomes of P. aeruginosa
infections (6, 18, 19). Indeed, resistance profiles, high-risk clones, and TTSS genotype
were significantly interconnected in a previous study, having a major impact in the
mortality of P. aeruginosa bloodstream infections (6). Moreover, in a recent study, we
showed that the 3 likely more worldwide-relevant P. aeruginosa high-risk clones (ST111,
ST175, and ST235) were associated with a defined set of biological markers that
included decreased motility, pigment production, and in vitro fitness but increased
biofilm formation and spontaneous mutant frequencies (20). The interplay between
resistance and virulence has also been recently evaluated for a few isolates in a murine
model of P. aeruginosa bacteremia (21). However, the usefulness of murine models for
the analysis of large collections of isolates with different traits is limited by cost,
workload, and ethical constraints. In this sense, P. aeruginosa causes lethal infections
not only to mammals, but also to invertebrates, such as the nematode Caenorhabditis
elegans, a powerful model organism for studying developmental biology and host-
pathogen interactions (22-24). C. elegans is often used as a host due to its deep
characterization and experimental simplicity (25-27). Moreover, this infection model
has many practical advantages, such as being low cost, being amenable to large-scale
in vivo screening, and not raising any of the ethical concerns for drug testing at the
early stages of development (22, 28-31). Thus, the objective of this work was to
decipher the interplay among resistance profiles, high-risk clones, and virulence, testing
a large collection of well-characterized P. aeruginosa isolates from different sources
(bloodstream infections, nosocomial outbreaks, CF, and the environment) in a
C. elegans infection model.

RESULTS AND DISCUSSION

Inverse correlation between resistance and virulence in the C. elegans model.
The characteristics of the 140 P. aeruginosa isolates studied are listed in Data Set S1 in
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TABLE 1 Caenorhabditis elegans virulence scoring

CEVSe No. of live nematodes at 168 h
Nonvirulent

1 >50

2 >5-50
Virulent

3 1-5

4 =1

5 0°

aCEVS, Caenorhabditis elegans virulence score. Nonvirulent score indicates the growth of nematodes is
allowed. Virulent indicates nematodes are killed.
bRecorded at 72 h.

the supplemental material. To establish a comparative analysis of lethality of the clinical
isolates studied, we established a C. elegans virulence score (CEVS), as described in
Table 1 and Materials and Methods. As shown in Fig. 1, 103 (73.6%) of the 140 studied
strains were virulent (C. elegans virulence score [CEVS], 3 to 5) in the C. elegans model,
whereas 37 (26.4%) were not (CEVS, 1 to 2). However, as documented in Fig. 1A, the
proportion of nonvirulent strains dramatically increased according to the resistance
profile, from 7.9% for isolates that were susceptible to all tested antipseudomonals
(MultiS), 24% for isolates resistant to 1 or 2 antipseudomonal families (ModR), 29.6% for
isolates resistant to 3 or more families (MDR), to 40% for XDR isolates (resistant to all
but 1 or 2 families). Therefore, these results support previous studies suggesting that
the acquisition of resistance is associated with a fitness cost and reduction in virulence
(32, 33).

With regard to the source (Fig. 1B), the highest virulence was documented among
the environmental isolates, most of which (90%) were MultiS and none were MDR/XDR.
Intriguingly, virulence in the C. elegans model was lower in blood isolates than in CF
isolates. The high proportion of MDR/XDR profiles (50%) among the studied blood
isolates could have partially explained these findings, but the proportion was not lower
for CF isolates (85% were MDR/XDR).

exoU™* TTSS genotype is associated with enhanced virulence in the C. elegans
model. One of the most relevant virulence determinants of P. aeruginosa is the TTSS
(34). This secretion system injects potent cytotoxins, including ExoS, ExoT, ExoU, or
ExoY, into eukaryotic cells (35). Previous studies have indicated that exoS is present in
58 to 72% of the isolates and is typically associated with an invasive phenotype, while
exoU is less frequent (28% to 42% of isolates) but associated with a highly cytotoxic
phenotype (35).

