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Abstract

Melanoma is the most aggressive form of skin cancer and incidences continue to rise 

worldwide. 18F-FDG PET imaging has transformed diagnostic nuclear medicine and become an 

essential component in the management of melanoma, but still has its drawbacks. With the rapid 

growth in the field of nuclear medicine and molecular imaging, a variety of promising probes that 

enable early diagnosis and detection of melanoma have been developed. The substantial 

preclinical success of melanin- and peptide-based probes has recently resulted in translation of 

several radiotracers to clinical settings for noninvasive imaging and/or treatment of melanoma in 

human patients. In this review, we have focused on the latest developments in radiolabelled 

molecular imaging probes for melanoma in preclinical and clinical settings and discussed the 

challenges and opportunities for future development.
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1. Introduction

Although melanoma accounts for a small percentage of all skin cancer cases, it is estimated 

that melanoma accounted for 76,380 new cases and 10,130 deaths in the United States in 

2016 [1]. Unsatisfactory 5-year survival rates for patients with distant metastases (less than 
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10%) render early detection and accurate assessment of metastatic melanoma crucial for 

improved outcome and disease-free survival [2]. With the gradual increase in understanding 

of the molecular pathogenesis of melanoma, the treatment landscape for advanced 

melanoma has changed markedly during the past 10 years. Novel agents such as 

molecularly-targeted therapies specifically inhibiting carcinogenic pathways and 

immunotherapies augmenting the antitumor immunity have emerged as new standards of 

care for patients with melanoma [3].

As elegantly reviewed by Wong et al, 18F-fluorodeoxyglucose (FDG) positron emission 

tomography (PET) could play a pivotal role in the interpretation of therapeutic response 

following BRAF inhibition and immunotherapy in patients with melanoma, facilitating early 

assessment of drug resistance and detection of life-threatening autoimmune side effects 

[4]. 18F-FDG PET was also recommended for staging and detecting recurrent melanoma [5, 

6]. However, since 18F-FDG PET monitors cellular metabolism and immunotherapy elicits a 

natural inflammatory response, traditional PET imaging using 18F-FDG has proven 

inadequate in examining responses to immunotherapy in certain cancer types [7]. Moreover, 

owing to increased glucose metabolism in inflammatory tissues, 18F-FDG displays relatively 

poor selectivity for distinguishing tumor from inflammatory tissue. Importantly, in one 

study, 18F-FDG PET failed to detect melanoma in patients showing a positive sentinel lymph 

node biopsy for cancer, and no recurrent melanoma occurred where the 18F-FDG PET scans 

were positive or suspicious [8]. 18F-FDG PET scans also failed to detect pulmonary and 

brain metastases, indicating its limited value when staging patients with more advanced 

melanoma [9]. Currently, gadolinium-enhanced MRI is the most sensitive and reproducible 

method available to measure brain metastases or to assess treatment response [10, 11].

In the era of precision medicine and molecular imaging [12], many radiolabeled probes for 

imaging different molecular targets or biochemical processes have been designed and 

evaluated for melanoma imaging. Although clinically-available 111In-DOTA-lanreotide 

and 111In-DOTA-Tyr3-octreotide may image melanoma, the detection rates may not meet 

the clinical requirement and their mechanisms remain unknown [13]. In the past, we and 

others organized reviews regarding anatomical and molecular imaging of skin cancer [14, 

15]; since then, substantial amounts of molecular imaging probes for melanoma have been 

developed. Although nanoparticle-based multimodality imaging systems have been 

intensively applied to melanoma detection and therapy, it is beyond the scope of our current 

paper. Therefore, with an emphasis on the small molecule- and peptide- based PET imaging 

probes, we aim to systematically review the recent advances in the field and extend an 

outlook on future development. Given the multidisciplinary nature of this field, our present 

review is by no means exhaustive, but we intend to summarize the most recent advances for 

scientists to further refine these probes and for clinicians to push the clinical transition of 

those which are promsing, facilitating better management of patients with melanoma in the 

foreseeable future.

2. Small Molecule-based Probes Targeting Melanin

Melanin, an amorphous, irregular, functional biopolymer and a ubiquitous natural pigment 

in many organs including human skin, is a source of novel research opportunities in the 

Wei et al. Page 2

Eur J Nucl Med Mol Imaging. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



fields of biomedicine, nanotechnology, and materials science [16]. In malignant melanoma, 

melanin formation is highly increased because tyrosinase activity is significantly elevated 

[17, 18], making it a very attractive theranostic target. Many drugs, including methylene 

blue (MTB), chloroquine, acridine orange, benzamide (BZA) and its analogs, and other 

aromatic compounds, have been found to bind to melanin both in vivo and in vitro [19–24]. 

Melanin-targeting prodrugs also have been developed and used for in vivo melanoma 

imaging [25, 26].

