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Genomic data reveal a loss of 
diversity in two species of tuco-
tucos (genus Ctenomys) following a 
volcanic eruption
Jeremy L. Hsu1,7, Jeremy Chase Crawford2, Mauro N. Tammone3, Uma Ramakrishnan4,  
Eileen A. Lacey2 & Elizabeth A. Hadly1,5,6

Marked reductions in population size can trigger corresponding declines in genetic variation. 
Understanding the precise genetic consequences of such reductions, however, is often challenging due 
to the absence of robust pre- and post-reduction datasets. Here, we use heterochronous genomic data 
from samples obtained before and immediately after the 2011 eruption of the Puyehue-Cordón Caulle 
volcanic complex in Patagonia to explore the genetic impacts of this event on two parapatric species of 
rodents, the colonial tuco-tuco (Ctenomys sociabilis) and the Patagonian tuco-tuco (C. haigi). Previous 
analyses using microsatellites revealed no post-eruption changes in genetic variation in C. haigi, but 
an unexpected increase in variation in C. sociabilis. To explore this outcome further, we used targeted 
gene capture to sequence over 2,000 putatively neutral regions for both species. Our data revealed 
that, contrary to the microsatellite analyses, the eruption was associated with a small but significant 
decrease in genetic variation in both species. We suggest that genome-level analyses provide greater 
power than traditional molecular markers to detect the genetic consequences of population size 
changes, particularly changes that are recent, short-term, or modest in size. Consequently, genomic 
analyses promise to generate important new insights into the effects of specific environmental events 
on demography and genetic variation.

Significant reductions in population size (i.e. population bottlenecks1) can substantially impact patterns of genetic 
variation and thus potentially alter the evolutionary trajectories of affected organisms. Accordingly, the genetic 
consequences of bottlenecks have been the focus of numerous empirical and theoretical studies (e.g.1–6). Such 
consequences can be difficult to assess, however, particularly when reductions in population size are modest in 
magnitude or duration. In part, this difficulty reflects the frequent use of traditional molecular markers such as 
microsatellites or mitochondrial loci, both of which may have limited power to detect changes in genetic variation 
over small spatial or temporal scales2,3. In contrast, examination of much larger numbers of markers drawn from 
across the genome should increase the ability to detect temporal and spatial differences in genetic variation4,5.

Although use of genomic data to address evolutionary questions is increasing rapidly, only a limited number 
of studies have employed such information to study the genetic consequences of naturally occurring demographic 
bottlenecks. Instead, most analyses that have used genomic data to assess the impacts of reductions in population 
size have focused on demographic changes associated with agricultural activities such as domestication of plants 
and animals3,6–8. The relevance of these analyses to wild populations is unclear, as domesticated species have typi-
cally been subject to strong artificial selection that may confound signals of other evolutionary forces such as drift, 
mutation, migration, and gene flow3. Further, these studies have typically relied on samples taken at only a single 
point in time, often many generations after domestication, which may alter the ability to detect changes in genetic 
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variation relative to studies based on samples collected shortly before and after a demographic event9,10. Thus, 
while genomic analyses appear to offer considerable potential, their suitability for studies of naturally occurring 
changes in genetic variation – particularly those occurring over relatively short time periods – remains largely 
unexplored.

To evaluate the immediate genetic consequences of abrupt, naturally occurring reductions in population size, 
we generated a genome-wide panel of single-nucleotide polymorphisms for two species of ctenomyid rodents 
from the Limay Valley region of southwestern Argentina. The colonial tuco-tuco (Ctenomys sociabilis) and the 
parapatric Patagonian tuco-tuco (C. haigi) have been the subjects of extensive behavioral, ecological, demo-
graphic, and genetic research, including comparative analyses of genetic variation over multiple spatial and tem-
poral scales11–15. In 2011, both species were significantly affected by the eruption of the Puyehue-Cordón Caulle 
volcanic complex in southern Chile, resulting in deceases in population density of ~40% for C. sociabilis and 
~25% for C. haigi16 and providing a rare opportunity to compare directly levels of genetic variation before and 
after a natural population decline. Notably, previous analyses based on microsatellite markers16 suggested that 
this event was associated with a significant post-eruption increase in genetic variation in C. sociabilis but not in 
C. haigi.

To explore this unexpected outcome in greater detail, we employed targeted sequence capture to generate a 
large number of genome-wide markers for each study species. Specifically, we sought to determine if the expected 
greater resolution of these genomic analyses would reveal the same post-eruption increase in genetic variation 
in C. sociabilis. Additionally, we sought to identify potential signatures of demographic processes contribut-
ing to post-eruption changes in genetic variation in our study species. While multiple studies have explored 
post-bottleneck changes in demography over longer time scales (e.g.10,17–21), the more immediate impacts of these 
demographic parameters are not well characterized. As a result, our analyses of the effects of the Puyehue-Cordón 
Caulle eruption should generate important new insights into the role of demographic processes in shaping 
short-term genomic responses to pronounced reductions in population size.

