Skip to main content
. 2017 Nov 9;2017:8734214. doi: 10.1155/2017/8734214

Table 6.

The results of compare forecasting models under percentage spilt (dataset partition into 66% training data and 34% testing data) after variable selection.

Methods Index RBF Network Kstar Random Forest IBK Random Tree
After variable selection Delete the rows with missing data CC 0.033 0.638a 0.729a 0.251 0.545a
MAE 0.182a 0.121a 0.111a 0.199 0.135a
RMSE 0.229 0.176a 0.156a 0.287 0.212a
RAE 0.992a 0.657a 0.602a 1.083 0.736a
RRSE 1.007 0.775a 0.688a 1.262 0.935a
Series mean CC 0.107a 0.661a 0.739a 0.242a 0.551
MAE 0.172a 0.107a 0.101a 0.179a 0.129
RMSE 0.221a 0.167a 0.151a 0.268a 0.205
RAE 0.988a 0.615a 0.579a 1.027a 0.740
RRSE 0.995a 0.753a 0.678a 1.208a 0.923
Linear CC 0.105a 0.666a 0.735a 0.258a 0.596a
MAE 0.173a 0.106a 0.100a 0.175a 0.120a
RMSE 0.221a 0.166a 0.151a 0.266a 0.196a
RAE 0.987a 0.606a 0.572a 1.002a 0.683a
RRSE 0.995a 0.748a 0.681a 1.198a 0.883a
Median of nearby points CC 0.106a 0.666a 0.740a 0.264a 0.553
MAE 0.173a 0.107a 0.100a 0.177a 0.127
RMSE 0.221a 0.166a 0.151a 0.266a 0.207
RAE 0.987a 0.611a 0.571a 1.013a 0.723
RRSE 0.995a 0.747a 0.677a 1.195a 0.932
Mean of nearby points CC 0.1059a 0.667a 0.745 ab 0.249a 0.540a
MAE 0.173a 0.107a 0.099 ab 0.179a 0.129a
RMSE 0.221a 0.166a 0.149 ab 0.268a 0.214a
RAE 0.987a 0.611a 0.565 ab 1.025a 0.735a
RRSE 0.995a 0.747a 0.672 ab 1.207a 0.962a
Regression CC 0.107a 0.663a 0.739a 0.242a 0.559a
MAE 0.172a 0.106a 0.101a 0.179a 0.126a
RMSE 0.221a 0.167a 0.151a 0.268a 0.200a
RAE 0.987a 0.610a 0.581a 1.027a 0.723a
RRSE 0.994a 0.752a 0.678a 1.207a 0.900a

a denotes after variable selection with enhancing performance; b denotes the best performance among 5 models after variable selection.