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Differential distribution of 
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Capote12, Abdoallah Sharaf13,14,15, Àgueda Pons16 & Marcel Amills3,15

The analysis of Y-chromosome variation has provided valuable clues about the paternal history of 
domestic animal populations. The main goal of the current work was to characterize Y-chromosome 
diversity in 31 goat populations from Central Eastern (Switzerland and Romania) and Southern Europe 
(Spain and Italy) as well as in reference populations from Africa and the Near East. Towards this end, 
we have genotyped seven single nucleotide polymorphisms (SNPs), mapping to the SRY, ZFY, AMELY 
and DDX3Y Y-linked loci, in 275 bucks from 31 populations. We have observed a low level of variability 
in the goat Y-chromosome, with just five haplotypes segregating in the whole set of populations. We 
have also found that Swiss bucks carry exclusively Y1 haplotypes (Y1A: 24%, Y1B1: 15%, Y1B2: 43% and 
Y1C: 18%), while in Italian and Spanish bucks Y2A is the most abundant haplotype (77%). Interestingly, 
in Carpathian goats from Romania the Y2A haplotype is also frequent (42%). The high Y-chromosome 
differentiation between Swiss and Italian/Spanish breeds might be due to the post-domestication 
spread of two different Near Eastern genetic stocks through the Danubian and Mediterranean 
corridors. Historical gene flow between Southern European and Northern African goats might have also 
contributed to generate such pattern of genetic differentiation.

Because of its male-limited transmission and lack of recombination1, Y-chromosome variation provides a simple 
and highly informative record of the paternal history of domestic species2–4. In general, Y-chromosome diversity 
is quite low due to small effective size (e.g. high variance in male reproductive success) and low mutation rate 
combined with the erosive effects of positive and purifying selection on diversity5. A first glimpse of caprine 
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Y-chromosome variation was provided by Pidancier et al. (2006)6, who sequenced fragments of the amelogenin, 
Y-Linked (AMELY) and zinc finger protein, Y-Linked (ZFY) genes in wild and domestic goats. By doing so, they 
defined two common haplotypes C1 and C2 and a third rarer haplotype named C3. Further studies made possible 
to establish the existence of six Y-chromosome haplotypes i.e. Y1A, Y1B, Y1C, Y2A, Y2B, and Y2C7–10. Contrary 
to mitochondrial DNA, the analysis of caprine Y-chromosome variation evidenced the existence of a strong pop-
ulation structure in goats.

Waki et al.9 sequenced a fragment of the 3′UTR of the SRY gene in 210 Asian goats and demonstrated that 
the most frequent haplotype in Asia is Y1A (62%) followed by Y2B (30%). Asian breeds also showed marked 
differences with regard to Y-chromosome haplotype distribution9. Çinar-Kul et al.8 investigated Y-chromosome 
diversity in several Turkish goat breeds by partially sequencing the AMELY, ZFY and SRY genes and found that 
the most frequent haplotype was Y2A followed by Y1A, whilst a new Y2C minority haplotype was also identified. 
This study was of particular interest because Eastern Anatolia has been shown to be the unique primary centre of 
goat domestication11. Moreover, genotyping of four single nucleotide polymorphisms (SNPs) mapping to the sex 
determining region Y (SRY) gene in 46 Moroccan and 44 Portuguese bucks evidenced that haplotype frequencies 
are remarkably similar in both populations (Y2 is more frequent than Y1A and Y1B), suggesting the existence of 
gene flow between goats from the Iberian Peninsula and the Maghreb12.

Although Y-chromosome diversity has been reported in several European caprine breeds7,10,12, the number of 
sampled populations and individuals is still quite limited. Our goal was to overcome this drawback by genotyping 
seven Y-chromosome SNPs in 275 bucks from Southern Europe (Italy and Spain, N = 106), Central and East 
Europe (Switzerland and Romania, N = 113), Africa (Egypt, Burkina-Faso and Nigeria, N = 33) and the Near 
East (Iran and Oman, N = 23).