Materials and Methods
Study system.  The two species of tuco-tucos (genus Ctenomys) studied have been the subjects of long-term 
field research on behavior, ecology, and demography. The colonial tuco-tuco (Ctenomys sociabilis) is endemic to 
an approximately 1000 square kilometer area in the western Limay Valley and adjacent hills of Neuquén Province, 
Argentina (Fig. 1;22,23). In contrast, the Patagonian tuco-tuco (C. haigi) is much more widely distributed in the 
eastern Limay Valley and surrounding regions of Río Negro and Neuquén Provinces, Argentina (Fig. 1;22). A focal 
study population for each species was established in 1992 on Estancia Rincon Grande (C. sociabilis) and Estancia 
San Ramon (C. haigi); these study sites are located a few hundred meters from one another, on opposite sides of 
the Rio Limay24.

Despite their close geographical proximity, the two species differ markedly with respect to social structure, 
demography, and genetic variation. Ctenomys sociabilis is group living, with burrow systems routinely shared by 
multiple adults25. This species has been characterized by low mitochondrial genetic diversity over the past several 
millennia14, including an abrupt decrease in genetic variation approximately 3,000 years ago concordant with an 
eruption of the Puyehue-Cordón Caulle volcanic complex26. In contrast, C. haigi is solitary, with each adult inhab-
iting its own burrow system28; this species has historically been characterized by higher levels of mitochondrial 
genetic diversity than C. sociabilis14. Given these differences in genetic variation and the extensive pre-eruption 
data sets for these species, comparative studies of C. sociabilis and C. haigi should offer important insights to the 
immediate genomic impacts of a marked reduction in population size.

Sample collection.  Pre-eruption tissue samples were collected during December 2001; post-eruption sam-
ples were collected during December 2011 and again in December 2012-January 2013. In all cases, live capture 
of individuals, collection of non-destructive tissue samples, and release of individuals were performed following 

Figure 1.  Map of study area in southwestern Argentina. The general cone of ash fall resulting from the 2011 
eruption is indicated with the dashed lines. The geographic distribution of C. sociabilis is indicated in dark gray. 
Figure modified with permission from Hsu et al.16.
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the methods of Lacey et al.11,27,28. All field procedures were approved by the UC Berkeley Animal Care and Use 
Committee and followed the guidelines established by the American Society of Mammologists for the use of wild 
mammals in research29.

Tissue samples from 57 C. sociabilis were analyzed. Seventeen of these were pre-eruption samples from the 
focal population at Rincon Grande while 31 were collected post-eruption (December 2011) from the same pop-
ulation. No individual was included more than once in our analyses of genetic variation. To minimize potential 
kinship among the individuals examined, the pre-eruption samples were chosen to represent 13 different burrow 
systems, the majority of which (76.5%) were sampled only once. In contrast, the 31 post-eruption samples were 
from 9 burrows; of these, 6 of these burrows had multiple residents included in our post-eruption dataset. To add 
spatial perspective to our analyses, post-eruption samples were also obtained from 9 additional individuals from 
a second population of C. sociabilis at Estancia La Lonja, located about 3 km to the northwest of the focal Rincon 
Grande population. The La Lonja population had not been sampled prior to the eruption. Due to logistic chal-
lenges imposed by the substantive ash fall in the region, this was the only non-focal population of C. sociabilis that 
we were able to access following the eruption. Sampling of the focal study population of C. haigi at San Ramon 
consisted of 12 pre-eruption and 17 post-eruption (December 2012–January 2013) samples, with no material 
obtained from additional populations of this species.

DNA extraction.  DNA was extracted from all tissue samples using the Qiagen DNEasy Blood and Tissue 
extraction kits. Extractions were performed immediately prior to the preparation of genomic libraries (see below) 
to minimize the possibility of sample contamination. Following extraction, DNA sample concentrations were 
measured using a Qubit fluorometer (Qubit dsDNA HS assay, Life Technologies) and Nanodrop (ThermoFisher). 
Samples with low yields were re-extracted using a ZR Genomic DNA Tissue Miniprep kit (Zymo); this process, 
followed by ethanol precipitation, increased the concentrations of DNA in these extracts.

Genomic library preparation.  DNA libraries for targeted gene capture were prepared following the dual 
index protocol of Kircher et al.30, as modified by Crawford31. In brief, 580 ng of DNA from each individual was 
sheared using a BioRuptor Sonicator (Diagenode), after which a small quantity of the resulting fragmented DNA 
was visualized on a 1.2% agarose gel to verify fragment size distribution. Sonication was performed for four 
rounds at 90-second intervals to optimize fragment sizes of 450 bp. We then performed blunt-end repair using 
T4 DNA polymerase as per Meyer and Kircher32, after which reactions were cleaned using Ampure XP beads. We 
then ligated P5 and P7 adapters to each fragment and performed adapter fill-in with Bst polymerase. Following 
this, we measured DNA concentration using a Nanodrop and then conducted two rounds of indexing PCR reac-
tions (11 cycles each) using a Phusion High Fidelity kit and standard Illumina indices. Every sample was then 
divided into two pools, each of which was indexed separately with a unique combination of P5 and P7 indices in 
order to reduce errors during sequencing30. We used experimental assays of indexing PCRs with different num-
bers of cycles, followed by analysis of the resulting fragment length distribution with a Bioanalyzer assay, to deter-
mine the number of cycles per reaction that would minimize the number of PCR duplicates and thus maximize 
read mapping33. Once indexing PCRs were complete, we quantified DNA concentrations again using Nanodrop, 
and then performed automated size selection (Pippen Prep, Sage Science) to isolate DNA fragments ranging in 
size from 580 to 610 bp. Fifty nanograms of each size-selected library were then aggregated in to a single pool in 
preparation for the targeted gene capture.

