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Abstract

Magnetic resonance spectroscopy (MRS) is the only biomedical imaging method that can
noninvasively detect endogenous signals from the neurotransmitter y-aminobutyric acid (GABA)
in the human brain. Its increasing popularity has been aided by improvements in scanner hardware
and acquisition methodology, as well as by broader access to pulse sequences that can selectively
detect GABA, in particular Jdifference spectral editing sequences. Nevertheless, implementations
of GABA-edited MRS remain diverse across research sites, making comparisons between studies
challenging. This large-scale multi-vendor, multi-site study seeks to better understand the factors
that impact measurement outcomes of GABA-edited MRS. An international consortium of 24
research sites was formed. Data from 272 healthy adults were acquired on scanners from the three
major MRI vendors and analyzed using the Gannet processing pipeline. MRS data were acquired
in the medial parietal lobe with standard GABA+ and macromolecule- (MM-) suppressed GABA
editing. The coefficient of variation across the entire cohort was 12% for GABA+ measurements
and 28% for MM-suppressed GABA measurements. A multilevel analysis revealed that most of
the variance (72%) in the GABA+ data was accounted for by differences between participants
within-site, while site-level differences accounted for comparatively more variance (20%) than
vendor-level differences (8%). For MM-suppressed GABA data, the variance was distributed
equally between site- (50%) and participant-level (50%) differences. The findings show that
GABA+ measurements exhibit strong agreement when implemented with a standard protocol.
There is, however, increased variability for MM-suppressed GABA measurements that is
attributed in part to differences in site-to-site data acquisition. This study’s protocol establishes a
framework for future methodological standardization of GABA-edited MRS, while the results
provide valuable benchmarks for the MRS community.
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1. Introduction

Magnetic resonance spectroscopy (MRS) is unique amongst the neuroimaging modalities in
detecting endogenous signals from complex molecules in the brain noninvasively. Of
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particular interest is the detection and measurement of y-aminobutyric acid (GABA), the
major inhibitory neurotransmitter in the mammalian brain (McCormick, 1989). Healthy
brain function relies on GABAergic inhibitory processes, and understanding GABAergic
mechanisms in both healthy and pathological brain function has been one core focus of
neuroscience. MRS measurements of GABA have been associated with individual
differences in hemodynamic and electrophysiological signals (Donahue et al., 2010; Hu et
al., 2013; Kapogiannis et al., 2013; Muthukumaraswamy et al., 2009) and a number of
measures of cognition (Fujihara et al., 2015; Shibata et al., 2017; Yoon et al., 2016) and
behavior (Boy et al., 2011; Greenhouse et al., 2017; Puts et al., 2011; Silveri et al., 2013).
Differential levels of GABA have been observed in a number of neuropsychiatric disorders,
such as schizophrenia (Kegeles et al., 2012; Ongiir et al., 2010; Rowland et al., 2016; Yoon
et al., 2010) and depression (Bhagwagar et al., 2008; Hasler et al., 2007; Price et al., 2009),
neurodevelopmental disorders such as autism spectrum disorder (Drenthen et al., 2016;
Gaetz et al., 2014; Puts et al., 2016) and attention deficit hyperactivity disorder (Bollmann et
al., 2015; Edden et al., 2012a), and neurological diseases, such as Parkinson’s disease (Emir
et al., 2012), amyotrophic lateral sclerosis (Foerster et al., 2012; Foerster et al., 2013) and
diabetic neuropathy (Petrou et al., 2012).

The most common MRS approach for detecting the GABA signal is the Mescher— Garwood
(MEGA) editing sequence (Mescher et al., 1998), a +difference spectral editing technique
that is typically implemented within a point resolved spectroscopy (PRESS) (Bottomley,
1987) acquisition. MEGA-PRESS and other spectral editing techniques exploit the known
scalar coupling properties of molecules in order to separate their associated signals from the
overlapping signals of other molecules. For lower-concentration metabolites such as GABA,
spectral editing differentiates the weak signals of interest from the stronger, overlapping
signals of higher-concentration metabolites. Difference editing techniques in particular use
frequency-selective inversion pulses to achieve this (for methodological reviews, see Harris
etal., 2017; Puts and Edden, 2012). The popularity of MEGA-PRESS is attributed to a
number of factors, including the wide availability of the basic PRESS sequence across
scanner platforms, its relatively straightforward implementation (Mullins et al., 2014), its
reproducibility (Bogner et al., 2010; Brix et al., 2017; Geramita et al., 2011; Mikkelsen et
al., 2016a; Near et al., 2014; O’Gorman et al., 2011; Shungu et al., 2016) and continued
development of acquisition methodology and data processing tools (Chan et al., 2016; Edden
etal., 2014).

However, despite these positive attributes, the diversity of implementations of MEGA-
PRESS across research sites and vendors has meant that comparing data between different
studies is difficult. For instance, pulse sequence parameters, and in particular pulse timings,
differ between vendor-specific PRESS sequences and lead to subtle but important
differences in the resolved GABA signal (Near et al., 2013b). Moreover, spectral editing of
GABA is associated with a number of complexities, including TE-dependent Jevolution of
the GABA spin system (Edden et al., 2012b), frequency and spatial effects of volume
localization (Edden and Barker, 2007; Kaiser et al., 2008), sensitivity to B, field frequency
offsets (Edden et al., 2016; Harris et al., 2014) and contamination from co-edited
macromolecules (MM) (Henry et al., 2001; Rothman et al., 1993). It is generally assumed

Neuroimage. Author manuscript; available in PMC 2018 October 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Mikkelsen et al.