The TTSS genotype was characterized for all studied isolates. The presence of exoT
and exoY genes was documented in the vast majority of the isolates, in 139 (99%) and
130 (93%) isolates, respectively. Additionally, all of them were positive for either exoU
(29 isolates [20.7%]) or exoS (103 isolates [73.6%]), except for 1 (0.7%) and 7 (5%)
isolates that were positive or negative for both genes, respectively. As shown in Fig. 1C,
exoU™ exoS-negative isolates were significantly more virulent than exoU-negative
exoS™ isolates in the C. elegans model. Therefore, these results were in agreement with
our previous data indicating that the exoU™ exoS-negative genotype was associated
with increased early mortality in P. aeruginosa bloodstream infections (6).

ST175 high-risk clone is associated with reduced virulence in the C. elegans
model. Forty-nine of the 140 isolates studied belonged to classical high-risk clones (18),
including 30 ST175, 12 ST111, and 7 ST235 isolates. Figure 1D shows the association
between each of the high-risk clones and CEVS. As shown, all isolates belonging to
ST111 and ST235 high-risk clones were highly virulent (CEVS, 4 to 5). In contrast, 73%
of ST175 isolates were nonvirulent (CEVS, 1 to 2). Moreover, most of the remaining
ST175 isolates showed only moderate virulence (CEVS, 3). Figure 2 shows the dynamics
of C. elegans over time in the presence of the isolates belonging to the 3 major high-risk
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FIG 1 Impact on C. elegans virulence score (CEVS) of resistance profiles (A), source of isolation (B), TTSS genotype (C), and MLST genotype (D). Nonvirulent
strains, with a CEVS of 1 to 2, are shown in Blue tones, and virulent strains, belonging to CEVS 3 to 5, are shown in red tones. *, significantly lower virulence

(P < 0.05); **, significantly higher virulence (P < 0.05).

clones, clearly illustrating the reduced virulence of ST175 isolates compared to that of
ST235 or ST111.

Motility and pigment production does not significantly impact virulence in the
C. elegans model. The motility systems and pigment production are also well
established as virulence determinants of P. aeruginosa. It is widely accepted that the
diverse repertoire of bacterial motility systems (swimming, twitching, and swarm-
ing) plays a pivotal role in the invasion of fluids and surfaces, including those found
in the nosocomial environment or the patient’s epithelial tissues (7, 36). Likewise,
pyocyanin (a redox-active phenazine toxin) and pyoverdine (a siderophore) are well
known to play a major role in bacterial physiology and pathogenesis (8, 9). We have
previously described that P. aeruginosa high-risk clones (ST175, ST111, and ST235)
were associated with a defined set of biological parameters, which included re-
duced motility (twitching, swimming, and swarming) and pigment production
(pyoverdine and pyocyanin) (20). Therefore, we analyzed the correlations between
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mean numbers of surviving nematodes at 0, 24, 72, and 168 h are shown. PAO1 strain values (in red) are included for comparative

purposes.

motility and pigment production and virulence in the C. elegans model. However,
statistically significant differences between virulent (CEVS, 3 to 5) and nonvirulent
(CEVS, 1 to 2) isolates were not observed for any of the motility types or pigments
analyzed (see Fig. S1). Thus, our results indicate that none of these factors are
individually essential for virulence in the C. elegans model.

Further univariate logistic regression analysis showed that there was a real and
significant association of virulence or nonvirulence (CEVS, 3 to 5 and 1 to 2, respec-
tively) with TTSS genotype, XDR and MultiS profiles, and the ST175 high-risk clone
(Table 2). So, the exoU gene (odds ratio [OR] = 4.03) and MultiS resistance profile (OR =

TABLE 2 Univariate logistic regression analysis of predictive factors for P. aeruginosa
virulence in C. elegans infection model®

Variable OR®? 95% Cl¢ P value
ST175 0.06 0.02-0.15 =0.001
exoS 0.27 0.09-0.82 0.021
exoU 4.03 1.14-14.19 0.030
XDR 0.35 0.16-0.76 0.008
MultiS 5.83 1.67-20.34 0.006

a\/irulence determined as a CEVS of 3 to 5.
POR, odds ratio.
<Cl, confidence interval.
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to 2; differences in quantitative variables are also expressed by means and standard deviations. (B) The same structure as defined by factors 1 to 3.

