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This work explains an advanced and accurate brain MRI segmentation method. MR brain image segmentation is to know the
anatomical structure, to identify the abnormalities, and to detect various tissues which help in treatment planning prior to radiation
therapy. This proposed technique is a Multilevel Thresholding (MT) method based on the phenomenon of Electromagnetism and
it segments the image into three tissues such as White Matter (WM), Gray Matter (GM), and CSF. The approach incorporates
skull stripping and filtering using anisotropic diffusion filter in the preprocessing stage. This thresholding method uses the force of
attraction-repulsion between the charged particles to increase the population. It is the combination of Electromagnetism-Like
optimization algorithm with the Otsu and Kapur objective functions. The results obtained by using the proposed method are
compared with the ground-truth images and have given best values for the measures sensitivity, specificity, and segmentation
accuracy. The results using 10 MR brain images proved that the proposed method has accurately segmented the three brain tissues
compared to the existing segmentationmethods such asK-means, fuzzyC-means, OTSUMT, Particle SwarmOptimization (PSO),
Bacterial Foraging Algorithm (BFA), Genetic Algorithm (GA), and Fuzzy Local Gaussian Mixture Model (FLGMM).

1. Introduction

Thepresent use of neuroimaging procedures allows the scien-
tists and specialists to detect and distinguish various activities
and the complications inside the human brain without using
any intrusive neurosurgery. Though there are many medical
imaging techniques, Magnetic Resonance Imaging is the best
imaging technique due to no radiation exposure hence no
side effects and it is highly accurate in detecting abnormalities
in the internal structures of human organs. The structure of
the brain is complex and its tissue segmentation is very crucial
to visualize and quantify various brain disorders.

Noise is the main parameter that affects the medical
image segmentation. Images can be denoised by using various
spatial filters like the low-pass, median, adaptive filter, and so
forth. But these filters blur the sharp lines or edges, may

respect the edges but the resolution gets decreased by abolish-
ing fine details, andmay generate artifacts [1–3]. To overcome
the drawbacks of spatial filters Perona and Malik proposed
anisotropic diffusion filter [4, 5] which has the properties
of (a) sharpening the discontinuities, (b) preserving detailed
structures and object boundaries so loss information is
minimized, and (c) removing noise in homogeneous regions.

1.1. State-of-the-Art Review. A wide range of algorithms has
been proposed for the automatic segmentation MR images
[6–9]. Image segmentation is a fundamental task in the
process of image analysis. Segmentation divides the total
image into small regions based on the intensity distribution of
the pixels. Thresholding [10–12] is a simple technique for the
image segmentation. It separates the object in an image from
its background by using an appropriate gray-level value called
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the threshold. Choosing threshold is very difficult in brain
image as the intensity distribution in it is complex. Region-
growing [13–15], K-means clustering [16, 17], Expectation
Maximization (EM) [18, 19], and fuzzy C-means (FCM) [20,
21] are the widely used techniques for the medical image
segmentation and are the extensions to thresholding. The
main drawbacks of these methods are long computational
time, sensitivity to noise and sensitivity to the initial guess,
very slow convergence, and having no global solution.

Otsu and Kapur proposed two methods for thresholding
[22–25]. The first approach maximizes the between-class
variance and the other maximizes the entropy between the
classes to find the homogeneity. These are reliable for bilevel
thresholding [26]. When these algorithms proposed by Otsu
and Kapur are used to segment the images of complex
intensity distributions which can be effectively segmented by
MultilevelThresholding (MT), the algorithmswill extensively
search for multiple thresholds which is computationally
tedious and the computation time depends on the complexity
of the image. Many techniques were developed to reduce
the computation time such as [27–29] that are specifically
designed to accelerate the computation of objective function,
[30–32] that involve Sequential Dichotomization, [33] that is
based on an iterative process, and [34] that consists of some
Metaheuristic Optimization Techniques. There are methods
to solve the problem of determining threshold number inMT
process. In [27, 30] multiphase level set method and a new
criterion for Multilevel Thresholding are specified in which
the optimal threshold number is found by optimizing a cost
function. Genetic Algorithm (GA) is combined with wavelet
transform [35, 36] to reduce the time.

Evolutionary optimized MT methods are best in terms
of speed, accuracy, and robustness compared to classical MT
techniques. In [37], various evolutionary approaches such as
Differential Evolution (DE), Tabu Search (TS), and Simulated
Annealing (SA) are discussed to solve the limitations of
Otsu’s and Kapur’s approaches for MT. In [37, 38], Genetic
Algorithms (GAs) based methodologies are utilized for the
segmentation of multiclasses. Particle Swarm Optimization
(PSO) [39] has been considered for MT, to maximize Otsu’s
objective function. Other methods [26, 39–43] such as Artifi-
cial Bee Colony (ABC), Bacterial Foraging Algorithm (BFA),
and Fuzzy Local Gaussian Mixture Model (FLGMM) were
developed for the brain image segmentation.

As the proposed method performance is compared with
some of the state-of-the-art methods such as𝐾-Means, FCM,
OtsuMT, PSO, BFA, GA, and FLGMM these are summarized
in the following section.

1.2. K-Means Clustering. 𝐾-means clustering [16, 17] is an
extensively used technique for the image segmentation. This
is an iterativemethod that classifies the pixels of a given image
into 𝑘 distinct clusters by converging to a local minimum.
Hence the clusters generated are independent and compact.
The algorithm comprises two phases. In the first phase, 𝑘
centers are selected randomly, by choosing the value of 𝑘
in advance. The other phase is to bring every pixel to the
closest center. Euclidean distance is the generally used metric
to measure the distance between each pixel and the centers

of clusters. Early grouping is being done when all the pixels
are included in different clusters. Now 𝑘 new centroids are
refigured for every cluster. In the wake of having these 𝑘 new
centroids, another binding must be done between the same
group of pixels and the closest new center. This is an iterative
process during which the location of 𝑘 centers will change
repeatedly until nomore changes are done or, in another way,
this iterative procedure continues until the criterion function
converges to the minimum.𝐾-means is fast, robust, relatively efficient, and easier to
understand, and it gives excellent result when data is well
separated.Themain drawbacks of the 𝑘-means are as follows:
it requires prior specification of the cluster center number, it is
unable to divide highly overlapping data, the same data with
different representations gives different results, it is sensitive
to noise, and the algorithm does not work for the nonlinear
type of data.

1.3. Fuzzy C-Means Clustering. The fuzzy𝐶-means algorithm
[20, 21] is widely preferred for the medical image segmen-
tation due to its flexibility of allowing pixels to have a place
in multiple classes with different degrees of membership and,
compared to other clustering methods, it retains more pixel
information in the given image. FCM method partitions the
pixels of a given image into “𝑐” fuzzy clusters regarding some
criteria. Different similarity measures such as connectivity,
distance, and intensity are used to separate the pixels. In
this work, brain images are segmented into three clusters
specifically White Matter, Gray Matter, and CSF based on the
feature values.

The algorithm is based on the minimization of the
objective function:

𝐹 (𝑈, 𝑐1, 𝑐2, 𝑐3, . . . , 𝑐𝑐) =
𝑐∑
𝑖=1

𝐹𝑖 =
𝑐∑
𝑖=1

𝑛∑
𝑖=1

𝜇𝑚𝑖𝑗 𝑑2𝑖𝑗. (1)

𝜇𝑖𝑗 is the membership value and it is in the range [0, 1], 𝑐𝑖 is
the centroid of the 𝑖th cluster, 𝑑𝑖𝑗 is the Euclidian Distance
between 𝑖th cluster centroid 𝑐𝑖 and 𝑗th data point, and 𝑚 is a
weighting exponent in the range [1,∞].