Methods
Sampling and sequencing of five Y-chromosome regions. Blood and hair were collected in 275 bucks 
belonging to 31 populations from nine different countries (Table 1). These samples came from four main geo-
graphic areas i.e. Central and East Europe, Southern Europe, Africa and Near East (Table 1). The isolation of 
genomic DNA was performed as described by Amills et al.4. Five regions of the AMELY, DEAD-box helicase 
3, Y-linked (DDX3Y), ubiquitously transcribed tetratricopeptide repeat containing, Y-Linked (UTY) and ZFY 
genes were amplified by PCR and subsequently sequenced in a set of ten goats belonging to five different breeds 
(Saanen, Alpine, Murciano-Granadina, Palmera and Tinerfeña) to identify polymorphic sites. We used previously 
described ovine primers2 in four of the five selected regions (Supplementary Table S1). Polymerase chain reac-
tions were carried out in a final volume of 30 μL containing 1.5 mm MgCl2, 200 μM dNTPs, 0.2 μM of each primer, 
25 ng genomic DNA and 0.3 U Taq DNA polymerase (Biogen). The thermal profile was 94 °C for 5′ followed by 
35 cycles of 94 °C during 30″, 55 °C for 1′ 30″ and 72 °C during 1′ 30″, ending with an extension step of 5′ at 72 °C. 
Amplicons were purified with the ExoSAP-IT PCR Product Cleanup Reagent (Thermo Fisher Scientific) and 
sequenced with the BigDye Terminator v3.1 Cycle Sequencing kit (Thermo Fisher Scientific) and the correspond-
ing amplification primers. Sequencing reactions were electrophoresed in an ABI310 Genetic Analyzer equipment 
(Applied Biosystems). Sequences were visualized with the SeqAnalysis software (Thermo Fisher Scientific) and 
aligned with the Multalin program13.

Generation and analysis of genotypic data. Seven Y-chromosome polymorphisms, two discovered in 
this study and five reported in the literature6,7,10, were selected to be genotyped in a multiplex assay (Table 2). A 
total of 275 bucks were typed in the Veterinary Service of Molecular Genetics (http://svgm.es/ca/Home) of the 
Universitat Autònoma de Barcelona. Genomic DNA samples were distributed in 384-well sample plates together 
with the PCR mix. These reactions were transferred onto QuantStudio 12 K Flex OpenArray plates with the 
QuantStudio 12 K Flex AccuFill System (Thermo Fisher Scientific). Genotyping assays were run in a QuantStudio 
12 K Flex real-time PCR instrument (Thermo Fisher Scientific) in standalone mode. Primers and probes are indi-
cated in Supplementary Table S2. Nucleotide and haplotype diversities were calculated with the DnaSP software 
v514. The Network software v5 (www.fluxus-engineering.com) was used to construct a median-joining network 
with default parameters15.

Results and Discussion
Sequence alignment made possible to identify four unreported polymorphisms in the non-coding regions 
of the genes AMELY (g.310_313delATAT in Genbank MF448227-MF448228), DDX3Y (g.56 C > G in 
MF448229-MF448230 and g.390 T > C in MF448231-MF448232) and ZFY (g.46 C > T in MF448233-MF448234). 
The deletion detected in the gene AMELY and the polymorphism in the intron 7 of the DDX3Y gene were dis-
carded from the genotyping panel due to technical reasons. We therefore aimed to genotype five Y-chromosome 
SNPs (SRY-2971T > A, SRY-3098G > A, SRY-1876A > C –GenBank D82963-, AMELY-42C > T –GenBank 
AY082491.1-, and ZFY-527A > G –GenBank AY082500) that had been reported in previous studies7–10 plus two 
SNPs discovered by us (DDX3Y g.56 C > G and ZFY g.46 C > T). Altogether, these mutations defined five hap-
lotypes i.e. Y1A, Y1B1, Y1B2, Y1C and Y2A (Table 2) whose frequencies were estimated in 275 bucks from 31 
populations (Table 1). In general, the diversity of the caprine Y-chromosome was quite low (2.1 polymorphisms/
kb, Table 3), a result that matches previous data reported in sheep16. These findings might be explained by the low 
effective size of the Y-chromosome mainly as a consequence of the high variance in reproductive success of bucks 
and rams. Another important factor that decreases Y-chromosome variation is the removal of deleterious muta-
tions by purifying selection17. Due to the non-recombining nature of the Y-chromosome, this type of selection 
can erase variability even at linked neutral sites located far away from the purged mutation17. Interestingly, the 
analysis of Y-chromosome variation in pigs has uncovered the existence of a remarkable level of polymorphism18. 
This discrepancy between goats and pigs regarding the amount of paternal variation could be due to the fact that 
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Area BREED Country Y1A Y1B1 Y1B2 Y1C Y2