5.83) were positively associated with virulence, whereas the exoS gene (OR = 0.27), XDR
profile (OR 0.35), and the ST175 high-risk clone (OR 0.06) were negatively
associated with virulence. We also performed a multiple logistic regression analysis to
identify factors that were independently associated with virulence. All previously
identified factors were initially included in the model, and after adjustment for signif-
icant variables, the ST175 high-risk clone was the only factor that demonstrated an
independent association (OR = 0.68, P = 0.001) with a lack of virulence in the C. elegans
model.

A combined analysis showed the general structure of the interrelationships
among quantitative and qualitative variables in association with the virulence and
nonvirulence of clones against C. elegans. Variables are well represented in the
factorial space (see Table S1) despite the differences in representation in the
general matrix (Data Set S1).

Figure 3 depicts the general geometric relationships established between the
different studied variables, represented in a virulence gradient. Factor 1 would order
the samples in a gradient according to virulence against C. elegans defined by high-risk
clone ST175 and the origin (bacteremia or CF) as the main markers. Factor 2 is mainly
explained by an important variation on other STs, ST235, and extensively drug-resistant
(XDR) isolates; there is also an important contribution to this factor of the swarming
motility and pyoverdine production. Finally, factor 3 represents mainly the variation of
origin (CF or environmental), resistance profile (MultiS), secretion system (ExoU and
ExoS), and the swimming motility. In this factorial space, the analysis confirms that
nonvirulent strains are statistically associated with ST175, bacteremia, XDR, MDR, ExoS
and ExoY secretion, and lower values of swimming and swarming motility, pyoverdine,
and pyocyanin. Virulent strains are associated mainly with “other STs,” ST111, ST235,
epidemic, CF, and environmental origins, ModR and MultiS profiles, ExoU and ExoT
secretion (as a spurious variable), and higher values for swimming and swarming
motility, pyoverdine, and pyocyanin.

Characteristic G154R AmpR mutation decreases the killing of C. elegans but
does not fully explain the reduced virulence of ST175. Previous works by Balasu-
bramanian et al. (37) and Kong et al. (38) showed that AmpR is a global transcriptional
regulator connected not only to the expression of the B-lactamase AmpC but also to
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quorum sensing, alginate production, biofilm formation, and the expression of several
other virulence factors. In this work, we analyzed whether AmpR affects bacterial
virulence in the C. elegans model. Moreover, we have previously described a mutation
in AmpR (G154R), detected in widespread ST175 isolates, which causes its activation as
an ampC positive regulator and thus drives the hyperproduction of AmpC and B-lactam
resistance (39, 40). Thus, in this work, we explored whether this specific mutation may
have an impact on virulence in the C. elegans model. As shown in Fig. 4, the inactivation
of AmpR significantly reduced the ability of P. aeruginosa strain PAO1 to kill C. elegans.
Moreover, whereas complementation assays with wild-type ampR fully restored wild-
type PAO1 virulence, complementation with the G154R ampR mutant did not. There-
fore, these results indicate that AmpR is relevant for P. aeruginosa virulence in the
C. elegans model and that the G154R mutation impairs this effect. We then examined
the distribution of this specific mutation among the studied ST175 isolates. The G154R
mutation was detected in 22 of 30 ST175 isolates studied (Data Set S1). However, the
presence or absence of this mutation did not explain the within clone differences in
CEVS, since the few ST175 isolates showing a higher virulence (CEVS, 4 or 5) also
presented the mutation.

To search for potential mutations involved in the reduced virulence documented for
most ST175 isolates, we compared the genomes of 2 nonvirulent ST175 isolates (CEVS,
1) with those of the only 2 highly virulent ST175 isolates (CEVS, 4 or 5). Up to 70
mutations present only in isolates (at least one) from one of the groups (virulent/
nonvirulent) were detected (see Data Set S2). None of the mutations detected were
exclusive of both nonvirulent isolates. However, 11 of them were present in both
virulent isolates and neither of the nonvirulent isolates. Future studies are therefore
needed to determine the potential implication of each of these 11 mutations, which
include those for the pyocin S2 and the extracellular protease LepA, on the gain of
virulence, if any. Likewise, further studies are needed for a full understanding of the
frequent lack of virulence of ST175 isolates.