Fuzzy clustering of the data samples is carried out through
an iterative optimization of the above objective function by
updating the membership value 𝜇𝑖𝑗 and the cluster centers 𝑐𝑖
by

𝜇𝑖𝑗 = 1
∑𝑐𝑘=1 [𝑑𝑖𝑗/𝑑𝑘𝑗]2/(𝑚−1)

,

𝑐𝑖 = ∑𝑛𝑗=1 𝜇𝑚𝑖𝑗.𝑥𝑗∑𝑛𝑗=1 𝜇𝑚𝑖𝑗 .
(2)

The major operational drawbacks of FCM are as follows:
it is time-consuming and hence it achieve the stabilization
condition after a long time, and it does not consider any local
or spatial information of the image, and hence it is easily
affected by noise and other imaging artifacts.
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1.4. Otsu Thresholding. Bilevel thresholding can be used to
segment the simple images whose object has clear bound-
aries. But, for the segmentation of complicated images, Mul-
tilevelThresholding (MT) is required. Otsu bilevel threshold-
ing is awell-knownnonparametric technique for the segmen-
tation of medical images and it deals with discriminate anal-
ysis [22–24]. The value of gray-level at which between-class
variance is maximum or within-class variance is minimum is
selected as the threshold.This bilevel thresholding divides the

pixels of a given image into two separate classes 𝐶𝑙0 and 𝐶𝑙1,
and it belongs to objects and background at the gray-level th;
that is,𝐶𝑙0 = {0, 1, 2, . . . , th} and𝐶𝑙1 = {th+1, th+2, . . . , 𝐿−1}.
Let 𝜎2𝑤, 𝜎2𝐵, and 𝜎2𝑇 be the within-class variance, between-class
variance, and the total variance, respectively. By minimizing
one of the below criterion functions with respect to th an
optimal value for the threshold can be found. The criterion
functions are

𝜆 = 𝜎2𝐵𝜎2𝑤 ,

𝜂 = 𝜎2𝐵𝜎2𝑇 ,

𝜅 = 𝜎2𝑇𝜎2𝑤
where 𝜎2𝑇 =

𝐿−1∑
𝑖=0

[1 − 𝜇𝑇]2 𝑃𝑖, 𝜇𝑇 =
𝐿−1∑
𝑖=0

[𝑖𝑃𝑖] , 𝜎2𝐵 = 𝑊0𝑊1 (𝜇0𝜇1)2 , 𝑊0 =
𝑡∑
𝑖=0

𝑃𝑖, 𝑊1 = 1 −𝑊0, 𝜇1 = 𝜇𝑇 − 𝜇𝑡1 − 𝑤0 , 𝜇0 =
𝜇𝑡𝑊0 , 𝜇𝑡 =

𝑡∑
𝑖=0

[𝑖𝑃𝑖] , 𝑃𝑖 = 𝑛𝑖𝑛 ,

(3)

and here 𝑛𝑖 is the number of pixels with 𝑖th gray-level, 𝑛 is the
total number of pixels in the given image, and 𝑛 = ∑𝐿−1𝑖=0 𝑛𝑖. 𝑃𝑖
is the probability of occurrence of 𝑖th gray-level. 𝑊0,𝑊1 are
the areas occupied by the two classes𝐶𝑙0 and𝐶𝑙1, respectively,
and 𝜇0, 𝜇1 are the mean values of the classes 𝐶𝑙0 and 𝐶𝑙1,
respectively.

Among the criterion functions, 𝜂 is minimum.Hence, the
optimal threshold th = argmin 𝜂. The maximum estimate
of 𝜂, designated as 𝜂∗, is used to evaluate the amount of
separability of classes 𝐶𝑙0 and 𝐶𝑙1. It is very significant as it
does not vary under affine transformations of the gray-level
scale.

Otsu bilevel thresholding can be extended to MT and is
direct by virtue of the discriminant criterion. For instance,
on account of three-level thresholding, two thresholds are
defined as 1 ≤ th1 < th2 < 𝐿 for separating three classes,𝐶𝑙0 for {0, 1, 2, . . . , th1}, 𝐶𝑙1 for {th1 + 1, th1 + 2, th2}, and 𝐶𝑙2
for {th2 + 1, th2 + 2, . . . , 𝐿}. The between-class variance 𝜎2𝐵
is a function of th1 and th2, and the optimal thresholds th∗1
and th∗2 can be found by maximizing the function 𝜎2𝐵, where𝜎2𝐵(th∗1 , th∗2 ) = max1≤th1<𝑡ℎ2<𝐿𝜎2𝐵(th1, th2).

The main drawback of the Otsu is the following: as the
number of segments to be divided increases, the selected
thresholds become less accurate. This is simple and effective
for two-level and three-level thresholding, which can be
applied to almost all applications.

1.5. Particle Swarm Optimization (PSO). PSO [39] is a
population-based stochastic optimization process. The
method searches for a solution by altering the directions of
individual vectors, termed as “particles.” The initial location
of the particles is chosen randomly from the search area Ω.
For every iteration, a velocity is assigned to every particle
in Ω and it gets updated by the best value that the particle

has visited. Then, using the updated velocity in iteration
the position of every particle is updated. The performance
of the particle is assessed by its fitness function value. At
every iteration, the values of the best positions visited by
the particle and their companions are saved as personal
and population observations by which every particle will
converge to the optimal solution. Thus, PSO has quick
convergence compared to the other population-based
methods such as DE or GA.

In the 𝑁-dimensional search space, the position vector
of the 𝑖th particle is defined as 𝑋𝑖 = (𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑁) and
its velocity vector as 𝑉𝑖 = (V𝑖1, V𝑖2, . . . , V𝑖𝑁). According to a
predefined fitness function, if 𝑃𝑏 = (𝑝𝑏1, 𝑝𝑏2, . . . , 𝑝𝑏𝑁) and𝑃𝑓 = (𝑝𝑓1, 𝑝𝑓2, . . . , 𝑝𝑓𝑁) are assumed as the best position
of each particle and the fittest particle for an iteration 𝑡,
respectively, then, the new position and velocities of the
particles for the next fitness function are calculated as

𝑉𝑖 (𝑡 + 1) = 𝛼𝑉𝑖 (𝑡) + 𝑘1rand1 ∗ (𝑃𝑏 − 𝑋𝑖) + 𝑘2rand2
∗ (𝑃𝑓 − 𝑋𝑖) , (4)

𝑋𝑖 (𝑡 + 1) = 𝑋𝑖 (𝑡) + 𝑉𝑖 (𝑡 + 1) , (5)

where 𝑘1 and 𝑘2 are positive constants and rand1 and
rand2 are two random functions uniformly distributed in the
interval (0, 1). The variable 𝛼 representing the inertia weight
causes the convergence of the algorithm. The PSO algorithm
can be surely converged if each particle must converge to its
local attractor

𝑄 = (𝑄1, 𝑄2, . . . , 𝑄𝑁) ,
where 𝑄𝑁 = rand ∗ 𝑝𝑏𝑁 + (1 − rand) ∗ 𝑝𝑓𝑁. (6)
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According to (4), all the particles are greatly influenced by𝑃𝑏 and 𝑃𝑓. If the best particle reaches a local optimum, then
all the remaining particles will fast converge to the location
of the final best particle. Hence, in the PSO global optimum
of the fitness function is not guaranteed which is called
premature.