Page 3

that these factors limit the degree to which a GABA-edited measurement from one site can
be compared to another at a different site.

In order to establish the extent to which site-, sequence- and vendor-specific differences
impact quantitative MEGA-PRESS measurement outcomes, a multi-vendor, multi-site
dataset has been assembled by an international consortium of GABA-edited MRS users. The
consortium was formed with the aim of building a normative database of MEGA-PRESS
data acquired on the major MRI scanner platforms at a range of imaging centers focused on
neuroscience research. This dataset aims to capture some of the diversity of the sequences
used, but within the framework of a standardized study design and acquisition protocol that
would reflect typical MEGA-PRESS parameters. This approach reduced the number of
confounding variables present within the dataset (e.g., standardizing key parameters such as
TE, TR and editing pulse bandwidth), while maintaining diversity at the level of pulse
sequence implementation (e.g., localization pulse waveforms/bandwidths, pulse timings and
crusher gradient schemes).

This paper presents initial results from this multi-site study, focusing on how variance in
creatine-referenced GABA measurements was distributed across research sites and scanner
vendors and examining the influence of various acquisition- and participant-related effects.
Given the complexity of this dataset, it is not possible to report on all aspects of the project
in a single article, so for example, water-referenced quantification (including tissue-
dependent correction factors) and site-to-site differences in voxel placement fidelity and
segmentation will be presented in a future report.

2. Methods

2.1 Data collection

A consortium of 24 research institutions based in nine countries participated in this
initiative, with each site contributing 5-12 datasets collected from consenting adult
volunteers. Specific guidelines for each site’s participant cohort were: 18-35 years old;
approximately 50:50 female/male split; no known neurological or psychiatric illness. In
total, data from 272 participants were collected. Participant demographics are provided in
Table 1. Scanning was conducted in accordance with ethical standards set by the institutional
review board (IRB) at each site, including the sharing of anonymized data. Anonymized data
files were shared securely with and analyzed by consortium members at the Johns Hopkins
University School of Medicine with local IRB approval.

2.2 Data acquisition

Each site acquired MEGA-PRESS data on a 3 T scanner by following a standard scan
protocol as closely as possible. Eight sites used GE scanners, nine used Philips scanners and
seven used Siemens scanners, with locally available phased-array head coils (see Table 2).
Two MRS acquisitions were run: a standard GABA+-edited acquisition where ON editing
pulses were placed at 1.9 ppm and OFF editing pulses were placed at 7.46 ppm; and an MM-
suppressed GABA-edited acquisition where the editing pulses were placed symmetrically
about the MM resonance at 1.7 ppm (ON/OFF = 1.9/1.5 ppm) (Henry et al., 2001). GE site 6
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(G6) did not acquire MM-suppressed data. For the sequences used in this study, GE and
Philips editing pulse offsets are calculated assuming a water frequency of 4.68 ppm and
Siemens assumes 4.7 ppm. Given that GABA editing involves the use of frequency-selective
editing pulses, their inversion frequency bandwidth has a significant impact on editing
efficiency, determining the extent of MM co-editing in GABA+ acquisitions and the extent
of GABA nulling in symmetric MM suppression (see Edden et al., 2016; Harris et al., 2014;
Terpstra et al., 2002). For GE and Philips implementations where editing pulse duration is
specified, editing pulse duration was set to 15 ms for the GABA+ acquisition and 20 ms for
the MM-suppressed GABA acquisition. This equated to inversion bandwidths at full-width
half-maximum (FWHM) of 81.7/82.5 Hz (GE/Philips) for the GABA+ acquisition and
61.3/61.9 Hz (GE/Philips) for the MM-suppressed GABA acquisition. For Siemens
implementations, where the editing pulse bandwidth specified on the scanner does not
correspond to the FWHM bandwidth (Lange et al., 2016), FWHM bandwidths were 82.4 Hz
for the GABA+ acquisition and 61.8 Hz for the MM-suppressed GABA acquisition. The TE
of the GABA+ acquisition was set to 68 ms. For the MM-suppressed acquisition, the TE was
set to 80 ms on the GE and Philips platforms (Edden et al., 2012c) and to 68 ms on the
Siemens platform. The higher peak B; on some Siemens platforms makes the more selective
editing pulses possible without increasing the TE. For one Siemens site (S2), the TE of the
MM-suppressed acquisition was increased to 80 ms due to limited peak B;. Representative
vendor-specific MEGA-PRESS pulse sequence diagrams (at TE = 68 ms) are shown in Fig.
1A. Parameters common between the two acquisitions included: TR = 2000 ms; 320
averages (i.e., 160 ON and 160 OFF transients); ~10 min scan time. Although the spectral
width and number of discrete data points differed from site to site (see Table 2), in all cases
the aim was to achieve a data acquisition time of ~1 s. All Philips sites except P8 addressed
B, field offsets with prospective frequency correction based on interleaved water referencing
(Edden et al., 2016). Specifically, for every 40 water-suppressed acquisitions, a water-
unsuppressed acquisition was performed and used to correct the center frequency in real-
time. This method was only available on the Philips platform at the time of data collection.
Details of By shimming approaches are provided in Table 2. All three vendors use a volume-
localized acquisition for center frequency calibration. They differ somewhat in terms of
localization method (e.g., STEAM on Siemens and semi-LASER on Philips) and acquisition
resolution; both GE and Philips suppress fat signals to make algorithmic determination of
center frequency more robust. GE data were saved in P-file format, Philips data were saved
in SDAT/SPAR format and Siemens data were saved in TWIX format.