Concluding remarks. Consistent with previous data, we documented a clear in-
verse correlation between antimicrobial resistance and virulence for P. aeruginosa in the
C. elegans model. Indeed, the lowest virulence was linked to XDR profiles, which are
typically linked to defined high-risk clones. However, virulence varied broadly depend-
ing on the involved high-risk clone; it was high for ST111 and ST235 but very low for
ST175. The highest virulence of ST235 could well be attributed to its exoU" TTSS
genotype, found to be linked with higher virulence in our C. elegans model as well as
in previous clinical studies (6). Moreover, ST235 appears to be associated with a
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particularly poor clinical outcome compared to that from other MDR/XDR strains (15,
41). In contrast to ST235, ST175 seems to be associated with a particularly low virulence
in the C. elegans model. Moreover, the obtained results suggest that a specific mutation
in the transcriptional regulator AmpR contributes to the reduced virulence (39). There-
fore, our results are in agreement with existing data suggesting that AmpR is a global
transcriptional regulator involved not only in the regulation of antibiotic resistance but
also in modulating bacterial pathogenicity (37, 38). However, the presence or absence
of this mutation did not explain the within clone differences in virulence. In any case,
a functional analysis of the multiple ST175 genomes available will provide further
insights into the drivers of the reduced virulence of the ST175 clone, despite its wide
dissemination in countries such as Spain or France (40). Altogether, our results provide
a major step forward for understanding the interplay between P. aeruginosa resistance
profiles, high-risk clones, and virulence.

MATERIALS AND METHODS

Bacterial strains, susceptibility testing, and molecular typing. A total of 140 P. aeruginosa isolates
were evaluated. The collection comprised 80 bloodstream isolates from a Spanish multicenter study,
including 20 isolates per resistance profile (XDR, MDR, ModR, and MultiS), as well as 20 epidemic XDR
isolates recovered from several different outbreaks and producing diverse chromosomal and/or hori-
zontally acquired resistance mechanisms (20). Susceptibility profiles, multilocus sequence typing (MLST)
genotypes, motility, and pigment production had been already assessed in a previous study for those
isolates (20). The studied collection additionally included 20 isolates from CF patients recovered during
a recent multicenter study from Spain (42) and 20 environmental isolates provided by Saniconsult
(Palma, Spain) recovered in 2010 from diverse sources. MICs of ticarcillin (TIC), piperacillin plus
tazobactam(PIP-Tz), aztreonam (AZT), ceftazidime (CAZ), cefepime (FEP), imipenem (IMP), meropenem
(MER), ciprofloxacin (CIP), tobramycin (TOB), ceftolozane plus tazobactam (TOL-TAZ), amikacin (AMI), and
colistin (COL) were determined by broth microdilution following CLSI guidelines and breakpoints (43).
The genotypes were documented through MLST using previously described schemes, protocols, avail-
able databases, and tools (http://pubmlst.org/paeruginosa) (44). Whole-genome sequences from se-
lected ST175 isolates were obtained from previous studies (40). Likewise, ampR sequences for all ST175
isolates were obtained either from previous works (39, 40) or, if not available, by PCR amplification and
Sanger sequencing in this study.

TTSS PCR genotyping. The detection of exoS, exoT, exoY, and exoU genes was performed with
primers and the protocol described by Feltman et al. (45). PCR assays to detect the presence of exo genes
were performed on whole-DNA extracts (DNeasy tissue kit; Qiagen, Hilden, Germany) under the following
conditions: denaturation for 12 min at 94°C, followed by 35 cycles of 94°C for 30 s, 58°C for 30 s, and 72°C
for 30 s, and a final extension step of 10 min at 72°C.