A globally optimal solution is considered as a feasible
solution whose objective value is better than other feasible
solutions. For locally optimal solution no better feasible
solutions can be found in the immediate neighborhood of
the given solution. Subsequently, if the algorithm loses the
diversity at early iterations it may get trapped into local
optima, and it implies that the population turns out to
be exceptionally uniform too soon. Despite the fact that
PSO finds good solutions faster than other evolutionary
algorithms it generally can not enhance the quality of the
solution as the number of iterations is improved.The solution
of the global best is improved when the swarm is iterated.
It could happen that all particles being influenced by the
global best eventually approach the global best and from there
on the fitness never improves despite however many runs
the PSO is iterated thereafter. The particles also move in the
search space in close proximity to the global best and not
exploring the rest of the search space.This is called premature
convergence.

1.6. Bacterial Foraging Algorithm (BFA). BFA optimization
strategies are methods for locating, handling, and ingesting
food. Natural selection eliminates the animals with poor
foraging methodologies. This encourages the propagation
of qualities of the best foraging methods. After so many
generations, the poor foraging strategies are either wiped
out or upgraded into better ones. A foraging animal tries to
maximize the energy intake per unit time spent on foraging
within its environmental and physiological constraints. The
E. coli bacteria, present in human intestine, follow foraging
behavior, which consists of processes of chemotaxis, swarm-
ing, reproduction, and elimination or dispersal. In [42, 44]
this evolutionary technique was modeled as an effective
optimization tool.

Chemotaxis. The bacterial movement of swimming and tum-
bling in presence of attractant and repellent chemicals from
other bacteria is called chemotaxis. A chemotactic step is a
tumble followed by a tumble or run. After defining a unit
length random direction the chemotaxis can be modeled as

𝑋𝑖 (𝑗 + 1, 𝑘, 𝑙) = 𝑋𝑖 (𝑗, 𝑘, 𝑙) + 𝑆 (𝑖) 𝜆 (𝑗) , (7)

where 𝑋𝑖(𝑗, 𝑘, 𝑙) is the 𝑖th bacterium at 𝑗th chemotactic, 𝑘th
reproductive, and 𝑙th elimination or dispersal event. 𝑆(𝑖) is
the step size in the direction ofmovement specified by tumble
called the run length unit.

Swarming. Bacterium which reaches a good food source
produces chemical attractant to invite other bacteria to
swarm together. While swarming, they maintain a min-
imum distance between any two bacteria by secreting

chemical repellent. Swarming is represented mathematically
as

𝐽𝑐𝑐 (𝑋, 𝑃 (𝑗, 𝑘, 𝑙)) = 𝑇∑
𝑖=1

𝐽𝑖𝑐𝑐 (𝑋,𝑋𝑖 (𝑗, 𝑘, 𝑙))

= 𝑇∑
𝑖=1

[−𝑑attract exp(−𝑤attract

𝑚∑
𝑛=1

(𝑋𝑛 − 𝑋𝑖)2)]

+ 𝑇∑
𝑖=1

[ℎrepellant exp(−𝑤repellant

𝑚∑
𝑛=1

(𝑋𝑛 − 𝑋𝑖)2)]

(8)

and here 𝐽𝑐𝑐(𝑋, 𝑃(𝑗, 𝑘, 𝑙)) is the value of the cost function to
be added to the optimized actual cost function to simulate
the swarming behavior, 𝑇 is the total number of bacteria,𝑚 is the number of parameters to be optimized, and 𝑑attract,𝑤attract,𝑤repellant, and ℎrepellant are the coefficients to be chosen
properly.

Reproduction. After completion of 𝑁𝑐 chemotactic steps, a
reproductive step follows. Health of 𝑖th bacterium is deter-
mined as

𝐽𝑖health =
𝑁𝑐∑
𝑖=1

𝐽𝑠𝑤 (𝑖, 𝑗, 𝑘, 𝑙) (9)

Then, in the descending order of their health, the bacteria are
sorted. The least healthy bacteria die and the other healthier
bacteria take part in reproduction. In reproduction, each
healthy bacterium splits into two bacteria each containing
identical parameters as that of the parent keeping the pop-
ulation of the bacteria constant.

Elimination and Dispersal. The bacterial population in a
habitat may change gradually due to the constraint of food
or, suddenly, due to environmental or any other factor. Every
bacterium in a region might be killed or some might be
scattered into a new location. It may have the possibility of
annihilating chemotactic progress, but it also has the ability
to help chemotaxis, since dispersal eventmay put the bacteria
to near-good food sources.

1.7. Genetic Algorithm (GA). GAs [45, 46] are effective, flex-
ible, and powerful optimization procedures governed by the
standards of evolution andnatural genetics.GAshave implied
parallelism. This algorithm begins with the chromosomal
modeling of a set of parameters that will be coded as a
limited size string over letters in order of limited length. An
arrangement of the chromosomes in a generation is known as
population, the measure of whichmight be consistent or may
change starting with one generation and then onto another.
In the initially defined population, the chromosomes are
either produced randomly or utilizing domain-specific data
information. The fitness function is designed, such that the
strings or possible solutions that have high fitness values are
characterized as best points in the feasible search region.This
is known as the payoff information that is used by the GAs
to search for probable solutions. During reproduction indi-
vidual strings are replicated into a temporary new population
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called themating pool, to convey genetic operations.The sum
of copies received by an individual corresponds to the fitness
value and these are used for the next generation. In general,
the chromosome which is retained in the population till the
final generation is treated as the best chromosome. Exchange
of data between arbitrarily chosen parent chromosomes by
combining details of their genetic information is treated
as crossover. The efficiency of GAs mainly depends on the
coding-crossover strategy. Chromosome’s genetic structure
can be altered by the process of mutation which is used to
bring the genetic diversity into the population.

There are many difficulties and issues in using GAs for
image segmentation. The strategy of encoding should be
confirmed to the Building Block Hypothesis; otherwise GA
gives the poor result. The performance of GAs depends
on the design of fitness function in such a way to reduce
the computation time, choice of various genetic operators,
termination criteria, and methods of keeping off premature
convergence.

1.8. Fuzzy Local Gaussian Mixture Model (FLGMM). In the
case of ordinary GMM, it has been assumed that intensities
of a region are sampled individually from an identical
Gaussian distribution function. This stochastic assumption
is not suitable for MR brain images because of the presence
of bias field. However, in the recently proposed FLGMM
[43] algorithm for MR brain image segmentation, the bias
field is expressed as a slowly varying quantity and it can be
overlooked inside a small window. The objective function
of FLGMM is obtained by integrating the Gaussian Mixture
Model (GMM)weighted energy function over the image.The
function consists of a truncated Gaussian kernel to establish
the spatial constraints and fuzzy memberships to balance the
contribution of GMM for segmentation.

In the process of FLGMM, based on the fuzzy C-means
model of the images with intensity inhomogeneity the local
intensity clustering property or the image partitions are
derived from the input image. A local objective function is
formulated for the given image. Minimization of the energy
function is performed by defining individual membership
functions locally for each cluster by assuming that it satisfies
the Gaussian Mixture Model. A bias-field equivalent to the
intensity inhomogeneity is generated.Thus energyminimiza-
tion generates a homogenous image which is termed as the
intensity inhomogeneity corrected image.

The remaining part of the paper is methodized as follows.
Section 2 describes the materials and methods utilized in
this work. Section 3 consists of experimental results and
discussion. Section 4 is the brief concluding section.

2. Materials and Methods

Thepresent section describes thematerials andmethods used
in thiswork.Theoverall algorithm is presented like a flowdia-
gram inFigure 1.The stages involved in the implementation of
the algorithm are explained in the subsections.The proposed
method is implemented in MATLAB.

