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into the involvement of PKC in BD. In addition, the effect of 
PKC inhibitors, such as tamoxifen, in the resolution of manic 
symptoms in patients with BD further points in that direc-
tion. Furthermore, a wide variety of growth factors influence 
neurotransmission through several molecular pathways that 
involve downstream effects of PKC. Our current understand-
ing identifies the PKC pathway as a potential therapeutic av-
enue for BD.  © 2017 S. Karger AG, Basel 

 Introduction 

 Bipolar disorder (BD) is a chronic and life-threatening 
disorder, and has been identified as one of the leading 
causes of disability worldwide  [1] . BD is classically char-
acterized by recurrent fluctuation between distinct peri-
ods of both positive (mania) and negative (depression) 
extremes of mood state. Additional features frequently 
associated with BD are impairment in emotion percep-
tion, affect regulation, attention, and executive function-
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 Abstract 

 Bipolar disorder (BD) is a major health problem. It causes sig-
nificant morbidity and imposes a burden on the society. 
Available treatments help a substantial proportion of pa-
tients but are not beneficial for an estimated 40–50%. Thus, 
there is a great need to further our understanding the patho-
physiology of BD to identify new therapeutic avenues. The 
preponderance of evidence pointed towards a role of pro-
tein kinase C (PKC) in BD. We reviewed the literature perti-
nent to the role of PKC in BD. We present recent advances 
from preclinical and clinical studies that further support the 
role of PKC. Moreover, we discuss the role of PKC on synap-
togenesis and neuroplasticity in the context of BD. The re-
cent development of animal models of BD, such as stimu-
lant-treated and paradoxical sleep deprivation, and the abil-
ity to intervene pharmacologically provide further insights 
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ing  [2] . These impairments also correlate with structural 
and functional abnormalities in frontolimbic brain re-
gions, such as prefrontal cortex (PFC), hippocampus, and 
amygdala, that regulate emotion, memory, and motivated 
behavior  [3] . Despite its heavy toll on human lives, the 
molecular mechanisms underlying the pathogenesis of 
BD remain elusive.

  Initial insights into the pathophysiology BD were 
gained in 1980s after the serendipitous discovery of lithi-
um  [4]  and valproic acid  [5]  as effective mood stabilizers. 
In the past 10 years, several animal models of mania have 
been developed to mimic human BD  [6] . The manic phe-
notype is usually induced in animal models by pharma-
cological (amphetamine [AMPH] and ouabain), environ-
mental (paradoxical sleep deprivation [PSD]), and genet-
ic (black Swiss mice) interventions  [6] . These interventions 
induce behavioral changes that are analogous to manic 
symptoms, such as hyperlocomotion  [7] , insomnia, risk-
taking behavior  [8] , and increased appetitive 50-kHz ul-
trasonic vocalizations (USV; a marker for euphoric mood 
and pressured speech)  [9] . These models are tested for 
their face (animals mimicking manic symptoms), con-
struct (correlation of similar pathophysiological altera-
tion at molecular level), and predictive (amelioration of 
symptoms by currently accepted treatments of mania) va-
lidity to enhance our understanding of BD  [10] . Our ad-
vances in neuroimaging techniques, such as in vivo mag-
netic resonance imaging, and novel genetic approach, 
such as convergent functional genomics, are providing us 
endophenotypic characteristics of BD  [11] . After 3 de-
cades of intensive preclinical and translational research, 
protein kinase C (PKC) has come to be recognized to play 
a central role in the pathophysiology of BD  [12–14] .

  The protein kinase family of proteins is one of the larg-
est superfamily of nearly 500 proteins that are evolution-
arily conserved across 11 eukaryotic species and regulate 
various cellular events  [15, 16] . The PKC family includes 
10 serine/threonine protein kinases that are encoded by 9 
mammalian genes and reversibly phosphorylate serine, 
threonine, and tyrosine residues in their target proteins 
 [15] . These 10 kinases are subdivided into 3 subfamilies 
based on their structure and their regulatory cofactors, 
namely classical or conventional PKC [cPKC: α, β I , β II , 
and γ; regulated by phospholipids, Ca 2+  ions, and diacyl-
glycerol (DAG)], novel PKC (nPKC: ε, δ, η, θ, and μ; reg-
ulated by phospholipid and DAG), and atypical PKC 
(aPKC: ξ, Mξ, ι, and λ; regulated by phospholipids but are 
independent of DAG and Ca 2+  ions)  [17] . All PKCs con-
sist of a highly conserved C-terminal catalytic domain 
and a nonconserved N-terminal regulatory domain  [18] .