Targeted gene capture and sequencing.  Custom in-solution probes were designed using the 
NimbleGen SeqCap EZ Target Enrichment System; the details of this procedure are given in Crawford (2016)31. 
We identified 2,027 target segments of nuclear DNA based on analyses of C. sociabilis and C. haigi transcrip-
tomes31. Targeted regions were approximately 1,200 bp long and putatively neutral. Capture of these target regions 
was completed using the NimbleGen SeqCap protocol for hybridization, with several modifications. In brief, 
we performed an in-solution hybridization of our pooled libraries with the custom probes. After incubation 
at 47 °C for 70 hours, we washed and recovered the captured multiplex DNA sample using M-270 Streptavidin 
Dynabeads. We then amplified the captured DNA via ligator-mediated PCR using the HiFi HotStart ReadyMix 
(KAPA Biosystems). We performed three parallel rounds of ligator-mediated PCR, checking the resulting DNA 
concentrations after each PCR reaction (using Qubit) and adjusting the number of cycles in subsequent reactions 
in order to reduce PCR stochastic drift34. The first PCR reaction was performed for 13 cycles, while the second 
and third PCR reactions were run for 14 cycles. Amplification products were then pooled in equimolar amounts, 
cleaned with Ampure XP beads, and subjected to Bioanalyzer analysis to gauge the concentration and distribu-
tion of product sizes. Finally, to assess the success of hybridization, we performed a series of quantitative PCR 
reactions using five different primer pairs: three primer pairs had been designed to amplify regions targeted by 
our probes (MATR F/R: 5′TCCTAGTCTCAACCCAGTGCT 3′/5′GTTATGCGAGGTCTCACCAA 3′; MR1 F/R:  
5′AATGTGGCTCTCATCACCAA 3′/5′AATCTCTTGAGCCAGGCAAT3′; RNF130 F/R: 5′TGGATTGCCTT 
GCTACAGAG 3′/5′TTGTGACTGGCTCCTCTTTG3′), while the remaining two primer pairs had been designed  
to amplify “control” regions not targeted by these probes (Mat2A F/R: 5′TTGTGGATACTTATGGCG 
GTT3′/5′AAGAACCCTCCTGCACAGAC3′; CS1 F/R: 5′CCTGGCAAGTGTACTTCCGT/5′ GTCAGCA 
GGGTCAATCCAGT 3′). These qPCR reactions allowed us to quantify the rate of enrichment for tar-
get sequences, thereby confirming that our capture procedure was successful prior to submitting samples for 
sequencing. Finally, samples were sequenced with 300 bp paired-end reads on an Illumina HiSeq. 2500 RAPID 
platform at the UC Berkeley QB3 core facility; our samples were pooled with those from other projects for a total 
of 240 samples run across three sequencing lanes.
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Sequence cleanup, assembly, and variant calling.  We cleaned and verified the quality of the Illumina 
sequences obtained following the protocol of de Wit et al.35. Specifically, we used the FastX toolkit36 to trim and 
remove regions of sequence with quality scores below 20, after which we removed reads that were <20 bp in 
length. Quality distributions were visualized using FastQC37 and Galaxy38. We then merged all reads for the same 
individual using custom Bash and Python scripts, after which we used Bowtie239 to align these merged reads to 
the original transcriptome sequences used to design our bait capture probes. Following alignment, reads were 
processed with SAMtools40, which generated summary statistics for average sequence depth and cover for each 
individual. Based on these distributions, we used a custom Python script and SNPCleaner41 to further filter the 
sequences to ensure high confidence in our reads. Using these scripts, we allowed a maximum of one mismatched 
base per read and applied quality thresholds derived from those used by Bi et al.34 for working with both histor-
ical and modern DNA. Specifically, at the individual level, we eliminated any individuals with extremely low or 
high coverage (less than one-third or more than three times the average coverage across all individuals). We then 
filtered out reads below the 5th or above the 95th percentiles of coverage depth for all samples, which was approx-
imately 3X and 100X, respectively. Finally, we removed sites with a root mean square mapping quality below 
10. Single nucleotide polymorphisms (SNPs) in the remaining reads were identified using the software package 
ANGSD42.

Population genomics analyses.  We generated multiple summary statistics to assess post-eruption changes 
in genetic variation. Prior to these analyses, we used LOSITAN43 to identify and remove any loci that appeared to 
be under directional selection. This program, which uses an FST-outlier method to identify signs of selection, was 
run for 50,000 simulations with a false discovery rate of 0.1. Additionally, we used a custom Python script to iden-
tify and remove any loci that were not in Hardy-Weinberg equilibrium. Collectively, these procedures ensured 
that the variation contained in our final data set reflected genome-wide consequences of demographic changes 
driven by neutral processes, rather than changes driven by directional selection.