All MEGA-PRESS data were acquired from a 30 x 30 x 30 mm3 voxel placed in the medial
parietal lobe (Fig. 1B). All sites followed the same protocol, using a guideline image, for
voxel placement. Briefly, the voxel was rotated in the sagittal plane to align it with a line
connecting the genu and splenium of the corpus callosum. Each site was instructed to
comply with the standardized protocol, but also to avoid ventricles and/or the outer surfaces
of the brain when necessary to ensure good data quality.

2.3 Data processing

Data from each site were processed in Gannet (Edden et al., 2014) using the software’s
automated analysis pipeline with some in-house customization for this study. Raw time-

Neuroimage. Author manuscript; available in PMC 2018 October 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Mikkelsen et al.

Page 5

domain data were first corrected for frequency and phase errors by spectral registration
(Near et al., 2015) using the transient 10% into the acquisition (i.e., the 32" transient) as a
reference. ON/OFF transient pairs were rejected from further processing if either of their
corresponding frequency/phase offset estimates were greater than 3 standard deviations
(SDs) from the mean of frequency/phase offset estimates for all pre-corrected transients. A
threshold of 3 SDs corresponds to 99.7% of (normally distributed) frequency/phase
estimates. ON/OFF transient pairs exceeding this threshold would be expected to introduce
more uncertainty into the data (Waddell et al., 2007) and were therefore removed. The data
were then filtered using a 3-Hz exponential weighting function and zero-filled so as to yield
a nominal spectral resolution of 0.061 Hz/point upon fast Fourier transformation. Individual
ON and OFF subspectra were then averaged and subtracted to produce the edited difference
(DIFF) spectrum.

Data were visually inspected for spectral artifacts, specifically lipid contamination,
subtraction errors and a non-constant baseline. Individual datasets were rejected if the signal
fitting routine (details below) was compromised. For instance, significant lipid
contamination can distort the baseline around the 3.0 ppm GABA signal, such that the
modeling algorithm converges on a clearly incorrect solution. In such cases, the data were
removed from further analysis. Quantitative data quality metrics were also measured,
including N-acetylaspartate (NAA) and GABA signal-to-noise ratios (SNR), linewidth and

average center frequency offset A5,. SNR estimates were measured as the amplitude of the
given modeled signal (either NAA in the averaged OFF spectrum, fit with a Lorentzian
function, or GABA in the DIFF spectrum) divided by twice the SD of the noise signal.
Estimating noise using a consistent methodology across the whole dataset proved
surprisingly challenging. Examination of the downfield portion (> 8 ppm) of the frequency-
domain data revealed signal artifacts in some datasets, likely a result of suboptimal water
suppression. Therefore, the following algorithm was employed to estimate artifact-free
noise. First, two independent segments of the OFF or DIFF spectrum, 10-11 ppm and 11-12
ppm, were detrended using a second-order polynomial function and the SD of each
detrended segment was then calculated. Detrending is required to remove baseline artifacts
(often related to the water signal). The lesser of the two residuals was assumed to be the
better estimate of noise in each spectrum. The NAA and GABA signal amplitudes were then
divided by twice the respective SD of noise. This approach ensured that variations in
baseline and signal-related artifacts did not bias SNR measurements. Linewidth was
measured as the FWHM of the modeled NAA signal. A5, was calculated as the mean (over
the course of the acquisition) difference between the observed frequency of the residual
water signal in the pre-frequency-corrected subspectra and the nominal water frequency at
80 4.68 ppm. It should be noted that using the mean of offset differences does not fully
characterize center frequency offsets but is a useful heuristic.

2.4 Quantification

The DIFF spectrum was modeled between 2.79 and 4.10 ppm with a three-Gaussian
function with a nonlinear baseline to quantify the 3.0 ppm GABA signal and 3.75 ppm
glutamate + glutamine (GIx) signals using nonlinear least-squares fitting. The OFF spectrum
was modeled between 2.6 and 3.6 ppm with a two-Lorentzian model to quantify creatine
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(Cr) as an internal reference signal. GABA measurements derived from the GABA+ and
MM-suppressed GABA acquisitions were quantified as signal integral ratios: /gagal//cr,
where Igapa is the integral of the modeled 3.0 ppm GABA signal and /¢, is the integral of
the modeled 3.0 ppm Cr signal. No signal scaling factors were applied. Measurements are
denoted GABA+/Cr and MM-suppressed GABA/Cr. Fit quality for each model (egaga, €cr)
was assessed by normalizing the SD of the model residuals to the amplitude of the respective
modeled signal. For GABA, the residuals were limited to the frequency range between 2.79

and 3.55 ppm. Overall fit error was then defined as \/¢2 ., +€2. .