Motility assays. (i) Swimming motility. Swimming medium plates (10 g/liter tryptone, 5 g/liter
NaCl, and 0.3% [wt/vol] mid-resolution agarose) were inoculated with isolated colonies from an over-
night culture in LB agar (10 g/liter tryptone, 5 g/liter yeast extract, 10 g/liter NaCl, and 1% agar) at 37°C
by use of a sharp sterile toothpick, introducing it to up to half the thickness of the medium (46).

(ii) Swarming motility. Strains were spot inoculated on swarm agar plates (M8 minimal medium
supplemented with 1 mM MgSO,, 0.2% glucose, 0.5% Bacto Casamino Acids, and 0.5% agar), using 2.5-ul
aliquots taken from overnight LB broth cultures (47).

(iii) Twitching motility. Isolated colonies were inoculated with a sharp sterile toothpick inserted to
the bottom of twitching medium (LB agar) plates (46). In all cases, 90-mm plates were filled with 30 ml
of medium, briefly dried for 2 h, and inoculated in triplicate experiments. The plates were then wrapped
with Parafilm M to prevent dehydration and incubated at 37°C for 16 h. After incubating, the zone of
motility was measured. In the case of twitching medium, the agar-petri dish interface was measured. If
the area to be measured was irregular, two perpendicular diameters were measured and the result was
expressed as the mean of the two values.

Pigment production. Production of pyocyanin and pyoverdine was quantified as described previ-
ously (48). Briefly, bacterial strains were grown at 37°C in Pseudomonas ACC broth for 40 h. At this time,
bacteria were pelleted by centrifugation, and the amount of the blue pigment pyocyanin was evaluated
by measuring the absorbance of the supernatants at 690 nm. The amount of pyoverdine was measured
by fluorescence emission, by exciting the supernatants at 400 nm and measuring the emission at 460 nm.
Each experiment was performed in triplicate.

C. elegans killing assay. The assay for studying bacterial killing of C. elegans was performed as
described previously (49). Briefly, a fresh culture of each bacterial strain to be tested was layered on a
55-mm-diameter plate containing 5 ml of potato dextrose agar. After spreading the bacterial culture, the
plates were incubated at 37°C for 24 h to form bacterial lawns. The bacterial plates were kept overnight,
and 5 worms per plate were poured on top of these bacterial lawns. The plates were incubated at 24°C
and scored to detect the presence of living worms at 0 h, 24 h, 72 h, and 168 h. The nematodes were
examined at X20 and X40 magnifications, and a worm was considered dead if it did not move
spontaneously. At least three independent replicate experiments per bacterial strain were performed and
the means and standard deviations (SDs) were recorded. Additionally, to determine the effect of the
G154R AmpR mutation on virulence, we performed C. elegans killing assays in the wild-type PAO1 strain,
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the ampR knockout mutant of PAO1 (PAAR), and the PAAR strain complemented with either the cloned
wild-type ampR (pARWT) or its G154R mutant (pARG154R). These strains were constructed in a previous
study (39). To establish a comprehensive comparative analysis of the lethality of the large collection of
clinical isolates tested, a C. elegans virulence score (CEVS) was developed. As described in Table 1, the
isolates were classified into 5 virulence levels depending on the effect on the growth of the nematodes,
including two (CEVS, 1 to 2) in which the strains were considered nonvirulent (do not kill the nematode)
and three (CEVS, 3 to 5) in which the strains were considered virulent (kill the nematode).

Statistical analysis. Quantitative variables were compared using the Mann-Whitney U test or the

Student t test, as appropriate. Chi-square (x?) and Fisher's exact tests were used to determine the
association between factors and virulence. In all cases, a P value of =0.05 was considered statistically
significant. Multivariate analyses were performed by logistic regression; variables were introduced in the
models and selected using a stepwise backward process, where 0.15 was set as the limit for removal of
terms. All statistical analyses were performed using GraphPad Prism 5 or IBM SPSS Statistics v22 software.
Factorial analysis was performed using principal components as the method of extraction after the data
were varimax normalized. The general structure of clones and variables was tested by correspondence
analysis. For both factorial and correspondence analyses, the Statistica software package was used
(Statistica data analysis software system, version 6; Tibco Software, Inc.).
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