2.1. Radiolabeled benzamide and benzamide derivatives

Various versions of radiolabeled benzamide and its analogs have been developed for 

targeting melanin in clinical practice [27–33]. Specifically, as evidenced by a recent 

prospective and multicenter phase III clinical study, 123I-BZA2 (Fig. 1A) [30, 34], a 

benzamide derivative able to bind to melanin pigment in melanoma cells, had statistically 

higher specificity than 18F-FDG for diagnosis of melanoma metastases in a lesion-based 

analysis [35]. Katsifis and co-authors substituted the benzamide moiety with a nicotinamide 

moiety and labeled the compound with no-carrier-added 123I-iodine via iododestannylation 

reactions. Biodistribution showed that 66% of the injected 123I-1 (123I-MEL008, Fig. 1B) 

was excreted from the urinary system at 1 h postinjection, also displaying the highest tumor 

uptake at that time point mainly because of its enhanced hydrophilicity and rapid clearance 

via renal excretion [36]. Chezal et al. then examined biological properties of aromatic or 

heteroaromatic BZA analogs in B16 melanoma-bearing mice and found that melanin-

specific binding compound ICF01012, when labeled with 131I or 125I, could be applied in 

radionuclide diagnosis and therapy of disseminated melanoma [20, 37–39]. Furthermore, the 

authors developed a new multimodal approach by designing iodinated and fluorinated 

analogs of ICF01012, of which 18F-8 emerged as the most promising compound and 

demonstrated high tumor uptake, high contrast, and rapid clearance [40]. These above-

mentioned efforts also led to the development of 123I-MEL037 and 123I-53 (Fig. 1C, D); 

while the former demonstrated high and prolonged tumor uptake, the latter was derived from 

structural modification of 123I-MEL037 and performed even better than 123I-ICF01012, as 

the tumor-to-background uptake ratios of 123I-53 and 123I-ICF01012 were 31.9 and 18.5, 

respectively [41, 42]. While the above probes accumulated at high levels in the eyes and 

thyroid, radioiodinated iochlonicotinamide and radioiodinated phenylacetamides (131I-IHPA 

and 131I-IHPP) had lower uptake in most normal organs and highly specific uptake in the 

melanotic tumor (Fig. 1E, F) [43, 44].

Since 18F-FBZA exhibited high tumor uptake and emerged as a promising candidate for 

clinical study (Fig. 2A) [45], Wu et al. modified the phenol moiety of benzamide with a 

short chain PEG and then labeled with 18F to obtain 18F-FPBZA (Fig. 2B). In vivo, it 

showed excellent tumor-to-background contrast, and this radiotracer was able to distinguish 

tumor from inflammatory tissue as turpentine-induced inflammation revealed low 

radioactivity accumulation [46]. Garg and co-authors developed 4-11C-MBZA and reported 

that this probe displayed advantages over its 18F analogs while delivering a lower radiation 

dose to the subject (Fig. 2C). In vitro binding studies showed specific binding of 4-11C-

MBZA to B16/F1 cells; however, it also accumulated to a high level in the kidneys [47]. 

Chang et al. developed 18F–NOTA–BZA, and the melanin-specific binding ability, low bone 
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uptake, sustained tumor retention, high hydrophilicity (log P =−1.96), fast normal tissue 

clearance and low radiation burden indicated that 18F–NOTA–BZA is a promising PET 

probe for melanin-specific imaging of melanin-positive melanoma [48]. Based on the 

inspiring and promising preclinical results of 18F-MEL050 (Fig. 2D) [49, 50], Liu et al. 

successfully synthesized a series of 18F-MEL050 analogs for melanoma imaging (Fig. 2E, 

F), of which 18F-2 showed superior tumor-targeting efficacy and imaging properties [51]. 

Interestingly, recent research proposed that N-(2-diethylaminoethyl) rather than the aromatic 

ring structure in benzamide analogs is a plausible pharmacophore responsible for melanin 

targeting, as the synthesized probe 18F-FPDA exhibited relatively high B16/F10 tumor-

targeting efficacy and favorable in vivo pharmacokinetics (Fig. 2G) [52]. Besides the most 

commonly used PET radionuclides, 68Ga (t1/2 = 68 min) is an outstanding radioisotope for 

molecular imaging due to its significant 89% positron yield and its availability without the 

establishment of expensive cyclotron and synthesis models [53]. Trencsényi et al. conjugated 

PCA with two different chelators, HBED-CC and NODAGA, then labeled the compounds 

using Ga-68 and investigated the diagnostic value of 68Ga-HBED-CC-PCA and 68Ga-

NODAGA-PCA in vitro and in vivo. The authors found that uptake of 68Ga-NODAGA-PCA 

by melanin-containing melanoma was significantly higher than the accumulation of 

the 68Ga-HBED-CC-conjugated PCA [54, 55].

2.2. Imaging of melanoma metastases

Considering that the presence of distant metastases, especially brain metastases, confers 

worse prognosis for patients with melanoma, their early detection is critical [56]. In a study 

comparing diagnostic values of 18F-FDG PET/CT and MRI in melanoma patients with 

palpable lymph node metastases, Aukema et al. found that 18F-FDG PET/CT changed the 

intended regional node dissection in 26 patients (37%) and resulted in a superior diagnostic 

accuracy of 93%, but missed 5 patients with brain metastases which were detected by MRI 

[57]. Other study also demonstrated that 18F-FDG PET failed to detect metastatic lesions of 

less than 1 cm located in the lung, liver or brain [58]. Currently only contrast-enhanced MRI 

and 18F-FET PET seem to be reliable methods to detect brain metastases from melanoma 

but still lack specificity [10, 59]. Moreover, in patients with surgically treatable IIIC and IV 

metastatic melanoma following targeted/immunotherapy, PET/CT can detect unexpected 

metastases that are missed with conventional imaging, and can be considered as part of 

preoperative workup [4, 60, 61]. Thus it is of great importance to develop novel radiotracers 

to identify occult lesions or distant small metastases from melanoma with high specificity 

and a low false positive rate. Notably, the ability of an imaging agent to cross the blood–

brain barrier (BBB) is considered critical to effectively target metastatic lesions in the brain. 