2.5 Statistical analysis

The data had a nested structure. That is, each participant was scanned at one site and each
site had a scanner manufactured by one of the three vendors. Therefore, a multilevel model
(Hayes, 2006; Peugh, 2010; Snijders and Bosker, 2012) was used for the primary statistical
analysis. This approach involves the use of a linear mixed-effects model, an extension of the
well-known general linear model, but one which explicitly takes into account systematic
effects ascribed to the hierarchical structure of data.

The principal aim of this study was to examine vendor-, site- and participant-related effects
on measurement outcomes of GABA-edited MRS. This was achieved by fitting a three-level
unconditional linear mixed-effects model to the GABA+ and MM-suppressed GABA data:

Yip=DLoFvor+sojk+Pigk  [1]

v, ~ N (0, 030)

sojr ~ N(0, o)

Dijk ~ N(07U§)

where yjj is the observed GABA measurement for participant /at site jon a scanner
manufactured by vendor &, Bg is the model intercept (the grand mean), vy is the level-3
random effect of vendor, spj is the level-2 random effect of site and pj is the level-1
random effect of participant (the residual error). The random effects are assumed to follow a
normal distribution with zero mean and constant variance. Since the total variance in the
model is equal to the sum of the variance attributed to the three effects, it follows that
vendor-, site- and participant-level variance partition coefficients (VPCs) can be respectively
calculated as:
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Tvz(fgo/(ago‘f'azo‘f'ag) [2]

Tszggo/(030+030+012;) [3]

szag/(ggo+ggo+05) [4]

Each VPC represents the proportion of total variance in the data accounted for by the
specific random effect in the model (Goldstein et al., 2002), in this case, vendor, site and
participant.

Secondary multilevel analyses were also performed where fixed effects (predictors) were
tested to account for variance attributed to acquisition- and participant-related effects. In this
study, the effects of linewidth, NAA SNR, A5, age and sex on GABA measurement
outcome were tested. Such a conditional model with a single predictor is formulated as:

Yijk=Po+vor+sojk+(Brtvintsiik)Trintpir  [5]

Pijk ~ N(Ovoﬁ)

This model includes an explanatory variable (x jx) With a grand mean slope (1) and by-
vendor and by-site random intercepts (Lo Soj) and random slopes (V14 Sijx)- At the vendor
level, the random effects 1y, and v 4 are assumed to follow a bivariate normal distribution

with zero means, variances %, and o2, and covariance oo1. The covariance denotes the
correlation between the predictor slopes and intercepts. The same definitions apply to the

site-level parameters Sy, S1jk 04, o2, and asoz. In this model, both the by-vendor and by-
site intercepts and slopes of the explanatory variable are allowed to vary across each level.
This “maximal” approach has been shown to reduce Type | error rates in linear mixed-
effects models (Barr et al., 2013).
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Linear mixed-effects models were fit in R (version 3.3.3; R Core Team, 2017) using the
Ime4 package (Bates et al., 2015) and maximum likelihood for model estimation. The
outcome and continuous explanatory variables were standardized (by ztransformation) to
aid model convergence and interpretability of model parameter estimates (Schielzeth, 2010).
Goodness-of-fit was calculated as a log-likelihood statistic (=2/ogL). To test for significant
random or fixed effects, chi-square likelihood ratio tests were performed by comparing the
log-likelihood statistic of one model to that of a reduced model (i.e., a model excluding the
random or fixed effect of interest). Likelihood ratio tests were bootstrapped 2,000 times
using a parametric bootstrap method (Halekoh and Hgjsgaard, 2014). If an effect was
significant, it was retained in the next assessed model; if not, it was removed. Specifically,
the effects of vendor and site were tested first, the effects of acquisition-related variables

(linewidth, NAA SNR, ‘A5,) were tested second and the effects of participant-related
variables (age, sex) were tested last.

A Pearson correlation coefficient was calculated to test the relationship between
participants’ GABA+/Cr and MM-suppressed GABA/Cr values. This was done by using the
residuals of the respective linear mixed-effects model that included only the effects that
accounted for a significant amount of variance in either dataset. To illustrate the importance
of accounting for systematic effects in the data, a correlational test was also conducted on
the raw GABA+/Cr and MM-suppressed GABA/Cr values. The correlations were
bootstrapped 10,000 times to produce 95% confidence intervals (CIs) using the bias-
corrected and accelerated nonparametric bootstrap method (DiCiccio and Efron, 1996). For
all inferential statistical tests, a p-value less than 0.05 was considered significant.
Corrections for multiple comparisons were not applied.