  In the CNS, cPKC subfamily enzymes, PKCα, -β, and 
-γ, are most abundantly expressed  [19]  and influence 
neuronal signaling by short-term (neurotransmitter re-
lease and ion fluxes), medium-term (receptor regula-
tion), and long-term (cell proliferation, synaptic remod-
eling, and gene expression) mechanisms  [20] . PKC iso-
zymes are highly expressed in the frontolimbic structures, 
such as PFC, hippocampus, and amygdala, which are in-
volved in mood regulation  [21, 22] . PKC is inhibited by 
mood stabilizers such as lithium and valproic acid  [14] . 
Additionally, PKC signaling is involved in the regulation 
of processes that are affected in BD, such as neuronal ex-
citability  [23] , neurotransmitter release  [24, 25] , glutama-
tergic neurotransmission  [26] , neuroplasticity  [27] , apop-
totic pathway activation  [28] , mitochondrial dysfunction, 
and oxidative stress  [29] , and neuroinflammation  [30–
32] .

  We searched PubMed database with key words “pro-
tein kinase C bipolar disorder” and “PKC bipolar disor-
der” and selected articles since 2008. Few earlier manu-
scripts are tabulated in the article to provide a historical 
context of recent observations. We reviewed a total of 26 
studies (9 in vitro, 11 in vivo, and 6 clinical studies). We 
organized our narrative to address proposed pathophysi-
ological mechanisms underlying BD, including: (1) PKC 
translocation and activity; (2) putative downstream mo-
lecular effects, and (3) gene candidates. The studies are 
indexed in  Tables 1–4 . 

  PKC Translocation and Activity 

 Preclinical Studies 
 The importance of hyperactive PKC signaling in BD 

was first appreciated when commonly used mood stabi-
lizers, both lithium and valproic acid, were observed to 
inhibit PKC activity in vitro  [33, 34]  and in vivo  [35–37] . 
Later, the levels of membrane-associated PKC were 
shown to decrease after exposure to lithium and valproic 
acid, in vitro  [38]  and in vivo  [39, 40] . These observations 
were corroborated in humans when chronic treatment 
with lithium decreased PKC signaling in euthymic pa-
tients with BD  [41] . One of the mechanisms underlying 
this mitigation of PKC hyperactivity by lithium and val-
proic acid is the inhibition of its translocation from cyto-
sol to cell membrane. PKC is known to translocate to cell 
membrane when stimulated by phorbol esters (phorbol 
12-myristate 13-acetate [PMA]), serotonin (5HT), K +  
ions  [42] , and DAG analogs in vitro  [43]  and ex vivo  [34] . 
It has been shown that platelets from patients in acute 
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mania show enhanced 5HT-induced PKC translocation 
and membrane-bound PKC activity than controls, which 
is reversed after lithium treatment  [44] . Brain slices from 
lithium-fed rats displayed inhibited stimulus-induced 
membrane translocation of PKC without affecting its 
baseline activity  [42] . Moreover, PKC is pharmacologi-
cally activated by PMA, which provides DAG substitute 
 [45] . PKC activation by direct infusion of PMA in the 
PFC of rodents and monkeys was shown to induce dis-
tractibility, impaired judgment, impulsivity, and thought 
disorder, which are characteristic symptoms of BD  [46] . 
Furthermore, in rodents, infusion of PMA in the hippo-
campus, but not in lateral ventricle, was also found to 
have antidepressant-like effects, and induce enhanced 
risk-taking behavior  [8] . 