Of the reported probes, 4-11C-MBZA was able to cross the BBB and the corresponding 

uptake was moderate in the normal brain [47]. As observed from biodistribution and PET 

studies, 4-11C-MBZA uptake in normal tissues was noticeably lower than that for several 

other 18F-benzamides like 18F-FPBZA [46] and 18F-DAFBA [62]. In addition, newly 

developed radiotracers, such as 18F-FBZA, 18F-5-FPN,18F-MEL050, 18F-FITM and 18F-

ICF01006 (Fig. 2H), may have better performance in the delineation of small lymph node 

and lung metastases from melanoma than that of 18F-FDG PET/CT [45, 46, 63–66]. 18F-5-

FPN, a probe identical to 18F-2, successfully detected pigmented B16/F10 tumors as early as 

1 min after injection of the tracer. The uptake increased over time and the tracer was rapidly 
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excreted via the kidneys. This and later studies from the same group further validated the 

potential of 18F-5-FPN PET for the early detection of metastatic melanoma lesions (Fig. 2I) 

[63, 67].

18F-MEL050 had excellent retention in melanin-containing tumors and rapid background 

clearance [49]; however it is notable that the route of administration of 18F-MEL050 matters 

when imaging regional lymph node metastasis from melanoma. While 18F-MEL050 PET 

correctly identified 100% of the lymph node metastases after subcutaneous administration of 

the tracer, only 60% of those metastases were found after systemic administration of the 

tracer in the lateral tail vein [50].

3. Peptide-based imaging probes

Peptides are emerging as potent and selective ligands that can be designed to bind with high 

affinity and specificity to cell surface receptors on a wide range of tumors [68]. Three major 

types of peptides, namely α-Melanocyte-stimulating hormone (α-MSH), tumor 

angiogenesis associated integrins, and peptides targeting both MC1R and integrin, are under 

intensive development for molecular imaging of melanoma.

3.1. α-Melanocyte-stimulating hormone (α-MSH)-based probes

α-MSH, a ligand specific for melanocortin receptor subtype 1 (MC1R), has been reported to 

be overexpressed in both melanotic and amelanotic human melanoma cases and has been 

widely used as a vehicle for melanoma-targeted imaging and therapy [69–73]. As native α-

MSH (a linear 13 amino acid peptide, Ac-Ser-Tyr-Ser-Met-Glu-His-Phe-Arg-Trp-Gly-Lys-

Pro-Val-NH2) has a biological half-life of less than 3 minutes in vivo [74], tremendous work 

has been done in the past 20 years and several modified analogs and synthesis strategies 

have been developed in an effort to add biological stability and improve targeting. For 

example, substitution of Met4 with Nle4 and Phe7 with D-Phe7 yields NDP-α-MSH [75]. 

Since His6-Phe7-Arg8-Trp9 had been identified as the “essential core” of native α-MSH 

peptide [76], both linear and transition metal rhenium cyclized α-MSH such as NAPamide 

[77], DOTA-NAPamide [78], ReCCMSH [77], MTII [79], analogs of MTII [80], DOTA-

CycMSH and DOTA-GlyGlu-CycMSH [81], DOTA-Nle-CycMSHhex [82], were 

constructed. Recently new highly-specific and selective ligands against MC1R for 

melanomas were also developed and have been explored as platforms for molecular imaging 

of melanoma [83, 84].

Using the previously synthesized ReCCMSH which has nanomolar affinity for MC1R, 

McQuade et al. labeled the peptide with PET isotopes 64Cu and 86Y and assessed their 

diagnostic efficacy in melanoma tumors. Biodistribution studies revealed that the tumor 

concentration of 86Y-DOTA-ReCCMSH and 64Cu-DOTA-ReCCMSH was two times higher 

compared to that of the metabolic agent 18F-FDG [85]. Additionally, the use of the chelator 

CBTE2A provided improved stability, as uptake of 64Cu-CBTE2A-ReCCMSH was 

significantly lower than that for 64Cu-DOTA-ReCCMSH in normal organs such as liver, 

lung, heart, and spleen [86]. Wei et al. then successfully labeled DOTA-ReCCMSH (Arg11) 

with 68Ga and reported that the tumor uptake of 68Ga-DOTA-ReCCMSH reached a 

maximum after 30 min and remained stable 2 h postinjection. A pretargeting strategy 
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employing D-lysine administration was able to significantly reduce kidney retention of the 

tracer [87]. 18F-FB-RMSH-1 and 18F-FP-RMSH-1, another two metallopeptide Ac-D-Lys-

ReCCMSH(Arg11) probes [88, 89], showed less optimal imaging properties than these three 

probes illustrated above.

Since 111In-DOTA-GlyGlu-CycMSH was first developed to target MC1 receptors for 

primary and metastatic melanoma imaging [81, 90], recent studies determined that reduction 

of the ring size of 111In-DOTA-GlyGlu-CycMSH, L-lysine co-injection, introduction of a -

GG-linker, substitution of DOTA with NOTA, and 99mTc radiolabeling via new chelators 

may further increase high melanoma tumor uptake while reducing nonspecific kidney and 

liver uptake [82, 91–94].

In addition, MC1-R specific NAPamide analogs have been labeled with various radiometals 

and non-metallic radionuclides (such as 64Cu, 68Ga, 18F, 111In, 99mTc and 44Sc) and have 

been intensively used to detect melanomas or to evaluate the expression level of MC1-R 

[95–101]. While 64Cu–DOTA–NAPamide showed mild tumor uptake in B16/F10 

xenografted melanoma (Fig. 3A) [96], 64Cu-NOTA-GGNle-CycMSHhex showed dramatic 

uptake at 2 h postinjection [93]. The latter study also elucidated that the substitution of 

DOTA with NOTA dramatically increased the melanoma uptake and decreased the renal and 

liver uptake of 64Cu-NOTA-GGNle-CycMSHhex.

