Table 4.
Methods | Index | RBF Network | Kstar | Random Forest | IBK | Random Tree | |
---|---|---|---|---|---|---|---|
Before variable selection | Delete the rows with missing data | CC | 0.041 | 0.590 | 0.737 | 0.246 | 0.505 |
MAE | 0.184 | 0.126 | 0.109 | 0.195 | 0.143 | ||
RMSE | 0.227 | 0.188 | 0.154 | 0.281 | 0.225 | ||
RAE | 1.000 | 0.682 | 0.592 | 1.059 | 0.775 | ||
RRSE | 0.999 | 0.825 | 0.678 | 1.235 | 0.986 | ||
Serial mean | CC | 0.038 | 0.612 | 0.755 | 0.237 | 0.574 | |
MAE | 0.171 | 0.113 | 0.098 | 0.181 | 0.125 | ||
RMSE | 0.217 | 0.175 | 0.143 ∗ | 0.270 | 0.202 | ||
RAE | 1.001 | 0.660 | 0.575 | 1.058 | 0.731 | ||
RRSE | 0.999 | 0.802 | 0.658 | 1.241 | 0.929 | ||
Linear | CC | 0.042 | 0.615 | 0.753 | 0.243 | 0.551 | |
MAE | 0.173 | 0.112 | 0.098 | 0.181 | 0.127 | ||
RMSE | 0.218 | 0.175 | 0.144 | 0.269 | 0.207 | ||
RAE | 1.000 | 0.649 | 0.568 | 1.057 | 0.736 | ||
RRSE | 0.999 | 0.800 | 0.660 | 1.233 | 0.948 | ||
Near median | CC | 0.043 | 0.614 | 0.752 | 0.251 | 0.535 | |
MAE | 0.173 | 0.113 | 0.098 | 0.180 | 0.131 | ||
RMSE | 0.218 | 0.175 | 0.144 | 0.268 | 0.211 | ||
RAE | 1.000 | 0.653 | 0.568 | 1.041 | 0.757 | ||
RRSE | 0.999 | 0.801 | 0.661 | 1.227 | 0.967 | ||
Near mean | CC | 0.043 | 0.613 | 0.756 ∗ | 0.250 | 0.558 | |
MAE | 0.173 | 0.113 | 0.098 ∗ | 0.179 | 0.125 | ||
RMSE | 0.218 | 0.175 | 0.144 | 0.268 | 0.205 | ||
RAE | 1.000 | 0.654 | 0.565 ∗ | 1.039 | 0.725 | ||
RRSE | 0.999 | 0.802 | 0.657 ∗ | 1.226 | 0.937 | ||
Regression | CC | 0.038 | 0.618 | 0.754 | 0.240 | 0.522 | |
MAE | 0.171 | 0.112 | 0.098 | 0.181 | 0.133 | ||
RMSE | 0.217 | 0.174 | 0.143 ∗ | 0.270 | 0.214 | ||
RAE | 1.001 | 0.653 | 0.574 | 1.055 | 0.778 | ||
RRSE | 0.999 | 0.798 | 0.659 | 1.239 | 0.983 |
∗ denotes the best performance among 5 imputation methods.