Genetic differences among populations.  To quantify genetic variation within populations, we used a 
custom Python script to calculate mean heterozygosity for each population sampled. To account for potential 
differences in heterozygosity resulting from the variable number of individuals sampled per population, we con-
ducted a bootstrap analysis in which we subsampled an equal number of randomly selected individuals from each 
population; this process was repeated 100 times, after which we calculated mean heterozygosity for each popu-
lation based on these subsamples. Similarly, to minimize the potential effects of loci with extremely high or low 
levels of heterozygosity, we randomly selected a subsample of 100 loci and then estimated heterozygosity based 
on this panel of SNPs; this process was repeated 100 times, after which mean heterozygosity was calculated across 
all iterations. To examine additional measures of genetic diversity, we plotted per-site distributions of Watterson’s 
theta (θW) and nucleotide diversity (π) for each population. Finally, to determine if estimates of genetic diversity 
were influenced by the demographic structure of the population, we partitioned the data by sex and calculated 
mean heterozygosity for randomly selected subsets of males and females. For C. sociabilis, we also calculated 
mean heterozygosity and inbreeding coefficients using data from only a single randomly selected individual per 
burrow system in both pre- and post-eruption populations.

Next, we examined patterns of genetic diversity among populations using ngsTools44 and custom Python and 
R scripts. First, we calculated pairwise FST values for all populations of conspecifics. Then, to assess differentiation 
among populations visually, we generated principal component analyses (PCA) plots for both species using a 
custom Python script. We also generated PCA plots in which data for each species were subdivided by 1) sex, 
2) age (juvenile or adult), and 3) burrow system (for C. sociabilis) to determine if any of those factors influenced 
estimates of genetic differentiation among populations. As another measure of genetic differentiation among pop-
ulations, we conducted admixture analyses using a range of values for K, the number of putative populations. We 
ran these analyses using the a priori hypotheses of K = 2 (accounting for the two spatially distinct populations) 
and K = 3 for C. sociabilis (accounting for the three populations sampled that were either temporally or spatially 
distinct), and K = 2 for C. haigi (accounting for the two populations sampled that were temporally distinct). We 
also explored outcomes for values up to K = 6 for both species to determine if a greater number of putative popu-
lations revealed unanticipated evidence of genetic differentiation.

Effects of number of loci examined.  To explore the effects of the number of loci analyzed on estimates 
of genetic variation, we used a custom Python script to conduct a simulation in which we varied the number of 
loci used to characterize variation in the pre- and post-eruption populations of C. sociabilis from Rincon Grande, 
as well as the post-eruption population of this species from La Lonja. We randomly subsampled loci, starting 
with n = 50 and incrementing by 50 loci per iteration to a total of n = 1000. Following this, we then subsampled 
n = 1000 to n = 10,000 loci in 500 locus increments. In these simulations, subsampling was repeated 100 times for 
each value of n, with observed heterozygosity determined for each subsample. We then calculated the mean and 
associated standard deviation for estimates of heterozygosity obtained for each value of n.

Inferring signals of demographic history.  To identify demographic processes that may have contributed 
to changes in pre- versus post-eruption patterns of genetic variation, we used custom Python scripts to generate 
folded site frequency spectra (SFS) for each species. SFS provide an overview of the distribution of allelic frequen-
cies, which can reveal evidence of past demographic events such as reductions in population size45–47. Because dif-
ferences in the numbers of individuals or alleles sampled can affect such distributions, we conducted SFS analyses 
using equal numbers of randomly selected pre- and post-eruption individuals; this subsampling was repeated 20 
times for each time period, after which allele frequency distributions were averaged across iterations and pre- and 
post-eruption data sets were compared for each focal study population.
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Because patterns of allele sharing among populations may also reflect demographic factors such as bot-
tlenecks, we determined the number of private alleles – alleles unique to the populations in which they were 
detected – for each population sampled, as well as the number of alleles shared between two, but not all three, of 
the populations of C. sociabilis sampled. For both sets of analyses, we completed 100 iterations of random subsam-
pling with equal numbers of individuals per population to control for any effects due to differences in the actual 
number of individuals genotyped per population. In addition, to control for any potential effects due to sampling 
of multiple individuals per burrow system in C. sociabilis, we conducted 100 iterations of subsampling in which 
only one randomly chosen individual per burrow system was included in each population. To confirm that these 
analyses were not biased by outlier loci, we also randomly subsampled 100 loci; we repeated this procedure 100 
times, after which we assessed the mean occurrence of private and shared alleles across iterations.

To explore further potential signals of demographic change related to the volcanic eruption, we plotted distri-
butions of Tajima’s D for each population sampled. This statistic, which can reflect both past demographic events 
and selection, was estimated across 100-bp sliding window regions using ngsTools; use of a distribution of values 
for Tajima’s D allows for more robust assessments of demographic history than a single mean estimate of this 
parameter48,49. We also generated pairwise mismatch distributions and their associated raggedness indices50 for 
each population using a custom Python script. The shapes of mismatch distributions can provide insights into 
recent demographic history, while raggedness indices can be used to compare such distributions quantitatively51. 
Finally, to determine if levels of inbreeding changed after the eruption, we calculated coefficients of inbreeding 
(F) for each individual using Plink52, after which we calculated mean values of f for each pre- and post-eruption 
population.

Demographic simulations.  To explore the potential impacts of demographic processes on post-eruption 
genetic variation in our study populations, we conducted a series of simulations. First, to quantify the expected 
effects of drift resulting from post-eruption declines in population size, we simulated an approximately 50% 
reduction in each of our pre-eruption study populations; this level of decline was largely consistent with that 
observed for C. sociabilis immediately following the 2011 eruption16. Specifically, we randomly designated 50% of 
individuals in each pre-eruption sample as survivors, after which we calculated heterozygosity for both the entire 
pre-eruption population and for the “surviving” post-eruption population. This procedure was repeated 100 times 
to generate a mean and standard deviation for heterozygosity in the simulated populations. Although this proce-
dure did not take into account other demographic processes that may have affected post-eruption genetic varia-
tion, it provides a general estimate of expected changes in post-eruption heterozygosity due solely to stochastic 
loss of individuals from a population.