2.1. Brain MR Images. The MR images used in this method
are downloaded from the BrainWeb [47] database. These are
the T1-weighted brain images of 10 different subjects.

2.2. Preprocessing. In the preprocessing stage, two issues
are considered. First is the skull stripping and second is
improving SNR by using anisotropic diffusion filter.

2.2.1. Skull Stripping. Skull stripping is an essential phe-
nomenon to study the neuroimaging data. Numerous appli-
cations, like cortical surface reconstruction, presurgical plan-
ning, and brainmorphometry, depend on accurate segmenta-
tion of brain region from nonbrain tissues such as skin, skull,
and eyeballs. The algorithm for skull stripping is presented
in Figure 2. This is based on brain anatomy and image
intensity. It combines the estimation of adaptive threshold
andmorphological operations, to give better results.This is an
automatic method which does not need any user interaction
to choose any parameters for the brain matter extraction.
Some of the existing techniques for skull stripping such as
AFNI, FSL, and SPM require some parameter adjustments
to get better results for various brain image data sets.
Jaccard Similarity Coefficient (JSC) is used to compare the
performance of the proposed skull stripping method with
the above-mentioned methods. JSC measures the similarity
between the skull stripped image and the ground-truth image
and is defined as the size of the overlapping area of the two
images divided by the size of the union of the two images.

𝐽 (𝐴, 𝐵) = |𝐴 ∩ 𝐵||𝐴 ∪ 𝐵| . (10)

The values of JSC are tabulated in Table 1. Exploratory
outcomes guarantee that the proposed skull stripping process
is appropriate for both synthetic and real images, though the
real images are of low contrast. It works very well even for the
brain images where the previouslymentioned techniques fail.

2.2.2. Filtering. In this proposed work noise presented in
the MR images is decreased by using anisotropic diffusion
filter designed by Perona and Malik [5]. This algorithm
decreases the noise in the image by revising it through PDE. It
smoothens the textures in an image by the law of diffusion on
the intensities of pixels. Diffusion across edges is prevented by
a threshold function; therefore it respects the edges presented
in the image.

2.3. Segmentation. MR images of the brain can be segmented
by using MT. The existing MT techniques are computation-
ally extravagant as they intensely inquire the best values for
the optimization of an objective function. This work uses
an advanced MT technique named as Electromagnetism-
Optimization (EMO) algorithm [48]. This is formulated
using the phenomenon of the force of “attraction-repulsion”
between charges to make the associates of the population.
The algorithm incorporates the excellent search capabilities
of the objective functions proposed by Otsu and Kapur. This
considers arbitrary samples against a feasible search area in
the histogram of the brain image. These samples develop
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WM GM CSF

Brain image reading

Strip the skull and other 
irrelevant tissues

Perform segmentation of brain MR
image using the proposed method
and get WM, GM, and CSF

Evaluate the efficiency of 
segmentation using ground-truths

Apply filtering using
anisotropic diffusion filter

Compare the results with the previous 
brain tissue segmentation methods

Figure 1: Flow diagram of the proposed method.

Get the histogram of given 
gray image

By using proper threshold and 
morphological open operation 
get a binary image

Clean the binary image by 
using imfill operation

Use the morphological operation to get 
the maximum perimeter as the brain 
region

Mask the gray image with the above 
mask to get skull stripped image

Figure 2: Skull stripping algorithm.
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the particles in the process of EMO and their quality is
measured by the objective functions of Otsu or Kapur. These
values of the objective functions guide the candidate solutions
to evolve through the operators of EMO until an optimal
solution is reached. This process develops a segmentation
method based on MT which has the ability to identify
different threshold values for the segmentation of MR brain
image in a minimum number of iterations.

Different to the other metaheuristics approaches such as
Differential Evolution (DE), Genetic Algorithm (GA), Artifi-
cial Bee Colony (ABC), and Artificial Immune System (AIS),
where there is exchange of information between themembers
of population, in EMO each particle is affected by others
within the population like in heuristics approaches such as
Particle Swarm Optimization (PSO) and Ant Colony Opti-
mization (ACO). Though it has few characteristics similar
to other evolutionary optimized approaches [49], it exhibits
a better accuracy with respect to its optimal parameters,
optimal convergence [50], and decreased computation time
compared to other methods for brain image segmentation.
This has been utilized in communications, optimization in
circuits, control systems, training of neural networks, and
image processing.

2.3.1. Electromagnetism-OptimizationAlgorithm (EMO). This
method is designed to propose a global solution for a
nonlinear optimization problem defined in the following
form:

maximize 𝑓 (𝑥) , where 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ R
𝑛

subject to 𝑥 ∈ 𝑋, (11)

where 𝑓: R𝑛 is a nonlinear function and 𝑋 = { 𝑥 ∈ R𝑛 |𝑙𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖, 𝑖 = 1, . . . , 𝑛} represents bounded feasible
search space limited by the lower limit 𝑙𝑖 and the upper
limit 𝑢𝑖. The algorithm uses N, n-dimensional points 𝑥𝑖,𝑘,
to represent the population for analyzing the set 𝑋, and k
is the iteration number. The original population being 𝑘 =1 is 𝑆𝑘 = {𝑥1,𝑘, 𝑥2,𝑘, . . . , 𝑥𝑁,𝑘}, are uniformly distributed
samples taken from 𝑋. As the members of population are
changed according to k the set of the population at the 𝑘th
iteration is denoted by 𝑆𝑘. After defining 𝑆𝑘, the algorithm
extends the process iteratively until a terminating condition
is reached. During the first step of iteration every point in 𝑆𝑘
shifts to another location using the mechanism of attraction-
repulsion [51], and, in the next step, these already displaced
points are further displaced locally with a local search and
become themembers of the set 𝑆𝑘+1 in the (𝑘+1)th iteration. It
is the responsibility of Electromagnetism and the local search
to drive the members of population 𝑥𝑖,𝑘 of the set 𝑆𝑘 to the
proximity of the global optimization.

Analogous to the theory of Electromagnetism between
charges, every point 𝑥𝑖,𝑘 ∈ 𝑆𝑘 in the region 𝑋 is treated like a
charged particle and the charge associated with it is assumed
as the value of objective function. Particles with the larger
value of the objective function have associated with more
charge than the particles with poor objective function. In the
process of EMO the points with more charge exhibit force
of attraction on the other points in 𝑆𝑘, and the points with

less charge will exhibit repulsion. Finally, the force vector 𝐹𝑘𝑖 ,
exerted on 𝑖th point 𝑥𝑖,𝑘, is computed by adding the forces on
all charged points and each point 𝑥𝑖,𝑘 ∈ 𝑆𝑘 is moved along the
total force direction to the destination position 𝑦𝑖,𝑘. A simple
local search is made to examine the proximity of each 𝑦𝑖,𝑘 by𝑦𝑖,𝑘 to 𝑧𝑖,𝑘. The members, of the (𝑘 + 1)th iteration, that is,𝑥𝑖,𝑘+1 ∈ 𝑆𝑘+1, can be found using

𝑥𝑖,𝑘+1 = {{{
𝑦𝑖,𝑘 if 𝑓 (𝑦𝑖,𝑘) ≤ 𝑓 (𝑧𝑖,𝑘)
𝑧𝑖,𝑘 otherwise.

(12)

The following stepwise algorithm shows the process of EMO.