3. Results

GABA-edited MRS data were successfully acquired at all 24 sites. Following quality control
analysis, seven GABA+ and 19 MM-suppressed GABA datasets (3% and 7% of the total
collected data for either acquisition, respectively) were removed from further analysis. All
MM- suppressed GABA data from site G3 were excluded as consistent, excessive center
frequency offsets (approximately —0.1 ppm on average) resulted in extremely small or
absent GABA signals. Fig. 2 shows the mean + 1 SD GABA+ and MM-suppressed GABA
DIFF spectra for each vendor. Examples of the GABA+GIx signal fitting on individual
acquisitions are provided in Fig. S1. Distinctive edited GABA peak lineshapes were seen for
each vendor, likely a consequence of the different implementations of the MEGA-PRESS
sequences between each vendor (Near et al., 2013b). GABA+/Cr and MM-suppressed
GABA/Cr values, broken down by site and by vendor, are shown in Fig. 3. Mean + 1 SD
GABA+/Cr values were 0.123 + 0.014 for GE, 0.111 £ 0.013 for Philips and 0.116 + 0.012
for Siemens. Across all sites and vendors, GABA+/Cr was 0.116 + 0.014. Coefficients of
variation (CVs) were 11.5%, 11.6%, and 10.7% for GE, Philips and Siemens, and 12.0%
across all vendors. The mean within-site CV was 9.5%. Mean MM-suppressed GABA/Cr
values (and CVs) were 0.043 £ 0.013 (29.6%) for GE, 0.044 £ 0.014 (30.7%) for Philips and
0.041 £ 0.007 (17.3%) for Siemens, and 0.043 + 0.012 (27.6%) across all sites and vendors.
The mean within-site CV was 18.8%. The average ratio between MM-suppressed GABA/Cr
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and GABA+/Cr was 0.38 + 0.11. Site-level GABA+/Cr and MM-suppressed GABA/Cr
values are listed in Table 3.

Fig. 4 shows the distribution of data quality metrics, by site and by vendor, with numerical
values also included in Table 3. Mean vendor fit error ranged from 5-6% for GABA+
editing and 7-9% for MM-suppressed GABA editing (Fig. 4A). NAA linewidth was within
acceptable ranges for 3 T MRS, and approximately equal between the two edited
acquisitions (overall: 8.10 Hz [GABA+] vs. 8.07 Hz [MM-suppressed GABA]) (Fig. 4B).
The Philips data, however, showed lower linewidths on average over both acquisitions (7.73
Hz) compared to the GE (8.56 Hz; pairwise comparison: 0 < 0.001) and Siemens (8.09 Hz;
pairwise comparison: p< 0.01) data. NAA SNR estimates were also consistent across
acquisition type (overall: 447 [GABA+] vs. 439 [MM-suppressed GABA]), though some
sites’ data exhibited relatively higher SNR values (Fig. 4C). This was most likely driven by
differences in RF coil hardware. GABA SNR estimates were mostly consistent within
acquisition type (Fig. 4D), with site-to-site variability tending to match the site-to-site
variability in NAA SNR estimates. Average frequency offset A5, varied to a degree across
sites, with all Philips sites except P8 having relatively low offset due to the employment of
frequency correction during data acquisition (Fig. 4E). As can be seen in Figs. 5A and S2A,
the pattern of center frequency offset during acquisition was dominated by random effects
and linear drift. In the case of Philips sites, there were additional regular corrections due to
real-time center frequency updates. Occasional step-changes or spikes were observed due to
participant motion, but these were relatively minor features. The median within-participant
standard deviation of estimated phase offsets (averaged across acquisition type) was 2.74
degrees (GE), 1.09 degrees (Philips) and 5.93 degrees (Siemens).

3.1 Multilevel analyses

Summaries of the linear mixed-effects models for the GABA+ and MM-suppressed GABA
data are given in Tables S1 and S2. The initial unconditional multilevel analysis revealed
significant effects of vendor [x (1) = 2.95, fhoot = 0.02] and site [x2(1) = 27.93, oot <
0.001] on GABA+/Cr measurements. For the MM-suppressed GABA data, site effects were
significant [x2(1) = 111.49, pyoot = 0.001] but vendor effects were not [y2(1) < 0.1, Ayoot =
0.60]. The nonsignificant effect of vendor can be better understood by noticing that there
was a strong overlap of the vendor-level distributions of MM-suppressed GABA/Cr as
shown in Fig. 3B. Consequently, the vendor-level random effect was removed from
subsequent models with the MM-suppressed data to simplify model fitting. The variance
partition coefficients (VPCs) for the unconditional model of the GABA+ dataset showed that
out of the total variance, 8.2% was attributed to vendor-level differences, 19.7% was
attributed to site-level differences and 72.1% was attributed to participant-level differences.
In the MM-suppressed GABA data, 50.4% of the total variance was attributed to site-level
differences and 49.6% was attributed to participant-level differences.

Results of the secondary multilevel analyses showed no significant effects of linewidth or
NAA SNR on GABA+/Cr [x2(5) = 3.30, oot = 0.31 and x2(5) = 0.25, phoot = 0.95,
respectively] or on MM-suppressed GABA/Cr [XZ(S) = 0.08, Pyoot = 0.98 and X2(3) =5.32,

Pooot = 0.10, respectively]. Average frequency offset A5, was, however, significantly
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associated with both GABA+/Cr [X2(5) =11.72, Phoot = 0.005] and MM-suppressed
GABA/Cr [X2(3) =44.31, Phoot <0.001] measurements. Of the variance remaining after
accounting for site and vendor effects, A, accounted for 4.0% of variance in the GABA+
data and 21.0% of variance in the MM-suppressed GABA data. The association between
Ad, and MM-suppressed GABA/Cr is shown in Fig. 5. By-site regression lines are
consistent across sites and vendor, indicating a robust relationship. The same plot for GABA
+/Cr is shown in Fig. S2.