Due to its positron emission with a high branching ratio (I =94.27%, Emean (β+) =0.63 

MeV), convenient production by the 44Ti/44Sc generator and satisfactory physical half-life 

(3.97 h), 44Sc is a novel radiometal which has gained significant interest as a potential 

radioisotope for PET imaging [102–104]. A proof-of-concept study investigated the 

biological properties of the 44Sc-labeled DOTA-NAPamide and found that this probe 

showed excellent binding properties to MC1-R positive melanoma cell and tumors, slightly 

superior to that of 68Ga-DOTA-NAPamide [95].

Most recently, three new MC1R-targeting peptides (CCZ01047, CCZ01048, and 

CCZ01056) were successfully developed and all the three 68Ga-labeled tracers produced 

high contrast PET images in B16/F10 tumors, of which 68Ga-CCZ01048 exhibited the most 

ideal tumor uptake (Fig. 3B). This study indicated that introduction of a cationic Pip linker 

to Nle-CycMSHhex could improve tumor uptake and tumor-to-normal tissue contrast in 

detecting melanoma [105].

3.2. Peptide-based probes targeting the integrin family

Integrins are heterodimeric αβ transmembrane receptors that connect the extracellular 

matrix (ECM) to the cytoskeleton, always forming dimers by combining 1 of 18 α-chains 

with 1 of 8 β-chains [106]. Integrin αvβ3, and less commonly integrin α5β1, have been 

attractive molecular targets for developing melanoma imaging probes [107–111]. Clinically, 

recent studies have validated that 18F-Fluciclatide (formerly known as 18F-AH111585) 

and 18F-Galacto-RGD were able to measure αvβ3 expression in melanoma and may be 

useful radiotracers to assess the response to the antiangiogenic therapy in melanoma patients 

[112–116]. Nevertheless, low concentration of these clinically-available probes in αvβ3 
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positive tumors and less than optimal PET/CT imaging quality warrants many sensitive and 

specific probes to be developed.

In the preclinical setting, as we previously reviewed [117], a large variety of imaging 

strategies have been successfully employed for imaging of integrin expression in various 

cancer types, including melanoma. One study compared the diagnostic efficacy of 18F-

Galacto-RGD with that of 68Ga-DOTA-RGD and 111In-DOTA-RGD and found that 18F-

Galacto-RGD remained superior for imaging αvβ3 expression [108]. Even though 68Ga-

Oxo-DO3A-RGD and 68Ga-NS3-RGD turned out to have inferior characteristics compared 

to the already existing 68Ga-labeled RGD peptides [118], 68Ga-NODAGA-RGD possessed 

improved imaging properties compared to 68Ga-DOTA-RGD [119], even performing 

similarly to 18F-Galacto-RGD (Fig. 3C) [120]. To achieve an easier and more rapid 

radiosynthesis, fusarinine C (FSC) and SarAr have been reported to be promising Ga-68 and 

Zr-89 binding bifunctional chelators [110, 121–124]. The most recent study from Zhai et al. 

reported that 68Ga-FSC(succ-RGD)3 exhibited improved properties compared to 68Ga-

NODAGA-RGD. The half-life of the radionuclide used (68Ga, 68 min) was compatible with 

the pharmacokinetics of RGD peptides [125].

When compared to DOTA, the bifunctional chelator NODAGA has gained popularity 

because of its significant advantages in terms of labeling chemistry [119, 126]. However, the 

TRAP chelator possesses even better 68Ga labeling properties and enables high yields and 

excellent reproducibility [127–129]. Notni et al. synthesized 68Ga-avebetrin (formerly 

known as 68Ga-TRAP(RGD)3) and performed a comparison of biodistribution and PET data 

of 68Ga-TRAP(RGD)3 with those of 68Ga-NODAGA-c(RGDyK) and 18F-Galacto-RGD. 

Different from 68Ga-NODAGA-RGD and 18F-Galacto-RGD, 68Ga-TRAP(RGD)3 showed a 

very rapid blood clearance and renal excretion while maintaining activity concentration in 

tumor tissue, indicating the potential value of 68Ga-TRAP(RGD)3 as a next generation αvβ3 

imaging agent (Fig. 3D) [130]. Considering that the TRAP-type chelator NOPO showed 

excellent 68Ga labeling properties even in the presence of high concentrations of competing 

metal cations (Fig. 3E) [131], researchers further developed 68Ga-NOPO–c(RGDfK) and 

found that this αvβ3 targeting probe exhibited a higher degree of hydrophilicity than similar 

conjugates with other chelators, resulting in rapid and specific uptake in M21 tumor 

xenografts, very rapid pharmacokinetics and renal clearance (Fig. 3F, G) [132].

There are a few reports on the development of α5β1 specific radiotracers [111, 133–135]. 

Although there was one candidate peptide with a high specificity and affinity for α5β1 in 

vitro, in vivo biodistribution studies demonstrated this radiotracer was not suitable for in 

vivo imaging due to its considerably high and constant radioactivity accumulation in the 

blood and other major organs [136]. The reported α5β1 specific probes 18F-PR_b and 68Ga-

NODAGAFR366 showed specific but low binding to α5β1 positive murine melanoma 

tumors, and as a result, the poor tumor concentration and high kidney uptake may hinder 

these probe from further clinical transition [111, 137]. Recently Notni and colleagues 

obtained 68Ga-aquibeprin by click-chemistry (CuAAC) trimerization of a α5β1 pseudo-

peptide on the TRAP chelator, followed by automated 68Ga labeling. Surprisingly, the 

trimer 68Ga-aquibeprin possessed approximately 16-times-higher α5β1 affinity than the 

previously reported 68Ga-labeled pseudo-peptide monomer. Although 68Ga-aquibeprin 
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showed lower uptake than 68Ga-avebetrin, low background activity and high target-to-

nontarget contrast of the probe may offer great potential for elucidating biologic functions of 

α5β1 and for detecting melanoma [138, 139].