Step 1. Get the input parameters 𝑘max, 𝑘local, 𝛿, and𝑁 where𝑘max is the maximal number of iterations. 𝑛 × 𝑘local are the
maximum number of locations 𝑧𝑖,𝑘, inside 𝑋 within a 𝜆
distance from𝑦𝑖,𝑘 for each 𝑖 dimension.

Step 2. For 𝑘 = 1, the points 𝑥𝑖,𝑘 are selected uniformly
in 𝑋, that is, 𝑥𝑖,1 as uni(𝑋), where uni is the uniform
distribution function. The values of the objective function𝑓(𝑥𝑖,𝑘) are calculated and the best point 𝑥𝐵𝑘 which produces
the maximum value of 𝑓(𝑥𝑖,𝑘) in the space 𝑆𝑘 is identified as

𝑥𝐵𝑘 = argmax
𝑥𝑖,𝑘∈𝑆𝑘

{𝑓 (𝑥𝑖,𝑘)} . (13)

Step 3. Each point 𝑥𝑖,𝑘 is assigned with a charge 𝑞𝑖,𝑘. The
charge 𝑞𝑖,𝑘 depends on the objective function 𝑓(𝑥𝑖,𝑘). Points
with the large value of the objective function have more
amount of charge than the points with the poor value of
objective function. The charge is calculated as follows:

𝑞𝑖,𝑘 = [
[
−𝑛 𝑓 (𝑥𝑖,𝑘) − 𝑓 (𝑥𝐵𝑘)

∑𝑁𝑗=1 𝑓 (𝑥𝑖,𝑘) − 𝑓 (𝑥𝐵
𝑘
)]]

. (14)

The force𝐹𝑘𝑖,𝑗 between two points 𝑥𝑖,𝑘 and 𝑦𝑖,𝑘 is calculated
using

𝐹𝑘𝑖,𝑗

=
{{{{{{{{{

(𝑥𝑗,𝑘 − 𝑥𝑖,𝑘) 𝑞𝑖,𝑘𝑞𝑗,𝑘𝑥𝑗,𝑘 − 𝑥𝑖,𝑘2
if 𝑓 (𝑥𝑖,𝑘) > 𝑓 (𝑥𝑗,𝑘)

(𝑥𝑖,𝑘 − 𝑥𝑗,𝑘) 𝑞𝑖,𝑘𝑞𝑗,𝑘𝑥𝑗,𝑘 − 𝑥𝑖,𝑘2
if 𝑓 (𝑥𝑖,𝑘) ≤ 𝑓 (𝑥𝑗,𝑘) .

(15)

The total force 𝐹𝑘𝑖 corresponding to 𝑥𝑖,𝑘 is
𝐹𝑘𝑖 =

𝑁∑
𝑗=1,𝑗 ̸=𝑖

𝐹𝑘𝑖,𝑗. (16)

Step 4. Except for 𝑥𝐵𝑘 , each point 𝑥𝑖,𝑘 is moved along the total
force 𝐹𝑘𝑖 using
𝑥𝑖,𝑘 = 𝑥𝑖,𝑘 + 𝜇 𝐹𝑘𝑖𝐹𝑘𝑖  (Range) ,

𝑖 = 1, 2, . . . , 𝑁, 𝑖 ̸= 𝐵,
(17)
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Table 1: Comparison of skull stripping Algorithms.

MRI AFNI FSL SPM Proposed
(1) .714 .814 .658 .862
(2) .654 .698 .729 .756
(3) .574 .625 .662 .789
(4) .784 .865 .789 .874
(5) .678 .695 .628 .685
(6) .814 .802 .798 .821
(7) .724 .765 .745 .753
(8) .814 .825 .874 .832
(9) .698 .627 .587 .689
(10) .712 .698 .598 .701

where 𝜇 = unif(0, 1) for each coordinate of 𝑥𝑖,𝑘. Range
represents the allowed lower or upper bound.

Step 5. In the neighborhood 𝜆 of 𝑦𝑖,𝑘, a maximum of 𝑘local
points are generated. Generation of local points is continued
until either a better 𝑧𝑖,𝑘 is found or the 𝑛 × 𝑘local number of
iterations is reached.

Step 6. In the next iteration 𝑥𝑖,𝑘+1 ∈ 𝑆𝑘+1 are selected from𝑦𝑖,𝑘 and 𝑧𝑖,𝑘 using (11), and the best is found using (13).
The EMO algorithm has the analysis for its complete

convergence [52]. This algorithm shows the existence of at
least one sample of the population 𝑆𝑘 which is moving very
close to the optimal solution in a single iteration. Hence EMO
method can solve the complicated optimization problems in
a minimum number of iterations. This is proved in several
studies of EMO [53–55] where its less computational cost
and its minimum iteration number were compared with
other evolutionary algorithms for various engineering related
issues.

2.3.2. Formation of 𝑓𝑂𝑡𝑠𝑢. Considering the 𝐿 intensity values
of a gray scale image, the probability distribution of the
intensity levels can be calculated as

𝑃ℎ𝑐𝑖 = ℎ𝑐𝑖𝑁𝑃,
𝑁𝑃∑
𝑖=1

𝑃ℎ𝑐𝑖 = 1,
𝑐 = 1 for gray scale image,

(18)

where 𝑖 is a particular intensity level between 0 and 𝐿 − 1, 𝑐
is the component of the image, and NP represents the total
number of pixels in the image. The histogram ℎ𝑐𝑖 is defined
as the number of pixels having the 𝑖th intensity level in com-
ponent. The histogram is normalized to get the probability
distribution 𝑃ℎ𝑐𝑖 . In the case of bilevel thresholding the two
classes 𝐶1 and 𝐶2 are defined as

𝐶1 = 𝑃ℎ𝑐1𝑤𝑐0 (th) , . . . ,
𝑃ℎ𝑐th𝑤𝑐0 (th) ,

𝑃ℎ𝑐𝑡ℎ+1𝑤𝑐0 (th) , . . . ,
𝑃ℎ𝑐𝐿𝑤𝑐0 (th)

(19)

and here𝑤0(𝑡ℎ) and𝑤1(𝑡ℎ) are the probabilities distributions
for the classes 𝐶1 and 𝐶2:

𝑤𝑐0 (th) =
th∑
𝑖=1

𝑃ℎ𝑐𝑖 ,

𝑤𝑐1 (th) =
𝐿∑
𝑖=th+1

𝑃ℎ𝑐𝑖 .
(20)

The mean values 𝜇𝑐0 and 𝜇𝑐1 of the classes and the between-
class variance 𝜎2𝑐𝐵 can be written as

𝜇𝑐0 =
th∑
𝑖=1

𝑖𝑃ℎ𝑐𝑖𝑤𝑐0 (th) ,

𝜇𝑐1 =
𝐿∑
𝑖=th+1

𝑖𝑃ℎ𝑐𝑖𝑤𝑐1 (th) ,
𝜎2𝑐𝐵 = 𝜎𝑐1 + 𝜎𝑐2,

(21)

where 𝜎𝑐1 and 𝜎𝑐2 are the variances of 𝐶1 and 𝐶2:
𝜎𝑐1 = 𝑤𝑐0 (𝜇𝑐0 + 𝜇𝑐𝑇)2 ,
𝜎𝑐2 = 𝑤𝑐1 (𝜇𝑐1 + 𝜇𝑐𝑇)2

(22)

and here 𝜇𝑐𝑇 = 𝑤𝑐0𝜇𝑐0 + 𝑤𝑐1𝜇𝑐1 and 𝑤𝑐0 + 𝑤𝑐1 = 1. Based on the
values of𝜎𝑐1 and𝜎𝑐2 the objective function is defined as follows:

𝑓otsu (th) = max (𝜎2𝑐𝐵 (th)) , 0 ≤ th ≤ 𝐿 − 1, (23)

where 𝜎2𝑐𝐵 (th) is Otsu’s variance for a given th value. Hence
the optimization problem becomes to find a value of th that
can maximize the above objective function.