To examine the potential impacts of other demographic processes on genetic variation, we used 
MIGRATE-N53 to examine post-eruption data from the Rincon Grande and La Lonja populations. This program 
allows the testing of different models of demographic history by generating Bayes Factors, derived from marginal 
likelihoods for different historical scenarios. We tested the following four hypotheses regarding post-eruption 
population structure at Rincon Grande and La Lonja: (1) panmixia (2) bi-directional movement (immigration 
and emigration) between the populations, (3) immigration only (La Lonja to Rincon Grande), and (4) emigration 
only (Rincon Grande to La Lonja). Although the power of our analyses may have been somewhat limited due to 
the assumption of constant population sizes and the failure to incorporate observed post-eruption demographic 
changes, tests of these hypotheses provide an important first step toward determining whether different patterns 
of migration may have shaped genetic variation in post-eruption populations of C. sociabilis.

Results
Our sequence alignment resulted in a mean per-individual depth of coverage of 11.46 for C. sociabilis and 11.41 
for C. haigi, with greater than 99.9% cover per individual of targeted areas for both species. No individuals had 
less than one-third or greater than three times the mean coverage, indicating that all animals fell within the 
suggested thresholds for filtering samples with extremely low or high coverage34. After examining all SNPs for 
evidence of departures from Hardy-Weinberg equilibrium, we excluded two sites from analyses for C. sociabilis 
and six sites from analyses for C. haigi. Similarly, we excluded an additional 24 loci for C. sociabilis and 4 for C. 
haigi that were identified by LOSITAN as potentially being under directional selection. Thus, the final data set 
consisted of 531 SNPs for C. sociabilis and 449 SNPs for C. haigi. Despite the overall greater number of variant 
sites analyzed for C. sociabilis, the mean number of variant sites per individual for this species (N = 16.35) was 
less than that for C. haigi (N = 34.55).

Pre- and post-eruption genetic differentiation.  Mean heterozygosity in both focal study populations 
was reduced following the 2011 eruption. In C. sociabilis, mean heterozygosity across all sites decreased from 
0.00167 pre-eruption to 0.00130 post-eruption; for C. haigi, these values were 0.00310 and 0.00274, respec-
tively. For both species, this difference in variation was significant (two sample Kolmogorov–Smirnov test; both 
p < 0.0001). The same outcome was obtained when comparing estimates of pre- and post-eruption heterozygosity 
for a randomly selected subsample of 100 loci per species (C. sociabilis: pre = 0.00164, post = 0.00131; C. haigi: 
pre = 0.00273, post = 0.00231; two sample Kolmogorov-Smirnov tests, both p < 0.0001), indicating that this out-
come was not impacted by interspecific differences in the number of loci examined. This pattern of post-eruption 
reduction in genetic variation was also evident in the distributions of the per-site values of θW and π, both of 
which showed a shift toward lower values after the eruption (Supplemental Figs 1 and 2).

A reduction in post-eruption variation was also detected for C. sociabilis for subsamples based on one ran-
domly chosen individual per burrow system (pre = 0.00169; post = 0.00124; two sample Kolmogorov-Smirnov 
test, p < 0.0001). In contrast, there was no apparent difference in heterozygosity between males and females in 
the post-eruption population of this species at Rincon Grande (males: 0.00130, females: 0.00129; two sample 
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Kolmogorov-Smirnov test, p < 0.0001); this was the only population of C. sociabilis for which sample sizes were 
sufficient for comparisons of known-sex individuals. Among populations of C. sociabilis, post-eruption heterozy-
gosity at La Lonja (0.00122) was significantly lower than either pre- or post-eruption heterozygosity at Rincon 
Grande (two sample Kolmogorov-Smirnov test, both p < 0.0001). Pre-eruption samples from La Lonja were not 
available for analysis and thus we could not determine if the lower post-eruption variation in this population 
reflects consistent differences between La Lonja and Rincon Grande or if the impacts of the 2011 eruption were 
greater at La Lonja.

The relatively modest reductions in heterozygosity detected for both study species were associated with limited 
evidence of genetic differentiation between the pre- and post-eruption samples from these animals. For example, 
FST values across time periods were low for both C. sociabilis (0.00348) and C. haigi (−0.00042), suggesting little 
temporal differentiation between pre- and post-eruption populations. Similarly, principal component analyses 
failed to reveal strong temporal differentiation in either study species (Supplemental Fig. 3). Further, admixture 
plots for C. sociabilis (Fig. 2A and B) provided no clear indication of temporal segregation between populations of 
this species; outcomes did not differ as the number of putative populations varied from K = 3 to K = 6. Similarly, 
admixture analyses revealed no evidence of temporal differentiation between pre- and post- eruption samples 
of C. haigi (Fig. 2C). Thus, although genetic variation was reduced in both study species, the 2011 eruption of 
Puyehue-Cordón Caulle complex did not appear to result in immediate temporal differentiation of the pre- and 
post-eruption populations.