RGD mimetic integrin inhibitors, like Cilengitide and Cilengitide-like RGD 

peptidomimetics, have also been investigated as chemical probes for the molecular imaging 

of angiogenesis in the literature [133, 140, 141]. In the near future, other strategies like 

sulfonation of tyrosine moieties in RGD peptides, which can modify the hydrophilicity of 

RGD peptides to increase renal clearance and to improve overall biodistribution [142], can 

also be applied to design novel probes for mapping αvβ3 expression in melanoma. Notably, 

RGD can be used as an agent for surface engineering in other imaging systems to enhance 

melanoma targeting efficacy and therapeutic effects [143–146].

3.3. Dual-targeted peptide-based probes

To improve the in vivo pharmacokinetics and stability of the above mentioned molecular 

probes, many hybrid peptides targeting both MC1R and integrin αvβ3 have been developed 

[147–153]. Initial synthesis and evaluation of 99mTc-RGD-Lys-(Arg11)CCMSH showed 

MC1R-mediated cellular uptake of the tracer, higher tumor uptake, and prolonged tumor 

retention in B16/F1 melanoma-bearing mice [148]. Substitution of Gly with Ala in the 

hybrid peptide not only dramatically increased the MC1R binding affinity of RAD-Lys-

(Arg11)CCMSH compared to RGD-Lys-(Arg11)CCMSH (0.3 vs. 2.0 nM) but also enhanced 

the melanoma uptake [149]. Further studies demonstrated that 99mTc-RTD-Lys-

(Arg11)CCMSH and 99mTc-RVD-Lys-(Arg11)CCMSH exhibited similar imaging properties 

to RAD-Lys-(Arg11)CCMSH, but 99mTc-RVD-Lys-(Arg11)CCMSH reached its highest 

concentration in melanoma lesions at a later time point [150].

Flook et al. replaced the Gly with another four amino acids (Ser, Nle, Phe, and D-Phe) and 

found that 99mTc-RSD-Lys-(Arg11)CCMSH displayed the strongest MC1R binding affinity 

in vitro and exhibited the most optimal melanoma uptake in vivo [151]. Importantly, linkers 

and charge status of the linkers between hybrid peptides may affect the renal uptake of the 

tracer significantly, as 99mTc-RGD-(Arg11)-CCMSH without a linker dramatically enhanced 

the tumor-to-kidney uptake ratio [154], and substitution of the Lys linker with Aoc, PEG2, β 
Ala or Ahx linker reduced the renal uptake of the relevant probe by 58%~63% at 2 h post-

injection [155–157].

4. Other PET/SPECT probes for melanoma imaging

Besides radiolabeled melanin, MCR1, and integrin based probes, here we would like to 

summarize other potential radiolabelled molecular imaging probes that have been found 

effective in detecting not only melanoma but also other solid tumors. These probes can be 

divided into several categories as discussed in the following sections.

4.1. Probes targeting the metabotropic glutamate 1 receptor

Metabotropic glutamate 1 (mGlu1) receptor is a G protein-coupled receptor normally 

expressed in the central nervous system, essential for learning and modulating the excitatory 

synaptic transmission in the central nervous system [158]. Recent reports have elucidated 
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that mGlu1 has oncogenic characteristics in melanoma by driving constitutive activation of 

mitogen activated protein kinase and phoshatidylinositol-3-kinase/protein kinase B pathways 

[159–163]. Xie et al. initially developed 18F-FITM for quantifying mGlu1 expression in the 

brain [164, 165], and then successfully extended 18F-FITM PET imaging in melanoma [65]. 

However, considerable uptake and slow clearance of radioactivity in the brain undermined 

its usage in clinical applications. The same group elaborately introduced halogen atoms 

(chlorine, bromine, or iodine) rather than 18F into 18F-FITM and labeled these compounds 

using 11C (half-life: 20.2 min). Of the reported compounds, the iodine analogue 11C-6 

showed the highest ratio of radioactivity of tumor to brain and may act as a useful PET 

tracer for imaging mGlu1 in melanoma (Fig. 4A, B) [166]. Notably, future studies can 

feasibly label 11C-6 using the isotopes of 124I, 123I or 131I for mGlu1-based theranostics of 

melanoma without altering their chemical structures or pharmacological profiles.

4.2. Probes targeting the very late antigen-4

In the past several years, very late antigen-4 (VLA-4; also called integrin α4β1) has been 

found in cancers including melanoma [167]. LLP2A, a high-affinity peptidomimetic ligand 

for VLA-4, was identified from a 1-bead 1-compound library and has been used for cancer 

imaging and therapy [168–170]. Specifically, Jiang and co-authors conjugated LLP2A with 

two different chelators and assessed their imaging properties in melanoma models after 

labeling the conjugated compounds with 64Cu. From the biodistribution and in vivo imaging 

data, both 64Cu-CB-TE1A1P-LLP2A and 64Cu-CB-TE2A-LLP2A clearly visualized the 

tumors with better contrast than was observed for 64Cu-CB-TE1A1P-LLP2A [171]. When 

compared to 68Ga-labeled NODAGA-LLP2A, 64Cu-CB-TE1A1P-PEG4-LLP2A trended 

toward higher uptake and better tumor–to–nontarget tissue ratios (Fig. 4C, D) [172].