Central and East 
Europe

Alpine

Switzerland

8 2

Appenzell 8

Camosciata delle Alpi 1

Chamois Coloured goat 5

Grisons Striped 9

Peacock Goat 9

Saanen 3 15

St Gallen Booted goat 9

Toggenburg 8

Valais Blackneck 9

Verzasca goat 8

Carpathian Romania 10 1 8

TOTAL (N = 113) 33 14 41 17 8

Southern Europe

Bermeya

Spain

9

Blanca Andaluza 1 1

Guadarrama 10

Malagueña 4

Murciano Granadina 23

Mallorquina 10

Pitiüsa 15

Blanca de Rasquera 5

Garganica

Italy

1 1 1

Sarda 16 1 5

Maltese 3

TOTAL (N = 106) 20 1 2 1 82

Africa

Djallonke
Burkina Faso

5

Sahel 9

African Dwarf Goat
Nigeria

2

Nigerian 2

Zaraibi Egypt 15

TOTAL (N = 33) 0 0 0 0 33

Near East

Lori-Bakhtyari Goat
Iran

8  2

Esfahan Goat 12

Oman Oman 1

TOTAL (N = 23) 20 0 0 0 3

Table 1. Distribution of Y-chromosome haplotypes in 31 goat populations.

SRY 
2971

SRY 
3098

SRY 
1876

AMELY 
42

ZFY 
527

ZFY 
46

DDX3Y 
56 Haplotype

T G A C A C G Y1A

A G A C A C G Y1B1

A G A C A T G Y1B2

A G C C A C G Y1C

T A A C G C C Y2

Table 2. Y-chromosome polymorphisms and haplotypes analyzed in the current work.

Geographic areas
Number of 
haplotypes

Haplotype 
diversity

Sample 
size

Central and East 
Europe 5 0.747 113

Southern Europe 5 0.369 106

Near East 2 0.273 23

Africa 1 0.000 33

TOTAL 5 0.690 275

Table 3. Caprine Y-chromosome diversity in four geographic areas.
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pigs were independently domesticated at two distinct sites and on the basis of two gene pools (Asia and West) 
that diverged around 1 Ma ago. This resulted in the emergence of two main Y-chromosome haplogroups that 
are highly differentiated18. In strong contrast, all modern goats descend from bezoars domesticated at Eastern 
Anatolia11 and this is probably the main reason why all Y-chromosome haplotypes are remarkably similar. The 
median joining network displayed in Fig. 1 shows that the distribution of Y-chromosome diversity is tightly 
linked to geography. In goats from Switzerland, the Y1A and Y1B2 haplotypes are clearly predominant (67%), 
while Y1B1 (15%) and Y1C (18%) are less frequent and Y2A cannot be found. In stark contrast, the most frequent 
haplotype in Italian and Spanish goats is Y2A (77%) followed by Y1A (18%), whilst frequencies of Y1B and Y1C 
are almost negligible. Interestingly, the Y2A haplotype is the only one segregating in African breeds. In a previous 
study, Pereira et al.12 analyzed the Y-chromosome diversity of goats from Morocco and Portugal and also found 
that the most abundant haplotype in both populations is Y2, though Y1A and Y1B haplotypes could be also 
detected. In goats from Iran, we have found that Y1A is the most frequent haplotype (90%). In contrast, Çinar-Kul 
et al.8 demonstrated that in Turkey the Y2A haplotype is predominant with the exception of a single breed, Kilis, 
where Y1A segregates at high frequencies. The coexistence of several differentiated Y-chromosome haplotypes in 
this area is consistent with the high diversity that is usually found in primary domestication centers.

Central European breeds analysed in our study come exclusively from Switzerland. The analysis of autosomal 
variation in 10 Swiss breeds has shown that several of them (Appenzell, Toggenburg, Valais and Booted goat) dis-
play low levels of diversity but in general long runs of homozygosity (>15 Mb) are rare indicating the absence of 
recent inbreeding19. At this point, we do not know if Y-chromosome data obtained by us in Swiss populations can 
be extrapolated to other breeds from Central or North Europe. However, it is worth to emphasize that the patterns 
observed by Lenstra7 in North Central European breeds (i.e. Y1 haplotypes are abundant and Y2 is scarce) closely 
match those observed by us in Swiss populations. Significant genetic differences between Central and Southern 
European breeds have been also observed at the autosomal level. In this way, Cañón et al.20 genotyped a panel of 
microsatellites in 1,426 goats from 45 European and Near Eastern breeds and showed that Mediterranean and 
Central European breeds are clearly differentiated. This marked genetic differentiation could be due to several 
reasons. The dispersal of goats from the domestication center at Eastern Anatolia into Europe followed two main 
routes i.e. the Mediterranean and the Danubian corridors21. The Danubian route involved the transportation of 
goats through the continental heartland of Europe towards the Danube Valley and the central and northern plains 
of Europe21. Pastoralist communities were established in Greece and Bulgary 6,500 YBP and they subsequently 
moved north and eastwards until arriving to Scandinavia and the British Isles 4,000 YBP22. In stark contrast, the 
dissemination of domestic animals and plants through the Mediterranean corridor was essentially maritime23, 
with Neolithic seafarers reaching the Iberian Peninsula 7,700-7,300 YBP and Libya and Algeria 7,000 YBP. Thus, 
it is possible that the two Eastern Anatolian goat gene pools that followed the Danubian and Mediterranean cor-
ridors were subjected to serial founder effects resulting in the genetic differentiation of Swiss and Italian/Spanish 
European goat breeds. Indeed, the results of Çinar Kul et al.8 indicate that, in Turkish goat breeds, the Y1A hap-
lotype is almost fixed in Kilis bucks, while Y2A nearly reached fixation in Abaza, Gurcu, Angora and Norduz 
bucks. This genetic heterogeneity of Turkish breeds would fit a scenario based on the post-domestication spread 
of different gene pools along the Danubian and Mediterranean corridors.