Effects of number of loci examined.  Varying the number of loci used to characterize genetic variation 
revealed that increasing the number of loci subsampled reduced the standard deviations around estimates of 
mean heterozygosity (Fig. 3). Indeed, there was a sharp decline in standard deviation as the number of loci exam-
ined increased from the initial value of 50 to approximately 1,000 loci, after which the impact of number of loci 
on estimates of standard deviation of mean heterozygosity appeared to stabilize.

Figure 2.  Admixture plots for C. sociabilis and C. haigi. For each panel, the populations and temporal periods 
(pre- versus post-eruption) examined are indicated. For C. sociabilis, the number of putative populations was set 
at (A) K = 2 and (B) K = 3. For C. haigi (C), analyses were run with K = 2.
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Signatures of demographic processes.  Folded site frequency spectra (SFS; Supplemental Fig. 4) were 
similar in shape for pre- and post-eruption populations of both study species, providing no evidence of recent 
differences in demographic history between C. sociabilis and C. haigi. Subsampling of the data set to control for 
differences in the numbers of individuals and alleles examined resulted in a slight post-eruption increase in the 
proportion of low-frequency polymorphisms in each species, contrary to expectations following a reduction in 
population size. These changes, however, were not significant (two sample t-tests; p > 0.05 for both species), and 
thus SFS analyses failed to reveal evidence of post-eruption changes in demography.

Within the focal population of each study species, the number of private alleles differed significantly between 
pre- and post-eruption samples (two-sample T test; both p < 0.0001). In both species, post-eruption populations 
were characterized by fewer private alleles (Fig. 4), suggesting that one consequence of the reported reductions 
in population size was the loss of unique alleles. We also compared the distribution of alleles shared between 
any two (but not all three) populations of C. sociabilis. Of the three pairwise comparisons conducted (pre- and 
post-eruption Rincon Grande; pre-eruption Rincon Grande and post-eruption La Lonja; and post-eruption 
Rincon Grade to post-eruption La Lonja), the pre- and post-eruption Rincon Grande populations shared the 
greatest number of alleles, while the post-eruption Rincon Grande and post-eruption La Lonja populations 
shared the fewest alleles (Fig. 4C; two-sample T tests; p < 0.0001 for each pairwise comparison). The same general 
result was obtained for comparisons conducted using (1) a randomly selected subset of individuals per popula-
tion, (2) a subsample consisting of only one randomly chosen individual per burrow system, and (3) a randomly 
selected subset of loci. These findings indicate that overall patterns of allele sharing among populations of C. 
sociabilis were not biased by differences in the number of animals or number of loci sampled per population.

Both pre- and post-eruption values of Tajima’s D (calculated across 100-bp sliding windows) were generally 
negative for each study species, indicating an excess of low frequency alleles. Contrary to expectation, modal 
values of D decreased following the eruption in both study species (mean change from pre- to post-eruption C. 
sociabilis: −0.429; C. haigi: −0.892; two sample Kolmogorov–Smirnov tests; both p < 0.0001; Fig. 5), suggesting 
that low frequency alleles were more abundant after the 2011 eruption.

Inspection of mismatch distributions revealed that the pre-eruption focal populations of each study species 
were characterized by a single primary peak (Figs 6A and 7A), with Harpending’s raggedness index values of 
r = 0.0102 for C. sociabilis and r = 0.0156 for C. haigi. Post-eruption, mismatch distributions for these populations 
remained unimodal (Figs 6B and 7B) with raggedness indices of r = 0.0244 for C. sociabilis and r = 0.0230 for C. 
haigi. In contrast, the mismatch distribution for the post-eruption samples of C. sociabilis at La Lonja was more 

Figure 3.  Relationship between the number of randomly subsampled loci (100 iterations each) and the 
standard deviation of mean heterozygosity. Data are shown for three C. sociabilis populations: (A) pre-eruption 
Rincon Grande, (B) post-eruption Rincon Grande, and (C) post-eruption La Lonja.
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ragged, with an index value of r = 0.0887 (Fig. 6C). No significant change in mismatch distributions, however, 
was detected for either species when comparing the centered, re-scaled mismatch distributions from pre- and 
post-eruption populations (two sample Kolmogorov-Smirnov test; both p > 0.05). Collectively, these analyses 
provide no clear evidence of recent demographic changes in either study species.

Finally, mean values for individual coefficients of inbreeding (F) in the focal population of C. sociabilis at Rincon 
Grande were greater after the eruption, even when the data were restricted to one randomly subsampled indi-
vidual per burrow system (pre-eruption: −0.204, post-eruption: 0.127; two-sample t-test, p < 0.0001). The mean 
value of F for the post-eruption population of C. sociabilis at La Lonja was −0.0143, which fell within the range 

Figure 4.  Comparisons of the mean (±SE) number of private alleles per population for (A) C. sociabilis and (B) 
C. haigi. For both species, values for pre- and post-eruption populations are indicated. In (C), the number of all 
alleles shared between two (but not three) populations is shown for all pairwise combinations of populations 
of C. sociabilis. Populations are abbreviated as following: pre-eruption Rincon Grande (Pre-RG), post-eruption 
Rincon Grande (Post-RG), and post-eruption La Lonja (Post-LL). ***Indicates significant contrasts (all 
p < 0.001).
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of values reported for this species at Rincon Grande. In the absence of pre-eruption samples from La Lonja, we 
could not assess the impacts of the eruption on levels of inbreeding in this population. There was no significant 
difference between pre- and post-eruption values of F in the focal population of C. haigi (pre-eruption, 0.159; 
post-eruption, 0.0580; two-sample t-test, p = 0.087). Thus, our analyses suggest that the 2011 eruption resulted in 
increased inbreeding within the focal study population of C. sociabilis but not the focal study population of C. haigi.