Recently Gai et al. designed a new probe 64Cu-NE3TA-PEG4-LLP2A using the newly 

discovered chelator p-SCN-PhPr-NE3TA and assessed the diagnostic efficacy of the probe in 

melanoma xenografts. Small animal PET/CT imaging with 64Cu-NE3TA-PEG4-LLP2A 

demonstrated high uptake with a superior tumor-to-muscle ratio at 4 h postinjection [173]. In 

addition, a study from Beaino et al. reported that 177Lu-DOTA-PEG4-LLP2A could 

accumulate not only in primary melanoma but also in the metastatic lesions in the lung and 

brain, demonstrating the potential of 177Lu-DOTA-PEG4-LLP2A as an alternative treatment 

strategy for metastatic VLA-4 expressing melanoma [174].

4.3. Probes targeting indoleamine 2,3-dioxygenase (IDO)

In recent years, immunotherapy has dramatically changed the landscape of melanoma 

treatment [175]. However, recent findings revealed that indoleamine 2,3-dioxygenase (IDO) 

can be triggered by innate responses during tumorigenesis, and also by attempted T cell 

activation (either spontaneous or due to immunotherapy), contributing to restrain immunity 

and establish immunotolerance. IDO inhibitors act as a novel class of immunomodulators 

with broad application in the treatment of advanced human cancer [176, 177]. In an effort to 

map tryptophan (Trp, a substrate of IDO) metabolism [178, 179], one group found that 

radionuclide labelled IDO inhibitor, 5-[18F]F-AMT, may hold great potential for melanoma 

imaging [180]. By using B16/F10 melanoma model, the authors found that tumors were 

clearly visible and this probe was possibly excreted through the urinary system as the 
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kidneys showed initial high uptake (Fig. 4E, F). These preliminary results implied potential 

usage of this series of probes because the superior tumor-to-background ratio may precisely 

delineate primary and metastatic melanomas, but these probes are not melanoma-specific 

because other tumor types like breast cancer concentrate this kind of probe as well [178].

4.4. Probes targeting the immune checkpoints

With the field of cancer immunotherapy has undergone tremendous growth during the past 

decade, as we recently pointed out, noninvasive molecular imaging strategies have been used 

to map the biodistribution of immune checkpoint molecules, monitor the efficacy and 

potential toxicities of the treatments, and identify potential patients who will benefit from 

immunotherapies [181]. Studies have shown that PET may be used for the noninvasive 

imaging of PD-1/PD-L1 expression in melanoma and for determining the extent of tumor-

infiltration of lymphocytes [182, 183]. Recently Nedrow et al. developed a new PD-L1-

targeted imaging agent, 111In-DTPA-anti-PD-L1-BC and demonstrated that tumors had the 

greatest uptake at 24 h p.i. with a tumor-to-muscle ratio of 4.6 in mice bearing B16/F10 

tumors. Whole body SPECT images demonstrated that the tumor as well as the spleen and 

liver were clearly defined at the later time points [184].

4.5. Probes targeting the human copper transporter 1 (CTR1)

Human copper transporter 1 (CTR1), a 190-amino acid protein of 28 kDa with three 

transmembrane domains [185], has been proven to be overexpressed in melanoma. The 

usefulness of 64Cu2+ ions as PET probes is based on the fact that Cu is an essential element 

which plays an important role in cell proliferation and angiogenesis [186]. Therefore, copper 

radionuclide-based imaging of cancers have been investigated by several studies [187, 

188]. 64CuCl2 has been reported to be a novel and promising PET probe for imaging 

melanoma [189]. However, there have been reports that CTR1 is the specific influx copper 

transporter for 64Cu(I) rather than 64Cu(II). Using antioxidants, Jiang et al. prepared 64Cu(I) 

and evaluated cellular uptake of 64Cu(I) and 64Cu(II) by melanoma cells in vitro and in vivo. 

The authors demonstrated that although 64Cu(I) exhibited higher cellular uptake, no 

significant difference between 64Cu(I) and 64Cu(II) was observed through in vivo PET 

images and biodistribution [190]. However, future studies are still needed to evaluate 

whether or not 64Cu(I) can act as a feasible PET imaging radiotracer for melanoma 

detection.

4.6. Antibody-based imaging probes

Radiolabeled monoclonal antibodies (mAb), antibody fragments, and engineered antibody 

derivatives are increasingly utilized as agents in diagnosis and therapy because of 

developments in antibody engineering and in vivo stability and high specificity of these 

probes [191, 192]. Twenty years have passed since the initial attempts to detect melanoma 

using radiolabeled antibodies [193, 194]. Besides melanin-specific antibodies [195–199], 

GD2 is highly expressed on the cell surface of a broad spectrum of human cancers including 

melanoma and has been successfully exploited as a molecular target for therapy and 

molecular imaging [200]. Voss et al. successfully developed a SarAr-conjugated, 64Cu-

labeled, anti-GD2 antibody construct, 64Cu-SarAr-GD2 mAb ch14.18, and performed in 

vivo studies using GD2-expressing melanoma xenografts. Their results showed that about 
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20.5% of the injected dose accumulated in the M21 melanoma tumors [201], and further 

studies from the same group confirmed this finding [202, 203]. These preliminary results 

may indicate the feasibility of the 64Cu-SarAr antibody as a platform for imaging melanoma.