An alternative, but not excluding, explanation for this pattern of differentiation would be the existence of 
gene flow between Southern European and North African goat populations. Pereira et al.12 hypothesized that the 
similar frequencies of Y-haplotypes that they observed in Portuguese and Moroccan goats might be due to the 
occurrence of ancient genetic exchanges. Martínez et al.24 shed light on this issue by demonstrating, with the aid 
of coalescent genealogy samplers, the existence of a significant and bidirectional migration between northwest 
African and Iberian goat populations. In a subsequent study, Manunza et al.25 analysed the variation of Spanish 
and African breeds on the basis of 52,000 SNP genotypes and found evidences of admixture between Andalusian 

Figure 1. Median joining network based on the Y-chromosome genotypes of 275 goats from Southern 
European (Bermeya, Blanca Andaluza, Garganica, Guadarrama, Malagueña, Maltese, Murciano Granadina, 
Mallorquina, Pitiüsa, Blanca de Rasquera and Sarda breeds), Central and East European (Alpine, Appenzell, 
Camosciata delle Alpi, Chamois Coloured, Grisons Striped, Peacock Goat, Carpathian, Saanen, St Gallen 
Booted goat, Toggenburg, Valais Blackneck and Verzasca breeds), African (Djallonke, African Dwarf, Nigeria, 
Sahel and Zaraibi breeds) and Near Eastern (Iran and Oman) countries.
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(Murciano-Granadina and Malagueña) and Tunisian goats. In a recent study, Decker et al.26 showed that Spanish 
cattle breeds had a 7.5–20% of African introgression into their genomes, and an indicine introgression was also 
observed in Italian breeds. Taken together, these results suggest that admixture events may have contributed to 
the genetic differentiation of Central and Southern European goats.

Particularly intriguing is the case of Carpathian bucks from Romania which displayed high frequencies (42%) 
of the Y2A haplotype. This might likely be the consequence of the historical commercial relationships between 
this region and Turkey, or even the arrival and establishment, during the 8–12th centuries, of Turkic nomad peo-
ples (e.g. pechenegs and cumans) who migrated from the Central Asian steppes to Romania, very likely carrying 
their own livestock. Lack of arable land, drought and harsh and cold winters explain why nomadic pastoralism 
has been so prevalent in the Eurasian steppe since prehistoric times. Indeed, the analysis of sheep mitogenomes 
has revealed the existence of remarkable levels of genetic diversity in the Mongolian Plateau, suggesting that this 
region constituted one of the main centers of sheep dispersal across Asia27. Even nowadays, pastoral nomadism 
is the main form of land use in Mongolia, with one third of the population living as nomads from livestock 
breeding28.

Data presented by us and others7–9 indicate that Y-chromosome markers recapitulate much better the pop-
ulation structure of goat breeds than mitochondrial polymorphisms29. However, this does not mean that the 
maternal and paternal histories of goats are substantially different. The larger physical size of the Y-chromosome, 
if compared with the mitochondrial genome, facilitates the detection of more ancient drift signals30. Previous 
data based on microsatellite24 and SNP25 markers have revealed that Spanish goats are more closely related to 
their Central European counterparts than to the African ones, an outcome that does not fully match our analysis 
of Y-chromosome markers. The large scale study of genome-wide data from caprine breeds with a worldwide 
distribution will probably shed light on this and other issues that are essential to understand the history of goat 
pastoralism.

Ethics statement. Blood and hair root samples were collected from goats by trained veterinarians in the 
context of sanitation campaigns and parentage controls not directly related with our research project. For this rea-
son, permission from the Universitat Autònoma de Barcelona Committee of Ethics in Animal Experimentation 
was not required. In all instances, veterinarians followed standard procedures and relevant national guidelines to 
ensure appropriate animal care.
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