Simulations of demographic parameters.  The simulated 50% reduction in size of the pre-eruption 
population of C. sociabilis at Rincon Grande did not result in a significant change in heterozygosity (pre: 
0.03337; post: 0.03338; two-sample T test, p = 0.29). Our Bayesian modeling analyses revealed that the most 

Figure 5.  Smoothed kernel density distribution of values of Tajima’s D for (A) C. sociabilis and (B) C. haigi 
based on analyses of 100-bp sliding windows. Density denotes the relative frequency of individual values of 
Tajima’s D across the 100-bp sliding windows.

Figure 6.  Pairwise mismatch distributions for C. sociabilis depicting the frequency of the number of sequence 
differences across all pairs of individuals in a given population: (A) pre-eruption Rincon Grande, (B) post-
eruption Rincon Grande, and (C) post-eruption La Lonja.
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strongly supported demographic hypothesis was that of panmixia between the Rincon Grande and La Lonja 
populations (model probability = 0.986), with the hypotheses of full migration (model probability = 0.00467), 
immigration from La Lonja to Rincon Grande (model probability = 0.00667), and emigration from Rincon 
Grande to La Lonja (model probability = 0.00271) receiving considerably less support. Thus, we found little 
evidence to suggest that post-eruption changes in genetic variation in C. sociabilis were influenced by migration 
between populations.

Discussion
Our results indicate that in both C. sociabilis and C. haigi the reduction in population size documented imme-
diately following the 2011 eruption of the Puyehue-Cordón Caulle volcanic complex16 was associated with a 
decrease in genetic variation, as revealed by measures of mean heterozygosity across the multiple loci examined. 
In the more extensively sampled C. sociabilis, this decrease in genetic variation was evident throughout the focal 
population, with no apparent differences in response to the eruption based on the sex of the animals or the 
number of burrow systems sampled. Despite the post-eruption decrease in heterozygosity detected in each study 
species, we found little evidence of temporal or spatial genetic differentiation between populations of conspecif-
ics, suggesting that the eruption did not lead to increased genetic structure. Because these results are based on 
analyses of a large number of putatively neutral markers distributed throughout the genome, we believe that our 
findings are indicative of the impact of the eruption on genetic variation in the study animals. Intriguingly, the 
decrease in genetic variation reported here for C. sociabilis contradicts previous findings regarding the impacts 
of the Puyehue-Cordón Caulle eruption; our prior analyses based on a much more limited suite of microsatellite 
loci16 had revealed an increase in post-eruption genetic variation in the focal study population for this species. 
This difference in outcomes raises intriguing questions regarding the abilities of different types of molecular 
markers, including associated differences in numbers of loci surveyed, to detect the genetic consequences of 
recent demographic changes.

Loss of genetic variation following population decline.  Classical population genetics theory sug-
gests that reductions in genetic variation associated with demographic bottlenecks are dependent on the magni-
tude and duration of the reduction in population size34,54,55. Due to the relatively modest declines in population 
size (~50%) observed16 and the short duration of this decline (<2 generations) prior to the collection of our 
post-eruption samples, we had not expected to find significant changes in post-eruption genetic variation in 
the focal study populations. As noted above, however, previous analyses based on microsatellite loci16 revealed a 
significant post-eruption increase in genetic variation in C. sociabilis, an unexpected result that, based on demo-
graphic modeling, appeared to reflect post-eruption changes in migration and gene flow. In contrast, the data set 
considered here revealed small but significant decreases in genetic variation in both study species, a finding that 
is more consistent with theoretical expectations (e.g. Nei et al.1). Given the considerably larger molecular data sets 
employed in this study, we expect that the reductions in post-eruption genetic variation reported here are more 
indicative of the genetic changes experienced by our study populations.

Factors affecting post-eruption genetic variation.  Although reductions in population size are typ-
ically expected to lead to declines in genetic variation1, the exact processes by which such declines occur may 
vary. We found little evidence to suggest that selection was acting on the regions of the genome targeted for anal-
ysis. Very few of the loci examined (<5%) revealed departures from Hardy-Weinberg expectations or signals of 
directional selection. Further, because loci demonstrating departures from neutral expectations were excluded 
from analyses of genetic variation in our study populations, we do not believe that the post-eruption changes in 
variation reported here resulted from strong selective forces acting on these animals.

Figure 7.  Pairwise mismatch distributions for C. haigi depicting the frequency of number of the number of 
sequence differences across all pairs of individuals in a given population: (A) pre-eruption San Ramon and (B) 
post-eruption San Ramon.
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Similarly, it is unlikely that the observed post-eruption changes in genetic variation were the result of altered 
mutation rates following the eruption. Although mutation rates can be affected by external factors (e.g. Ellegren 
et al.56), we are not aware of any demonstrated or suggested links between ash produced by volcanic eruptions 
and increases in genomic mutation rates. Further, the average rate of mutation for mammalian genomes has been 
estimated at 2.2 × 10−9 per base pair per year57. Thus, given the limited temporal interval between our pre- and 
post-eruption sampling, this rate of mutational change could not have produced the observed post-eruption 
changes in genetic variation.