  With the development of animal models of mania in 
the past 2 decades, the involvement of PKC in manic phe-
notype has become more apparent. Increased PKC activ-
ity is observed in the PFC of rats submitted to AMPH 
administration  [47, 48] . AMPH-induced hyperlocomo-
tion has been shown to be reversed  [7]  and prevented 
 [49]  by intraperitoneal administration of lithium or 
tamoxifen (TMX), a selective estrogen receptor modula-
tor with PKC inhibitory activity  [8, 50] . Similarly, intra-
peritoneal administration of quercetin, a nonspecific 

PKC inhibitor, also prevented methylphenidate-induced 
hyperlocomotion  [51] . Not only in the presence of phar-
macological intervention, daily intraperitoneal adminis-
tration of lithium or TMX alone for 7 days significantly 
decreases phosphorylated PKC (pPKC) in the hippo-
campus, PFC, amygdala, and striatum  [7] . Furthermore, 
chronic administration (14 days) of TMX caused depres-
sive-like behavior in the forced swim test, and resulted in 
a reduction of cell proliferation in the dentate gyrus of 
the hippocampus  [8] . 

  Sleep-deprived rats display paradoxical hyperlocomo-
tion, increased penile erection, and insomnia  [48] . Sleep-
deprived animals did not display manic phenotype when 
they were pretreated with lithium or TMX or their com-
bination  [52] . Intraperitoneal administration of querce-
tin also prevented PSD-induced hyperlocomotion  [53] . 
Interestingly, PSD-induced behavioral changes were re-
versed by a one-time administration of lithium about 1 h 
prior to behavioral testing without affecting baseline ac-
tivity  [48] . At cellular level, PSD decreased hippocampal 
cell proliferation as indicated by decreased bromodeoxy-
uridine labeling  [48] . Again, single administration of lith-
ium increased BrdU-labeled hippocampal neurons in 
sleep-deprived rats highlighting potent neuroprotective 
actions of lithium  [48] .

 Table 1.  Summary of the in vitro studies

First author [Ref.], 
year

Model Design Duration Main findings

Chen [38], 1994 C6 glioma cell line Valproic acid exposure 
0.6 nM

6 – 7 days Decreased PKC alpha and epsilon (not delta or 
zeta) in both membrane and cytosolic 
compartment; increased cytosolic/membrane 
ratio of PKC activity

Kirshenboim 
[132], 2004

HEK 293 and PC12 
cell line

Lithium treatment
0 – 20 mM

0 – 6 h Lithium increased inhibition of GSK-3beta by 
increasing phosphorylation of inhibitory site of 
GSK-3beta (Ser 9) in HEK 293 and PC12 cells via 
PI3-PKC signaling; lithium increased PKC alpha 
activity twofold in both cell lines

Kim [102], 2009 Cultured 
hippocampal 
neurons

Lithium treatment
5.0 mM

4 h Lithium increased number of functional synapses 
in cultured hippocampal neurons via action of 
glutamate on postsynaptic receptors; no change 
in PKC activity reported

Ou [101], 2009 PC12 cell line and 
human astrocytes

Lithium treatment
100 mM

12 h Lithium elongates cilia in PC12 and human 
astrocytes via cAMP signaling pathway

Rittiner [158], 
2014

HEK 293 cell line Overexpressed mouse 
DGKη in human embryonic 
kidney 293 cells

– DGKeta reduces PKC activation and enhances 
GPCR signaling
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 Table 2. Summary of the in vivo studies

First author [Ref.], 
year

Model Design Duration Main findings

Wang [34], 1989 Rat brain parietal 
cortical slices

Phorbol ester (PKC 
activator)

20-min incubation Induced dose-dependent increase in K+ 
induced 5HT release from cortical slices; 
this phorbol ester facilitation was 
prevented by PKC inhibitor

Chen [39], 2000 Male Sprague-
Dawley rats and 
Male C57 BL/6 
mice

Lithium and VPA 
treatment

3 – 4 weeks Lithium and VPA decreased plasma 
membrane-associated PKC alpha and 
PKC epsilon, increased DNA binding of 
AP-1 and expression of AP-1-regulated 
genes

Wang [42], 2001 Male Sprague-
Dawley rats

Food pellets containing 
0.212% (w/w) lithium 
chloride

3 or 6 weeks In brain slices, lithium treatment 
inhibited PMA-, 5HT-, or potassium-
induced PKC translocation from cytosol 
to membrane without affecting basal 
membrane or cytosolic PKC activity

Kirshenboim [132], 
2004

C57Bl/6J mice ICV injection of 
lithium

3 h ICV injection of lithium increased 
GSK-3beta Ser-9 phosphorylation and 
enhanced PKC alpha activity by 1.8-fold 
in mouse hippocampus

