Skip to main content
. 2017 Nov 9;2017:8734214. doi: 10.1155/2017/8734214

Table 4.

The results of listing models with the five imputation methods under 10-folds cross-validation before variable selection.

Methods Index RBF Network Kstar Random Forest IBK Random Tree
Before variable selection Delete the rows with missing data CC 0.041 0.590 0.737 0.246 0.505
MAE 0.184 0.126 0.109 0.195 0.143
RMSE 0.227 0.188 0.154 0.281 0.225
RAE 1.000 0.682 0.592 1.059 0.775
RRSE 0.999 0.825 0.678 1.235 0.986
Serial mean CC 0.038 0.612 0.755 0.237 0.574
MAE 0.171 0.113 0.098 0.181 0.125
RMSE 0.217 0.175 0.143 0.270 0.202
RAE 1.001 0.660 0.575 1.058 0.731
RRSE 0.999 0.802 0.658 1.241 0.929
Linear CC 0.042 0.615 0.753 0.243 0.551
MAE 0.173 0.112 0.098 0.181 0.127
RMSE 0.218 0.175 0.144 0.269 0.207
RAE 1.000 0.649 0.568 1.057 0.736
RRSE 0.999 0.800 0.660 1.233 0.948
Near median CC 0.043 0.614 0.752 0.251 0.535
MAE 0.173 0.113 0.098 0.180 0.131
RMSE 0.218 0.175 0.144 0.268 0.211
RAE 1.000 0.653 0.568 1.041 0.757
RRSE 0.999 0.801 0.661 1.227 0.967
Near mean CC 0.043 0.613 0.756 0.250 0.558
MAE 0.173 0.113 0.098 0.179 0.125
RMSE 0.218 0.175 0.144 0.268 0.205
RAE 1.000 0.654 0.565 1.039 0.725
RRSE 0.999 0.802 0.657 1.226 0.937
Regression CC 0.038 0.618 0.754 0.240 0.522
MAE 0.171 0.112 0.098 0.181 0.133
RMSE 0.217 0.174 0.143 0.270 0.214
RAE 1.001 0.653 0.574 1.055 0.778
RRSE 0.999 0.798 0.659 1.239 0.983

denotes the best performance among 5 imputation methods.