This bilevel method can be extended for the identification
of multiple thresholds. Considering 𝑘 thresholds it is possible
to separate the original image into 𝑘 classes as above. Then
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the objective function𝑓otsu(th) for multiple thresholds can be
written as follows:

𝑓otsu (TH) = max (𝜎2𝑐𝐵 (TH)) ,
0 ≤ th𝑖 ≤ 𝐿 − 1, 𝑖 = 1, 2, 3, . . . , 𝑘, (24)

where TH = [th1, th2, th3, . . . , th𝑘−1] is a vector containing
multiple thresholds and the variances are computed as

𝜎2𝑐𝐵 = 𝑘∑
𝑖=1

𝜎𝑐𝑖 =
𝑘∑
𝑖=1

𝑤𝑐𝑖 (𝜇𝑐𝑖 − 𝜇𝑐𝑇)2 (25)

and here 𝑖 represents the specific class and 𝑤𝑐𝑖 and 𝜇𝑐𝑗
represent the probability of occurrence and the mean of a
class, respectively. For Multilevel Thresholding, these values
are obtained as

𝑤𝑐0 (th) =
th1∑
𝑖=1

𝑃ℎ𝑐𝑖 ,

𝑤𝑐1 (th) =
th2∑
𝑖=th1+1

𝑃ℎ𝑐𝑖 , . . . , 𝑤𝑐𝑘−1 (th) =
𝐿∑
𝑖=th𝑘+1

𝑃ℎ𝑐𝑖
(26)

and for the mean values

𝜇𝑐0 =
th1∑
𝑖=1

𝑖𝑃ℎ𝑐𝑖𝑤𝑐0 (th1) ,

𝜇𝑐1 =
th2∑
𝑖=th1+1

𝑖𝑃ℎ𝑐𝑖𝑤𝑐1 (th2) , . . . , 𝜇
𝑐
𝑘−1 =

𝐿∑
𝑖=𝑖=th𝑘+1

𝑖𝑃ℎ𝑐𝑖𝑤𝑐
𝑘−1

(th𝑘) .
(27)

2.3.3. SegmentationUsing the ProposedMethod. Thedesigned
segmentation algorithm can be coupled with two distinct
objective functions proposed by Otsu and Kapur developing
two different image segmentation algorithms. Kapur’s con-
vergence is unstable for certain range of thresholds, butOtsu’s
is the most stable. Hence, in this work, the EMO algorithm is
combinedwithOtsu thresholding. In the proposed approach,
image segmentation is described as an optimization problem
that is stated as

maximize 𝑓otsu (th) , th = [th1, th2, . . . , th𝑚]
subject to th ∈ 𝑋 (28)

𝑓otsu(th) is the objective function defined above. The term
th = [th1, th2, . . . , 𝑚] represents various thresholds. 𝑋
represents a bounded workable region in the interval [0 255]
which corresponds to image intensity levels. In the optimiza-
tion algorithm, every particle uses 𝑚 elements, as decision
variables. These variables represent various thresholds used
for the segmentation. Therefore, the total population is
characterized as

𝑆𝑘 = [TH𝑐1,TH𝑐2, . . . ,TH𝑐𝑁] ,
TH𝑐𝑖 = [th𝑐1, th𝑐2, . . . , th𝑐𝑚]𝑇 ,

(29)

where 𝑘 is the number of iterations, 𝑇 is the transpose
operator, and𝑁 is the population size. The parameter 𝑐 is set
to 1 for gray scale images.

2.3.4. Implementation of EMO Algorithm. We evaluated each
method’s sensitivity to the number of bins in the histogram
and found that The stepwise implementation of the algo-
rithms is as follows.

Step 1. Read the input gray scale image and name it as 𝐼 and
set 𝑐 = 1.
Step 2. Obtain the histogram ℎ of the image.

Step 3. Calculate the probability distribution functions.

Step 4. Initialize the parameters 𝑘max, 𝑘local, 𝜆,𝑚, and𝑁.

Step 5. Initialize the population 𝑆𝑐𝑘 having 𝑁 random parti-
cles and𝑚 dimensions.

Step 6. Find the values of𝑤𝑐𝑖 and 𝜇𝑐𝑖 . Compute the 𝑆𝑐𝑘 required
to find the objective function 𝐹Otsu.

Step 7. Calculate the amount of charge associated with each
particle and also total force vector.

Step 8. Move the total population 𝑆𝑐𝑘 along the force vector.
Step 9. Local search is made in the moved population and
best elements are selected based on the values of their
objective functions.

Step 10. The iteration number 𝑘 is incremented in 1; if 𝑘 ≥𝑘max the algorithm stops the iteration and jumps to Step 11;
otherwise it jumps to Step 7.

Step 11. Using 𝐹Otsu choose the particle 𝑥𝐵𝑘 𝑐 that has the best
objective function value.

Step 12. Use the thresholds values contained in 𝑥𝐵𝑘 𝑐 to the
entire image for segmentation.

2.4. Evaluation. Theobjective or automatic evaluation of seg-
mentation is very easy and it involves verifying the segmented
pixels against a known pixel-wise ground truth. There are
mainly three performance parameters for any segmentation
process such as sensitivity, specificity, and segmentation
accuracy.

Sensitivity. It indicates true positivity and it is the probability
that a detected or segmented pixel belongs to the particular
tissue.

Sensitivity = TP
TP + FN

. (30)

Specificity. It indicates true negativity and it is the probability
that a detected or segmented pixel does not belong to
particular tissue but it belongs to the background.

Specificity = TN
FP + TN

. (31)
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

Figure 3: White Matter Detection. (a) Brain images; (b) skull stripped images; (c) ground-truth images; (d) results of 𝐾-means; (e) results
of fuzzy 𝐶-means; (f) results of Otsu MT; (g) results of PSO; (h) results of BFA; (i) results of GA; (j) results of FLGMM; (k) results of the
proposed method.

Segmentation Accuracy. It indicates the degree to which seg-
mentation algorithm results match with reference or ground
truths.

Segmentation Accuracy = TP + TN
TP + TN + FP + FN

. (32)

Here TP indicates “True Positive” which is the number of
pixels exactly detected as particular tissue pixels. TN indicates
“True Negative” which is the number of pixels exactly
detected as not particular tissue pixels. FP indicates “False

Positive” which is the number of pixels wrongly detected as
particular tissue pixels. FN indicates “FalseNegative”which is
the number of pixels wrongly detected as not particular tissue
pixels.

3. Experimental Results and Discussion

This section presents the experimental results of the proposed
algorithm in detecting various brain tissues and the compari-
son with other methods.The algorithm is implemented using
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

Figure 4: Gray Matter Detection. (a) Brain images; (b) skull stripped images; (c) ground-truth images; (d) results of 𝐾-means; (e) results
of fuzzy 𝐶-means; (f) Results of Otsu MT; (g) results of PSO; (h) results of BFA; (i) results of GA; (j) results of FLGMM; (k) results of the
proposed method.

MATLAB.TheMR images of the brain are downloaded from
the BrainWeb database. Around 20 different MR images are
used for testing the proposed algorithm, but the results of 10
images are presented in the paper. The recommended seg-
mentation process is evaluated using themeasures sensitivity,
specificity, and segmentation accuracy.