Szabo [47], 2009 Amphetamine-
induced mania;
imipramine-
induced mania;
paradoxical sleep 
deprivation

Lithium treatment
1.2 and 2.4 g/kg

4 weeks PKC activity was increased in sleep-
deprived and amphetamine-treated rats; 
increased PKC mediated 
phosphorylation of neurogranin, NMDA 
receptor site GluN1S896, and AMPA 
receptor site GluA1T840 in PFC of sleep-
deprived and imipramine-treated rats; 
effects were reversed in lithium-treated 
animals; imipramine treatment enhanced 
phospho-MARCKS in PFC

Barbier [167], 2009 PKCI/HINT1 
knockout mice

– – PKCI/HINT1 knockout mice display 
anxiolytic-like and anti-depressant like 
behavior and elevated corticosterone in 
plasma

Hains [174], 2009 Chronic stress 
model; male 
Sprague–Dawley 
rats

Chelerythrine
1.0 mg/kg s.c.

21 days PKC inhibition prior to daily stress, 
protected working memory and distal 
apical dendritic spine loss in lay II/III 
pyramidal neurons (greater spine 
density) of rat prelimbic cortex induced 
by daily stress

Cechinel-Recco [7], 
2012

Amphetamine-
induced mania

Lithium (47.5 mg/kg) 
and TMX (1 mg/kg), 
i.p.

Reversal model (7 
days); prevention 
model (14 days)

Lithium and TMX reversed and prevented
d-AMPH-induced hyperactivity; lithium 
and TMX treatment reversed and 
prevented the increase in PKC alpha 
phosphorylation induced by d-AMPH

Armani [52], 2012 Paradoxical sleep 
deprivation

Lithium (50 – 150 mg/
kg) and TMX (0.5 – 2.0 
mg/kg)

9 days Sleep deprivation induced hyperactivity 
in mice that was prevented by lithium, 
TMX and combination treatment

Steckert [50], 2012 Amphetamine-
induced mania

TMX (1 mg/kg), i.p. Reversal model (7 
days); prevention 
model (14 days)

TMX reversed and prevented d-AMPH 
induced behavioral effects via inhibition 
of PKC and prevention of oxidative stress
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  Pereira et al.  [9]  observed that AMPH increases appe-
titive 50-kHz USV. The USV are emitted by rodents in 
association with social communication and reward be-
havior such as mating  [54] . The authors, hence, reason-
ably propose that AMPH-induced increase in USV simu-
lates euphoric affect and pressured speech that is ob-
served in patients with BD during acute mania  [9] . In 
support of its predictive validity, pretreatment of rats 
with Li or TMX blocked the increase in USV calls induced 
by AMPH without affecting spontaneous call rates or lo-
comotor activity  [9] . Myricitrin, another PKC inhibitor, 
also prevented the increased USV induced by AMPH in 
a dose-dependent manner without affecting baseline call 
rate at any of the doses used  [9] . 

  PKC is also commonly inhibited by chelerythrine, a 
benzophenanthridine alkaloid that was identified as a se-
lective PKC inhibitor in 1990  [55] . Since then, it is widely 
used to investigate the role of PKC in several biological 
systems such as neuro- and cancer biology  [56] . After sev-
eral years of controversy regarding its selectivity  [57–59] , 
it has recently been shown that chelerythrine influences 
intracellular calcium homeostasis independent of PKC 
 [60] . In animal models of mania, administration of chel-
erythrine prevented manic phenotype induced by AMPH 
 [8] . While inhibition of PKC was concluded as the under-
lying mechanism by the authors, it is plausible that its ef-
fect on calcium homeostasis may have been involved in 
this observation  [61] . In support of this alternative expla-

First author [Ref.], 
year

Model Design Duration Main findings

Abrial [8], 2013 Amphetamine-
induced mania

TMX (10 or 80 mg/kg, 
i.p.) and chelerythrine 
(3 mg/kg s.c.); PMA 
(intracerebrally 
administered acutely)

TMX and 
chelerythrine (60 
min before the 
AMPH)
PMA (40 or 10 min 
before the test)

TMX and chelerythrine prevented 
AMPH-induced hyperactivity and risk 
taking behavior, and caused depressive-
like behavior; PMA (PKC activator) had 
antidepressant-like effects