Although Hsu et al.16 reported increases in post-eruption genetic variation and suggested that increased 
migration and gene flow contributed to these changes, our analyses failed to reveal evidence of significant changes 
in these demographic parameters following the 2011 eruption. Populations at equilibrium58 as well as popula-
tions which have undergone a recent bottleneck51,59–61 are expected to display a multimodal mismatch distribu-
tion with relatively high values of raggedness. In contrast, pairwise mismatch distributions for both the pre- and 
post-eruption focal populations of C. sociabilis and C. haigi were roughly unimodal with low levels of raggedness, 
findings that are more typical of populations that are expanding or that are characterized by high levels of immi-
gration and gene flow50,62,63. More importantly, these distributions were not significantly different between pre- and 
post-eruption samples, providing no evidence of demographic change in this interval. Thus, the results of our mis-
match analyses suggest that (1) neither focal study population was in demographic equilibrium prior to the 2011 
eruption and (2) the eruption did not substantially alter patterns of migration and gene flow in these populations.

Comparisons of molecular markers.  Our analyses offer important insights into the genomic conse-
quences of an abrupt reduction in size in natural populations of mammals. While apparent population bot-
tlenecks have been reported for other species of Ctenomys based on analyses of microsatellite and allozyme 
data16,64–67, our study offers the first direct comparison of pre- and post-bottleneck samples using genomic-level 
data. Accordingly, our analyses employed a much larger number of loci to detect changes in genetic variation. 
The presumably greater resolution offered by our data set is important given the relatively modest reductions in 
size and density detected in our focal study populations following the 2011 eruption. While studies of other cten-
omyid species have examined the genetic consequences of decreases in population size of >90%26,64,65, our focal 
study populations experienced declines of only ~25–50%, suggesting that associated changes in genetic diversity 
would also be relatively modest. As a result, the use of a large panel of markers located throughout the genome 
should have increased our likelihood of detecting genetic signatures of these reductions in population size.

Particularly intriguing is the contrast between our results and those of Hsu et al.16, who reported a 
post-eruption increase in microsatellite heterozygosity in C. sociabilis. Although the same post-eruption samples 
were used in both studies, the pre-eruption samples examined differed: the samples analyzed here were collected 
in 2001, while those genotyped by Hsu et al.16 were collected during 1993–1998. It is possible that this difference 
in data sets contributed to the contrasting outcomes for these studies. However, given the generally low levels 
of genetic variation in both sets of pre-eruption samples (see also Lacey11), it seems unlikely that the temporal 
difference between these data sets underlies the reported differences post-eruption changes in genetic variation. 
Indeed, a marked reduction in population size in 1999 (Lacey, pers. comm.) should have reduced pre-eruption 
variation among the individuals sampled here compared to those analyzed by Hsu et al.16.

Instead, we posit that this difference in outcomes is due primarily to the greater power of our genomic-level 
markers to detect modest differences in genetic variation arising over short time periods. The number of markers 
employed in this study was more than two orders of magnitude greater than that used by Hsu et al.16 and this 
difference alone is likely to have affected the reliability of the post-eruption estimates of genetic diversity gen-
erated by each study2. Consistent with this, our analyses of the effects of number of loci on measures of genetic 
diversity revealed that the variance in estimates of mean heterozygosity decreased markedly as the number of loci 
employed increased, suggesting that larger numbers of these markers generate more robust metrics of genetic 
variation. Consequently, studies relying on a small number of markers likely show greater variance and more 
potential for summary statistics that are not representative of the true variation across the genome. In addition, 
microsatellite markers have been found to be unreliable for estimating genomic diversity, with marked differences 
in estimates of genetic variation generated with microsatellites versus SNPs68,69. Further, microsatellites have been 
found to have limited ability to detect complex demographic histories, including bottlenecks followed by rapid 
population growth70, and models demonstrating consistent tempo and mode in the evolution of microsatellites 
are lacking71. These limitations, combined with the presumptively greater analytical power of a large panel of 
genomic markers leads us to expect that estimates of genetic variation based on the latter provide a more accurate 
picture of pre- versus post-eruption changes in genetic variation in our study populations. If this supposition is 
correct, our analyses indicate that both C. sociabilis and C. haigi experienced decreases in genetic variation fol-
lowing the 2011 volcanic eruption.

Conclusion
Our analyses of genetic variation in two species of ctenomyid rodents impacted by the 2011 eruption of the 
Puyehue-Cordón Caulle volcanic complex indicate that abrupt, naturally occurring reductions in population 
size can impact genetic variation over even brief time scales. For both C. sociabilis and C. haigi, analyses of 
genome-wide markers revealed small but significant reductions in post-eruption heterozygosity. Multiple lines of 
evidence supported the hypothesis that these reductions in genetic variation were associated with post-eruption 
declines in population size, indicating that even modest (~50%) reductions occurring over a span of 1–2 gener-
ations are sufficient to generate signals in genomic variation. Characterizing the impacts of such demographic 
changes has critical implications for understanding and for predicting how species will respond genetically to 
altered environmental conditions and thus may generate important insights into the conservation of species 
affected by such events.
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