Figures 3–5 depict the visual results of three types of
tissue detection from 10 different MR images of the brain
for the proposed and the other methods such as 𝐾-means
[16, 17], fuzzy 𝐶-means [20, 21], Otsu MT [22–24], Particle
Swarm Optimization (PSO) [39], Bacterial Foraging Algo-
rithm (BFA) [42, 44], Genetic Algorithm (GA) [45, 46],



12 BioMed Research International

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

Figure 5: CSF Detection. (a) Brain images; (b) skull stripped images; (c) ground-truth images (d) results of 𝐾-means; (e) results of fuzzy𝐶-means; (f) results of Otsu MT; (g) results of PSO; (h) results of BFA; (i) results of GA; (j) results of FLGMM; (k) results of the proposed
method.

and FLGMM [43]. These results show that the proposed
method is excellent compared to the others. The method is
giving best results even for the images of complex intensity
distributions. Results of all the 10 different persons’ brain
images demonstrate the successful detection of all the tissue
types. Positions and sizes of all the tissues are detected
correctly and all the segmentation performance measures
are quite high for the proposed method. In future work, to

increase the performance of segmentation additional features
such as prior knowledge, shape, and models can be used
during the segmentation.

Tables 2–4 consist of the performance parameters of
the proposed segmentation algorithm and the other existing
methods in detecting White Matter (WM), Gray Matter
(GM), and Cerebral Spinal Fluid (CSF), respectively. It came
to be known from the tables that the performance of the
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Table 2: Performance measures for the proposed method and the existing methods for segmenting White Matter (WM) from 10 different
MR images.

Algorithm Sensitivity
MRI 1 MRI 2 MRI 3 MRI 4 MRI 5 MRI 6 MRI 7 MRI8 MRI 9 MRI 10 Avg

𝐾-means 85.54 86.04 82.50 81.29 80.78 80.78 81.14 82.14 80.26 83.20 82.36
FCM 86.78 87.94 84.00 83.42 82.18 82.58 83.42 84.00 90.94 80.78 84.60
OTSU 87.24 89.21 89.06 91.72 89.62 89.62 87.72 88.06 88.21 84.24 88.47
PSO 87.98 89.35 90.25 91.25 88.35 89.96 87.26 89.21 85.25 87.25 88.61
BFA 89.25 89.87 93.56 92.35 89.89 90.35 89.23 89.36 89.25 94.32 90.74
GA 90.56 90.28 93.25 93.25 90.25 92.35 92.35 93.25 90.25 95.26 92.10
FLGMM 94.25 91.23 95.35 92.37 92.35 93.25 93.25 94.25 91.25 96.25 93.38
Proposed 95.65 94.69 96.79 97.04 96.98 97.23 95.04 96.52 92.69 97.65 96.02

Algorithm Specificity
MRI 1 MRI 2 MRI 3 MRI 4 MRI 5 MRI 6 MRI 7 MRI8 MRI 9 MRI 10 Avg

𝐾-means 86.25 87.25 86.25 89.35 80.25 83.54 86.35 82.47 81.25 82.35 84.53
FCM 87.25 88.54 87.32 89.87 81.25 84.25 87.25 83.24 82.54 83.25 85.47
OTSU 87.98 89.25 88.25 90.25 82.24 85.32 87.96 83.56 83.25 84.25 86.23
PSO 88.25 90.25 89.32 91.55 82.35 85.36 88.35 84.32 84.54 85.24 86.95
BFA 89.95 91.97 94.96 92.78 89.01 91.56 88.56 88.36 90.21 93.32 91.06
GA 91.89 92.25 94.29 92.98 90.89 92.68 92.89 92.25 90.78 92.26 92.31
FLGMM 95.75 92.63 96.85 93.47 91.45 93.47 92.25 94.89 91.65 93.78 93.61
Proposed 96.25 95.99 97.89 97.94 97.87 94.23 96.32 96.69 94.69 98.59 96.64

Algorithm Segmentation accuracy
MRI 1 MRI 2 MRI 3 MRI 4 MRI 5 MRI 6 MRI 7 MRI8 MRI 9 MRI 10 Avg

𝐾-means 85.02 86.98 83.43 82.97 81.65 81.98 83.24 83.34 80.12 84.34 83.30
FCM 85.13 87.65 84.31 83.86 83.08 83.57 84.32 84.12 91.34 80.45 84.78
OTSU 87.35 88.32 88.14 88.75 89.52 89.82 87.52 88.45 89.56 84.23 88.16
PSO 89.46 89.01 91.25 91.64 87.25 90.97 88.26 89.67 86.78 87.45 89.17
BFA 90.57 90.14 93.48 92.53 90.75 90.53 89.63 90.32 89.26 91.12 90.83
GA 90.68 91.27 94.26 92.32 91.22 91.45 90.89 92.55 91.54 92.65 91.88
FLGMM 94.97 92.50 95.37 91.11 92.54 94.78 92.78 93.56 91.43 93.78 93.28
Proposed 97.56 94.83 96.34 97.95 96.87 97.98 95.09 96.78 94.33 97.56 96.52

algorithm in segmenting the tissues-wiseWM, GM, and CSF
is quite high. The values of three performance parameters
sensitivity, specificity, and segmentation accuracy are almost
high for all the 10 images. Hence the overall results show that
the method performs well in segmentation compared to the
previous methods.

4. Conclusions

This paper proposed an excellent and innovative Multilevel
Thresholding method to segment different tissues like White
Matter (WM), Gray Matter (GM), and CSF fromMRIs of the
brain. Segmentation of WM and GM and CSF segmentation
of brain image are vital in identifying disorders and treatment
planning in the field of medicine. This method outper-
forms well in segmenting all tissues. This method uses the
histogram and morphological operations for the skull

stripping. Anisotropic diffusion filtering is used in prepro-
cessing to eliminate the noise and also to smoothen the image.
An Electromagnetism-Like algorithm which depends on the
phenomenon of “attraction-repulsion” between the charges
is used for the segmentation. This approach is a combina-
tion of effective search potentials of “attraction-repulsion”
algorithm with the objective function of popular Otsu MT
method.

Different to other algorithms, EMO exhibits interesting
search capabilities whereas it maintains a low computational
overhead. The constraints of EMO are as follows: if the
value of objective function reaches a very high value, the
fraction value in the equation of charge (see (8)) becomes
very small and creates an overflowproblem to find the charge.
This can be refrained by assuming a high floating point
value for the points having a very high value of objective
function. Overflow problem can also occur if the separation
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Table 3: Performance measures for the proposed method and the existing methods for segmenting Gray Matter (GM) from 10 different MR
images.