4.7. Probes targeting CXCR4

C-X-C chemokine receptor type 4 (CXCR4, also called fusin, CD184) is a 7-transmembrane 

G-coupled receptor belonging to the chemokine receptor family and has been found to be 

overexpressed in various human cancers including lymphoma, neuroendocrine tumors, 

malignant glioma, lung cancer and multiple myeloma [204–208]. CXCR4-based imaging 

has also been investigated to detect melanoma recently [209]. In a clinical trial dedicated to 

estimate CXCR4 overexpression by using the novel CXCR4-specific probe 68Ga-Pentixafor, 

Vag et al. included 21 patients (2 of them melanoma patients) and demonstrated the 

feasibility of 68Ga-Pentixafor for PET imaging of solid malignancies, although the 

detectability of solid cancers by 68Ga-Pentixafor seemed to be lower than with 18F-FDG 

PET [210].

5. Image-guided therapy of melanoma

In addition to melanoma imaging, molecular imaging-guided therapy of melanoma has long 

been a hot topic in the field, as recently reviewed by Norain et al. [211]. Radionuclide-based 

therapy of melanoma can be realized through radiolabeled antibodies, peptides or small 

molecules.

5.1. Radiolabeled antibodies and peptides

Lutetium-177 (177Lu) is a low energy β-emitter (497 keV, 90%) with a half-life of 6.7 days 

and a maximum tissue penetration of 1.6 mm. 177Lu also emits γ-rays (113 and 208 keV, 

6% and 11%) suitable for image-guided drug delivery using SPECT. Antibodies and 

peptides radiolabeled with 177Lu are attractive therapeutic agents due to localized deposition 

of beta decay energy and a radioactive half-life which matches in vivo pharmacokinetics of 

targeting antibodies quite well [212–214]. Vascular endothelial growth factor (VEGF) has 

been extensively studied as one of the most important proteins involved in the development 

of physiological and pathological angiogenesis [215, 216]. Recently, 177Lu-DOTA-

bevacizumab (a recombinant humanized monoclonal antibody that binds to all VEGF 

isoforms) has shown preliminary potential as a novel radioimmunotherapy and molecular 

imaging agent for melanoma [217]. Building upon the success of the lactam bridge-cyclized 

a-MSH peptides for melanoma imaging discussed above, Guo et al. assessed the image-

guided therapeutic effect of 177Lu-DOTAGGNle-CycMSHhex in B16/F1 melanoma-bearing 

mice and found high melanoma uptake and fast urinary clearance of the probe, underscoring 

its potential as a theranostic agent for metastatic melanoma [218].

188Re, a high-energy β-emitter (maximal energy: 2.12 MeV), has considerable range 

(several millimeters) in tissue and and relatively short half-life of 16.9 h. 188Re-labeled 

melanin-specific antibodies for melanoma therapy have also been studied. 188Re-labeled 

6D2 [197], a melanin-binding IgM antibody, has been validated to be effective in treating 

pigmented human melanoma tumors and in augmenting the efficacy of the chemotherapeutic 
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agent dacarbazine (DTIC) [198]. Notably, by administering the targeting vector and 

radioisotope separately, in vivo pretargeting seems to be a promising approach to enhance 

tumor-targeting properties of radiolabeled antibodies while simultaneously skirting their 

pharmacokinetic limitations.

5.2. Radiolabeled small molecules

For melanin-targeted imaging-guided radionuclide therapy, many radiolabeled benzamide 

derivatives such as 131I-MIP-1145 and 131I-ICF01012 exhibited strong efficacy in murine 

and human melanoma xenografts [17, 219, 220]. ICF01012 was labeled with 123I for 

melanoma imaging and with 131I for melanoma treatment (Fig. 5A,B). The preliminary 

results not only showed a correlation between radiotracer uptake and melanin content but 

also demonstrated significantly reduced tumor growth and prolonged the median survival of 

the melanoma-bearing mice after administration of 131I-ICF01012 [221]. The combination 

of 131I-ICF01012 and coDbait, a DNA repair inhibitor, could overcome melanoma 

radioresistance and increase the efficacy of targeted radionuclide therapy (TRT) without 

increasing side effects [222]. Clinically, in a study which enrolled 26 patients with 

metastatic melanoma, Mier et al. reported that, out of five patients who received higher 

doses of treatment by administration of the melanin-binding 131I-BA52 (Fig. 5C,D), three of 

them survived more than two years after therapy. In contrast, the mean overall survival of the 

untreated and insufficiently dosed patients was approximately three months [223]. 

Interestingly, iodinated and fluorinated radiotracers targeting melanin and offering potential 

for both diagnosis (SPECT and PET imaging) and therapy (iodine-131) have also been 

developed [224–226].

6. Conclusion and future persepectives

In this review, as summarized in Fig. 6, we provided an informative survey of the recent 

progress on radiolabelled molecular imaging probes for imaging different molecular targets 

or processes in malignant melanoma. While melanin, MCR1 and integrins are the traditional 

targets extensively used for melanoma detection and therapy, tumor metabolism and immune 

microenvironment-based molecular imaging probes have also been developed in recent 

years. In the era of precision medicine, devotion and efforts on radiolabelled molecular 

probes for mapping and treating melanoma is extremely important, and new imaging probes 

with optimal imaging properties are still highly demanded.

Looking into the future, we would like to put forward three proposals from our perspective. 

First, with the rapid development of the molecular imaging field, novel molecular imaging 

probes with high sensitivity and specificity enable us to characterize melanoma at the 

molecular level. These new probes will provide powerful platforms for early diagnosis of 

both primary and metastatic melanoma, monitoring of therapeutic response, accurate staging 

and restaging of melanoma, stratification of patients for antiangiogenesis therapy, 

immunotherapy and/or radionuclide therapy, and facilitation of new drug discovery for 

melanoma treatment. Second, melanin, MC1R, and integrins have been intensively 

investigated as targets for selective imaging and therapeutic agents against melanoma, and 

though the potential of many of these probes could be effectively demonstrated in preclinical 
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settings, very few of them could actually be translated to the clinics. Future studies should 

be dedicated to push the clinical transition of some of these most promising probes. Third, 

usage of humanized mice, rather than cultured cell lines and mouse xenografts [227], could 

examine the molecular imaging probes in the context of the human immune system and 

tumor microenvironment and accelerate the clinical transition of these molecular imaging 

probes.