Finally, the effects of age and sex on GABA measurement outcome were examined, after
adjusting for A5, but no significant effects on either GABA+/Cr [age: X2(7) =3.52, Phoot =
0.31; sex: x2(7) = 0.37, Phoot = 0.95] or MM-suppressed GABA/Cr [age: x2(4) = 3.21, Phoot
=0.33; sex: x2(4) = 3.87, Phoot = 0.24] were observed.

3.2 Correlational analysis

A correlational analysis of the residuals of the linear mixed-models including A5, as a
predictor showed that GABA+/Cr and MM-suppressed GABA/Cr were significantly
correlated (r=0.25, 95% CI: [0.15, 0.35], p< 0.001) (Fig. 6). Specifically, the shared
variance between the two measurements, after adjusting for site, vendor and frequency offset
effects, amounted to 6.3%.

4. Discussion

This is the largest multi-site study to date applying GABA-edited MRS in the human brain.

The aims at the outset were to establish the extent to which GABA-edited measurements are
influenced by site-, sequence- and vendor-specific differences, and to investigate sources of
observed variance. Overall, the major findings can be summarized as follows:

1. The agreement between GABA+ values was surprisingly good, with whole-
dataset CV (12%) not much higher than the mean within-site CV (10%),
although site and vendor both contributed significantly to total variance.

2. Agreement between MM-suppressed GABA values was less good than GABA+,
with much higher whole-dataset (28%) and mean within-site (19%) CVs. The
amount of absolute variance in the MM-suppressed GABA data was, however,
similar to the GABA+ data.

3. Average center frequency offset was a significant factor in both experiments,
explaining a greater percentage of variance in the MM-suppressed experiment
(21%) than in the GABA+ experiment (4%) after accounting for variance
attributed to site and vendor effects.

The level of agreement between GABA+ measurement outcomes was better than
anticipated. The whole-dataset CV reported in this study falls well within the range of inter-
individual CVs observed for edited GABA+ measurements in the literature: 6-24% (Bogner
etal., 2010; Evans et al., 2010; Geramita et al., 2011; Long et al., 2015; Mikkelsen et al.,
2016a; O’Gorman et al., 2011). That a majority of the total variance in the data was
participant-level variance indicates that initial steps taken to standardize acquisition

Neuroimage. Author manuscript; available in PMC 2018 October 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Mikkelsen et al.

Page 11

parameters across vendors (most notably TR, TE and editing pulse bandwidth) were largely
successful. The dominant proportion of variance attributed to within-site (i.e., between-
participant) variability may in large part reflect a greater level of experience with the GABA
+-edited acquisition across all platforms and greater success in standardizing the acquisitions
(as well as a greater inherent robustness of this sequence to minor differences such as By
field offsets).

The protocols used in this study may be considered as a standard, with the currently
published data serving as a benchmark for sites applying GABA-edited MRS. Although the
majority of sites within-vendor used the same pulse sequence, there were differences. One
GE site (G1) used a different MEGA-PRESS implementation to the others, and had the
lowest average GABA+ and highest average MM-suppressed GABA values. One Philips site
did not use prospective frequency correction (P8), and gave the lowest average GABA+
values and highest average MM-suppressed GABA values. Two Siemens sites had locally
modified sequences (compared to the rest), and one of these (S7) had the highest average
GABA+ values. Thus, even small differences in sequence implementation seem to be
enough to differentiate sites from the group. Further efforts to standardize sequence timings
and editing pulse shapes within and between vendors would be expected to reduce vendor-
and site-level variance. At this stage, both GE and Siemens have vendor-distributed research
sequences in place, using proprietary RF pulse shapes, so this further standardization is a
challenge to be taken up by the edited MRS community.

At this stage, it is clear that the MM suppression methodology is less consistent than the
GABA+ method, with higher rates of data rejection (19 MM-suppressed GABA datasets vs.
seven GABA+ datasets) and greater relative variance. One major contributor of variance that
has been identified is frequency offset, with the data reproducing the approximately linear
relationship observed by Edden et al. (2016). The ratio between MM-suppressed GABA and
GABA+ measurements (0.38) is lower than expected. Typically, it is assumed that ~50% of
the GABA+ signal is GABA (Harris et al., 2015a; Mikkelsen et al., 2016a; Shungu et al.,
2016). This is largely explained by differential 75 relaxation between GABA signal at TE =
68 ms and TE = 80 ms (13% edited signal loss based on a 7, of 88 ms (Edden et al., 2012b))
and artificially reduced “MM-suppressed GABA” values due to negative MM co-editing

(~5% edited signal loss due to mean A, of —0.005 ppm (see Edden et al., 2016)). The
fraction of GABA+ signal that is MM will depend on the bandwidth of the editing pulse
used, as will GABA signal losses in the MM-suppressed experiment. While differences in
TE between vendors in the MM-suppressed acquisition added a level of methodological
heterogeneity, the multilevel analysis did not consider vendor-level effects in the MM-
suppressed data to be of statistical importance, in line with previous findings of a minimal
effect of TE on the edited GABA signal between 68 and 80 ms (Edden et al., 2012c;
Mikkelsen et al., 2016a). These data provide further evidence to support the
recommendation of prospective frequency correction for MM-suppressed GABA-edited
acquisitions (Edden et al., 2016). For most applications, it is more important that MM
suppression removes MM-related variance, rather than MM signal per se. The greater
variance in the MM-suppressed GABA results may also explain the weak correlation
between GABA+/Cr and MM-suppressed GABA/Cr to some degree (although the statistical

Neuroimage. Author manuscript; available in PMC 2018 October 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Mikkelsen et al.