Algorithm Sensitivity
MRI 1 MRI 2 MRI 3 MRI 4 MRI 5 MRI 6 MRI 7 MRI 8 MRI 9 MRI 10 Avg

𝐾-means 84.21 81.56 82.34 81.35 82.54 80.96 82.35 83.25 87.39 84.36 83.03
FCM 85.25 91.36 85.36 84.35 83.25 82.58 84.36 85.36 88.669 87.36 85.78
OTSU 85.35 89.71 88.06 87.72 89.62 89.62 91.72 89.06 89.21 87.24 88.73
PSO 88.28 86.45 89.21 87.26 89.96 88.35 91.25 90.78 89.35 87.98 88.88
BFA 95.67 90.95 89.36 89.23 90.78 89.89 92.35 93.56 89.87 89.25 91.09
GA 96.27 91.90 93.25 92.35 92.35 90.56 93.789 93.25 90.89 90.45 92.50
FLGMM 96.26 92.55 94.78 93.25 93.25 92.35 92.37 95.35 91.23 94.25 93.56
Proposed 98.66 93.12 96.52 95.89 98.23 96.98 97.04 96.79 97.69 94.65 96.55

Algorithm Specificity
MRI 1 MRI 2 MRI 3 MRI 4 MRI 5 MRI 6 MRI 7 MRI8 MRI 9 MRI 10 Avg

𝐾-means 86.35 87.36 86.98 89.36 81.25 84.52 86.35 82.98 81.58 83.25 84.99
FCM 87.96 88.69 87.59 90.35 82.32 84.36 87.36 84.35 82.36 84.35 85.96
OTSU 87.69 90.32 89.36 91.25 83.25 86.32 88.25 84.35 84.23 85.32 87.03
PSO 89.32 91.33 90.22 90.25 81.25 85.25 89.35 84.25 84.25 85.96 87.14
BFA 89.25 90.89 94.58 92.89 89.86 90.98 88.26 88.45 90.58 92.89 90.86
GA 92.58 92.89 94.56 92.58 91.25 92.56 91.25 91.56 90.58 91.25 92.10
FLGMM 94.25 91.25 94.25 94.25 92.25 93.25 92.58 93.56 92.25 94.25 93.21
Proposed 97.25 93.88 97.58 97.36 97.25 95.28 96.58 96.25 94.89 99.25 96.55

Algorithm Segmentation accuracy
MRI 1 MRI 2 MRI 3 MRI 4 MRI 5 MRI 6 MRI 7 MRI 8 MRI 9 MRI 10 Avg

𝐾-means 85.23 86.35 84.25 82.56 81.25 82.36 84.25 84.35 81.25 84.69 83.65
FCM 85.69 87.89 84.69 84.25 83.69 84.25 85.98 84.25 92.58 81.23 85.45
OTSU 87.98 88.86 88.56 89.56 89.87 88.89 87.89 89.25 90.25 85.02 88.61
PSO 90.25 90.25 91.89 91.58 87.25 90.25 88.96 89.58 86.98 87.58 89.45
BFA 90.58 91.25 92.36 92.69 91.02 90.89 90.25 91.22 90.25 91.69 91.22
GA 90.98 91.35 94.25 92.69 91.75 91.85 90.25 91.78 91.58 92.58 91.90
FLGMM 95.05 92.69 95.86 91.58 92.89 94.25 92.89 93.89 91.25 92.58 93.29
Proposed 97.85 94.98 96.58 98.02 97.25 98.25 95.69 96.84 94.58 97.86 96.79

between the two points is much nearer to zero and it can
be avoided by maintaining a minimum separation between
the points based on the word length of the processor. When
the force acting on the charged particles discards some parts
of the feasible search space, premature convergence may
occur which leads to the wrong result. This can be avoided
by perturbing the present population so that no less than
one point among all the points will have an opportunity to
move to the discarded parts of the region. This point will
be considered as the best point called “perturbed point” and
the force is calculated by taking this perturbed point into
account.

With regard to evaluating the performance of the pro-
posed approach, the metrics like sensitivity, specificity, and
segmentation accuracy are used, taking into account the
similarity between the segmented image and the ground

truth. The proposed approach is carried out on 10 different
MRI images of the brain which are downloaded from the
BrainWeb database.

The recommended approach has been compared with
other segmentation algorithms such as Otsu MT [22–24],𝐾-
means [16, 17], fuzzy 𝐶-means [20, 21], Particle Swarm Opti-
mization (PSO) [39], Bacterial Foraging Algorithm (BFA)
[42], GeneticAlgorithm (GA) [36], and Fuzzy LocalGaussian
Mixture Model [43]. The experimental results proved the
outstanding performance of the proposed algorithm com-
pared to the other existing methods. The performance of
the proposed approach in detecting various tissues can be
increased by designing an effective objective function. This
soft tissues detection of the brainMR image is very important
for surgical planning and to find and diagnose neurological
diseases.
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Table 4: Performance measures for the proposed method and the existing methods for segmenting CSF from 10 different MR images.

Algorithm Sensitivity
MRI 1 MRI 2 MRI 3 MRI 4 MRI 5 MRI 6 MRI 7 MRI 8 MRI 9 MRI 10 Avg

𝐾-means 85.34 83.25 83.69 82.58 83.56 81.25 83.78 84.25 87.69 85.23 84.06
FCM 86.36 91.89 86.32 85.25 84.25 83.56 85.69 86.45 89.36 88.21 86.73
OTSU 85.98 89.99 89.12 87.56 90.25 90.89 92.45 89.04 89.21 88.25 89.27
PSO 88.69 86.89 90.24 88.20 90.21 89.25 91.78 91.00 90.25 88.25 89.47
BFA 96.25 91.25 90.78 89.21 90.58 90.25 93.01 94.25 88.25 89.12 91.29
GA 96.89 91.99 94.25 93.25 93.56 90.24 92.25 93.25 91.24 91.89 92.88
FLGMM 96.96 92.89 95.14 93.89 93.74 93.58 95.89 95.89 92.58 95.86 94.64
Proposed 99.84 94.25 97.58 96.58 99.21 95.25 97.01 97.21 97.25 94.89 96.90

Algorithm Specificity
MRI 1 MRI 2 MRI 3 MRI 4 MRI 5 MRI 6 MRI 7 MRI 8 MRI 9 MRI 10 Avg

K-means 86.21 87.25 85.25 90.24 81.89 85.28 87.25 83.25 82.54 84.25 85.34
FCM 88.01 89.25 87.98 91.25 83.25 85.25 88.56 85.24 83.25 85.28 86.73
OTSU 87.99 90.89 90.25 91.29 83.24 86.99 88.74 85.20 85.24 85.96 87.57
PSO 90.24 92.14 90.29 90.89 82.14 85.89 90.21 85.21 85.24 86.21 87.84
BFA 90.21 91.25 95.21 93.25 90.21 91.25 89.25 89.24 91.45 93.24 91.45
GA 93.25 93.56 95.24 92.89 92.14 92.89 92.14 92.25 91.25 92.27 92.78
FLGMM 95.89 92.89 95.86 95.76 92.89 93.56 92.78 93.86 92.86 94.78 94.11
Proposed 97.85 94.85 97.89 97.86 97.58 96.24 95.21 96.57 94.85 99.14 96.80

Algorithm Segmentation accuracy
MRI 1 MRI 2 MRI 3 MRI 4 MRI 5 MRI 6 MRI 7 MRI 8 MRI 9 MRI 10 Avg

𝐾-means 85.78 86.59 85.24 83.25 82.12 86.25 85.24 84.25 82.21 85.25 84.61
FCM 85.96 87.25 84.89 84.56 83.96 84.58 85.99 84.89 92.56 82.54 85.71
OTSU 87.96 89.56 88.21 88.56 88.56 89.12 87.88 89.59 90.78 85.89 88.61
PSO 90.45 91.24 91.99 92.12 88.21 91.25 89.25 90.21 87.21 87.89 89.98
BFA 90.24 91.53 92.01 92.58 91.56 91.89 90.21 91.25 91.88 91.54 91.46
GA 90.99 92.45 95.89 93.21 92.14 92.45 91.26 92.79 91.89 92.96 92.60
FLGMM 95.86 92.99 95.99 91.89 92.56 94.58 93.25 96.89 93.58 93.12 94.07
Proposed 97.58 95.01 96.89 98.25 97.14 98.45 95.25 96.99 95.84 98.21 96.96
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