To conclude, malignant melanoma represents a serious public health problem and is a deadly 

disease when diagnosed at late stage. With the elucidation of many important oncogenic 

signaling pathways and biomarkers involved in malignant melanoma pathogenesis, we 

belive that PET and SPECT imaging as well as image-guided therapy can undoubtedly 

provide better visualization and management of malignant melanoma in the forthcoming 

future.
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Figure 1. 
Representative melanin-targeting probes. Chemical structures of (A) 123I-BZA2, (B) 123I-

MEL008, (C) 123I-MEL037, (D) 123I-53, and (E) 131I-IHPA. (F) MicroSPECT image of 

C57BL/6 mice bearing B16/F0 melanotic melanoma at 24 h postinjection of approximately 

11.1 MBq of 123I-IHPA, the tumor is indicated by the white arrow. Adapted and modified 

with permission from references [34, 36, 41, 42, 44].
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Figure 2. 
Representative melanin-targeting probes and in vivo study images. Chemical structures of 

(A) 18F-FBZA, (B) 18F-FPBZA, (C) 4-11C-MBZA, (D) 18F-MEL050, (E) 18F-1, (F) 18F-2, 

and (G) 18F-FPDA. (H) Whole-body maximum intensity projection (MIP) images of 18F-

ICF01006 and corresponding lung photographs of B16/BL6 melanoma-bearing mice at the 

early stage (a, b) and late stage (c, d) of tumor development. (I) 18F-5-FPN PET images of 

two mice with lung metastases from melanoma. Note that this probe was able to detect both 

micrometastases (a, b) and wide spread lung metastases (c, d) from melanoma. Tumors are 

indicated by red arrows. Adapted and modified with permission from references [45–47, 49, 

51, 52, 66, 67].
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Figure 3. 
Examples of peptide-based imaging of melanoma. (A) Coronal microPET images of mice 

bearing B16/F10 tumors at different time points after tail vein injection of 64Cu–DOTA–

NAPamide. (B) PET images of 68Ga-CCZ01047 and 68Ga-CCZ01048 at 1 h postinjection of 

the corresponding tracer in mice bearing B16/F10 tumors. (C) MIP PET images of mice 

bearing M21 and M21L tumor xenografts on right and left shoulder, respectively. 68Ga-

NODAGA-RGD (left) showed more intense tumor uptake than 18F-Galacto-RGD (right) in 

αvβ3 positive M21 melanoma models. (D) MIP images of microPET scans of M21 (solid 

arrows) and M21L (outline arrows) human melanoma models. 68Ga-TRAP(RGD)3 showed 

high-contrast visualization of the M21 tumor. (E) Chemical structure of bifunctional chelator 

NOPO. (F) The relative uptake of 68Ga-NOPO–c(RGDfK) in M21 tumor tissue and blood 

over time. (G) MIP of 68Ga-NOPO–c(RGDfK) PET imaging in M21/M21L xenografted 

mice. Tumor site was marked with white arrow. Adapted and modified with permission from 

references [96, 105, 120, 130–132].
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Figure 4. 
Other PET probes for melanoma imaging. (A) Chemical structure of 11C-6 for imaging of 

mGlu1 receptor. (B) Representative PET images of mice bearing B16/F10 after injection 

of 11C-6. Upper: sagittal image of the brain. Lower: Axial image of tumor and muscle. (C) 

Chemical structures of NODAGA-PEG4-LLP2A and CB-TE1A1P-PEG4-LLP2A. (D) 

Small animal PET/CT imaging at 2 h after injection of the radiotracers (7.4 MBq). 

Both 64Cu-CB-TE1A1P-PEG4-LLP2A and 68Ga-NODAGA-PEG4-LLP2A were able to 

image melanoma lung metastases with high contrast and minimal lung background. (E) 

Chemical structure of 5-[18F]F-AMT. (F) Coronal PET/CT image of B16/F10 melanoma 30 

min after injection of 5-[18F]F-AMT. Adapted and modified with permission from 

references [166, 172, 180].
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Figure 5. 
Representative radionuclide-labeled therapeutic agents for melanoma. (A) Chemical 

structure of 131I-ICF01012. (B) Gamma-camera imaging of SK-Mel 3 melanoma-bearing 

mice after injection of 3.7 MBq 123I-ICF01012. A clear concentration of 123I-ICF01012 

occurred 3 hours after radiotracer administration and a rapid elimination of 123I-ICF01012 

from non-specific organs was observed at 44 h postinjection. Tumor and thyroid were 

indicated by white and orange arrows, respectively. (C) Chemical structure of 131I-BA52. 

(D) 18F-FDG PET/CT examinations in a melanoma patient before and after 131I-BA52 

treatment. After treatment using 131I-BA52, post-therapeutic 18F-FDG PET/CT examination 

demonstrated that SUV of the inguinal lymph node metastasis decreased from 9.02 to 5.81. 

Adapted and modified with permission from references [221, 223].
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Figure 6. 
Pictorial abstract showing PET and SPECT imaging probes for malignant melanoma. 

Molecular targets discussed above can be divided into two groups, melanoma specific targets 

which are indicated by grey/black models and melanoma nonspecific targets which are 

indicated by colorful models.
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