Page 12

modeling approach used, which removes, e.g., site-level variance in the measures, is
relatively conservative and will remove some real biologically driven variance).

One important strength of this dataset, in support of edited MRS of GABA, is the fact that,
even over so large a dataset as this, there was no significant relationship between GABA
measurements and independent metrics of data quality, such as NAA SNR and linewidth.
Thus, even though the data quality metrics did vary site-to-site to some degree, tolerable
levels (in the sense of not impacting GABA measurements) were achieved at all sites.
However, it is acknowledged that these data were homogeneously acquired from a large
voxel in a brain region where relatively favorable linewidth and SNR can be achieved. In
contrast, associations between metabolite measurements, or their uncertainty, and SNR
and/or linewidth are widely observed in investigations of linear combination modeling of
unedited spectra (Bartha et al., 2007; Kanowski et al., 2004; Near et al., 2013a). With
spectral editing, the goal is to attain an unambiguously resolved signal that allows for simple
peak fitting and integration (Bogner et al., 2016; Harris et al., 2017), but with (short-TE)
unedited spectra quantification is based on linear-combination fitting, the outcome of which
depends on the degree of orthogonality of the basis-set, which itself depends on data quality
(Graveron-Demilly, 2014). Although edited MRS of lower-concentration metabolites
typically necessitates comparatively longer scan durations or larger voxels to achieve
reasonable SNR, the advent of multiplexed editing (Chan et al., 2016, 2017a, 2017b;
Oeltzschner et al., 2017; Saleh et al., 2016) and development of edited MRSI (Bogner et al.,
2014; Hnilicova et al., 2016; Zhu et al., 2011) continues to improve the efficiency of spectral
editing approaches.

A number of multi-site MRS studies have been conducted in the past, each with a specific
focus. These focuses have included: unedited, short-TE MRS (Deelchand et al., 2015); low-
field MRS (Tréber et al., 2006); ultra-high field MRS (van de Bank, 2015); absolute
quantification (Bovée et al., 1998; De Beer et al., 1998; Keevil et al., 1998; Soher et al.,
1996); MRSI (Sabati et al., 2015; Wijnen et al., 2010); body MRS (Bolan et al., 2016;
Scheenen et al., 2011); brain tumor classification (Garcia-Gomez et al., 2009; Julia-Sapé et
al., 2006; Tate et al., 2003; Vicente et al., 2013); and HIV-associated dementia (Chang et al.,
2004; Lee et al., 2003; Sacktor et al., 2005). Even for short-TE methods, the degree of
agreement between sites and scanners is highly dependent on the degree of acquisition
homogeneity.

Edited MRS of GABA has a number of limitations, which are not directly addressed in this
paper. The fact that MM-suppressed GABA measurements are so susceptible to 5 field
changes resulting from scanner drift and participant head motion means that GABA+ is still
the most widely used edited GABA measure, in spite of the ~50% MM contribution.
However, measures of GABA that effectively remove the MM contamination would have
clearer biochemical significance than GABA+ measurements, and this paper establishes the
importance of future research dedicated to obtaining MM-suppressed GABA measures with
less sensitivity to B field offsets. The application of MM suppression is strongly motivated
by the desire to remove MM-related variance, and further development to improve the
robustness of MM suppression remains important. Even without this MM contamination, the
interpretation of MRS measures of total GABA concentration is complex — and the extent to
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which it is an index of GABAergic neurotransmission (beyond simply being a marker of
GABAergic interneuron cell density) is the subject of ongoing debate (Myers et al., 2016;
Rae, 2014; Stagg et al., 2011). This paper also does not explore the complexities of GABA
quantification by tissue water-referencing, a popular alternative to Cr-referencing.
Additional aspects of water-referenced quantification (such as site-to-site segmentation
differences) will contribute to the variability of water-referenced GABA measurements
across vendors, research sites and individuals (e.g., see Gasparovic et al., 2006; Harris et al.,
2015b; Mikkelsen et al., 2016b).

In conclusion, an international consortium collected a large dataset of GABA-edited MRS
measurements, the first study of this size for in vivo MRS of GABA. These data support the
use of GABA-edited MRS for multi-site, multi-vendor studies, with site and vendor
contributing a surprisingly small amount of total variance to GABA+ measurements.
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Fig. 1.

(A) Pulse sequence diagrams of vendor-specific implementations of MEGA-PRESS at TE =
68 ms. Pulse timings, including TEL/TE2, are indicated. The GE implementation employed
a crusher gradient scheme based on the BASING sequence (Star-Lack et al., 1997). The
Philips implementation employed non-sinc-based amplitude-modulated refocusing pulses. In
the Siemens implementation, the timing between the first and second editing pulse deviates
from the optimal TE/2. This slight deviation leads to the GABA signal in the ON scan being
nearly, but not fully, refocused. (B) Example MRS voxel placement in the medial parietal
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lobe of one participant. At each research site, the voxel was rotated in the sagittal plane to be
parallel with a line connecting the genu and splenium of the corpus callosum.
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Fig. 2.

Vegndor-mean GABA-edited DIFF spectra acquired by (A) GABA+ editing and (B) MM-
suppressed GABA editing. The grey patches represent £ 1 SD. The associated sample sizes
are shown in parentheses. Each individual DIFF spectrum was normalized to the amplitude
of an unsuppressed water signal prior to averaging. The larger SD of the residual water
signal (4.68 ppm) is in part a result of inconsistent water suppression (both between
individual acquisitions and shot-to-shot) during the MEGA-PRESS experiment. The use of
MOIST water suppression by some Philips sites also contributed to the larger SD in the
mean Philips spectra.
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(A) GABA+/Cr and (B) MM-suppressed GABA/Cr measurements, displayed by site and by
vendor. The boxes shaded with lighter colors represent +1 SD and the darker boxes represent
the 95% CI. The solid white lines denote the mean, while the dashed white lines denote the
median. Sites are colored by vendor (GE sites in green, Philips sites in orange, Siemens sites

in blue).
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Fig. 4.

Quantitative quality metrics for the GABA+ (left column) and MM-suppressed GABA (right
column) data, displayed by site and by vendor. Metrics are: (A) fit error; (B) NAA linewidth;
(C) NAA SNR; (D) GABA SNR; and (E) average frequency offset A5,. The boxes shaded
with lighter colors represent +1 SD and the darker boxes represent the 95% CI. The solid
white lines denote the mean, while the dashed white lines denote the median. Sites are
colored by vendor (GE sites in green, Philips sites in orange, Siemens sites blue). The
asterisks in C and D denote sites with “unusual” transmit/receive RF hardware for the given
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vendor: sites P4, P7 and P8 had fully digital broadband RF hardware; sites S3, S4 and S5
used 20-64- and 12-channel head coils, respectively. Note that site S7°s NAA and GABA
SNR estimates in C and D are transparent to highlight that the estimation of noise signal in
these data was unreliable. For the Siemens data, the noise in the up- and downfield
frequency ends of the spectrum was attenuated. Since site S7 acquired data with a spectral
width shorter than the other Siemens sites (—3.5-13 ppm), the attenuated noise led to
upward-biased SNR values.
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(A) B, field changes during the MM-suppressed GABA editing experiment. The observed
frequency of the residual water signal in each subspectrum is plotted against the scan
number over the course of the acquisition (320 averages, ~10 min). Data from all
participants are overlaid (separated by vendor). The dashed black lines represent the nominal
water frequency (4.68 ppm). (B) Scatterplot illustrating the relationship between average

frequency offset A5, and MM-suppressed GABA/Cr as determined by the linear mixed-
effects model. Individual measurements are color-coded by vendor (GE in green, Philips in
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orange, Siemens in blue). The black regression line shows the relationship between A, and

MM-suppressed GABAJ/Cr over the entire dataset. Additional color-coded regression lines
are shown for each site.
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Fig. 6.
Scatterplots illustrating the relationship between GABA+/Cr and MM-suppressed GABA/Cr
using (A) raw values and (B) residuals of the linear mixed-effects models after adjusting for

systematic effects of vendor, site and A5,. The Pearson correlation coefficients and p-values
are shown, as are the 95% Cls of the coefficients.
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Table 1

Participant demographics, displayed by site and by vendor.

Site ID Sample size  Age (years) (mean + SD)  Sex (F/M)
Gl 12 23.92+4.81 7/5
G2 12 26.83 +4.00 6/6
G3 7 23.43+£5.47 2/5
G4 12 25.58 +4.48 6/6
G5 12 2550 £ 3.73 5/7
G6 12 24.33+4.25 6/6
G7 12 28.08 +£4.01 6/6
G8 12 29.67 £2.10 6/6
All GE 91 26.05 +4.43 44/47
P1 12 25.08 +£3.23 6/6
P2 12 28.75+£3.91 1072
P3 12 29.25+3.14 5/7
P4 12 2492 +4.29 7/5
P5 8 23.13+2.36 3/5
P6 12 27.33+£3.68 7/5
P7 12 23.58 £3.73 6/6
P8 12 23.25+1.96 5/7
P9 12 25.83+4.61 6/6
All Philips 104 25.78 £ 4.06 55/49
S1 12 25.67 £ 3.65 6/6
S2 5 40.40 £ 7.44 0/5
S3 12 31.58 £ 3.42 9/3
S4 12 27.67x£2.77 6/6
S5 12 26.50 + 3.68 6/6
S6 12 24,92 £2.02 6/6
S7 12 28.75+£3.77 6/6
All Siemens 77 28.35+5.21 39/38
Overall 272 26.60 + 4.65 138/134
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