Pereira [9], 2014 Amphetamine-
induced mania

TMX (1 mg/kg), 
lithium (100 mg/kg), 
and myricitrin (10 and 
30 mg/kg)

– TMX, lithium, and myricitrin (PKC 
inhibitor) reduced appetitive 50-kHz 
calls (proposed to be model euphoric 
mood and pressured speech of human 
mania)

Abrial [48], 2014 Paradoxical sleep 
deprivation in rats

PKC inhibitors Acute injection PSD induced mania, increased SNAP 25 
in hippocampus and PFC suggesting 
PKC hyperactivity; PKC inhibitors 
attenuated manic behavior and rescued 
hippocampal cell proliferation deficits 
induced by PSD

Kanazawa [53], 2016 Paradoxical sleep 
deprivation; male 
Swiss mice

Quercetin (10 or 40 
mg/kg, i.p.)

Acute injection PSD-induced hyperactivity and lipid 
peroxidation in PFC, hippocampus, and 
striatum were prevented by quercetin

Kanazawa [51], 2017 Methylphenidate-
induced mania

Lithium (100 mg/kg) 
and diazepam (5 mg/
kg)

Acute and chronic 
(21 days) protocol

Acute and 21 days of treatment with 
lithium and diazepam reversed 
methylphenidate-induced 
hyperlocomotion and oxidative stress in 
PFC, hippocampus, and striatum; 
quercetin blocked methylphenidate-
induced hyperactivity without affecting 
spontaneous locomotor activity

 5HT, serotonin; VPA, valproic acid; AP-1, activator protein 1; PMA, phorbol 12-myristate, 13-acetate; GSK, glycogen synthase 
kinase; PSD, paradoxical sleep deprivation; PKCI/HINT1, PKC interacting protein/histidine triad nucleotide binding protein 1; AMPH, 
amphetamine; d-Amph, dextro-amphetamine; TMX, tamoxifen; PFC, prefrontal cortex; SNAP, synaptosomal-associated protein 25.

Table 2 (continued)
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 Table 3. Summary of the human studies

First author [Ref.], year Sample Main findings

Friedman [44], 1993 Platelets from patients 
with BD

Increased PKC activity in manic patients; lithium treatment decreased PKC 
activity in plasma membrane and cytosolic fractions

Wang [65], 1996 Postmortem cortical 
homogenate

Increased PKC level and membrane-bound PKC activity in samples from 
patients with BD in comparison with healthy controls

Wang [68], 1999 Platelets from patients 
with BD

Basal PKC activity in platelets BD patients during acute manic episode was 
higher in membrane fraction than control, depressed, or schizophrenic subjects

Soares [69], 2000 Platelets from patients 
with BD

Platelets from lithium-treated euthymic BD patients had lower cytosolic PKC 
alpha isozyme and PIP2 membrane levels

Wang [67], 2001 Postmortem cortical 
homogenate

Increased RACK-1 association (membrane anchor) of PKC in samples from 
patients with BD in comparison with healthy controls

Pandey [171], 2002 Platelets from patients 
with BD

Platelets had decreased expression of PKC alpha, beta-I, beta-II, and PLC delta 
isozyme in membrane and cytosol fractions but not of unipolar depression; 
however, MARCKS was significantly elevated in membrane and cytosol fraction 
in patients with BD

Hahn [175], 2005 Platelets from patients 
with BD

Platelets from BD patients have increased basal membrane to cytosol PKC ratio 
in comparison to control; BD subjects had higher translocation of PKC with 
serotonin, thrombin, and PMA in comparison with control; lithium and VPA 
attenuated stimulus induced translocation of PKC

Akimoto [176], 2007 Platelets from patients 
with BD

Exaggerated PKC stimulation induced calcium influx; in controls PKC had 
inhibitory effect on calmodulin system regulated capacitive calcium entry; in BD 
subjects, this inhibitory effect of PKC was enhanced

Pandey [177], 2008 Platelets from pediatric 
patients with BD

Platelets had decreased expression and activity of PKC beta-I, beta-II, but not 
PKC alpha or PKC delta; 8 weeks of treatment with mood stabilizers normalized 
or increased these observations

Perlis [170], 2010 Genome-wide 
association study

Suicide attempt in BD patients: GWAS meta-analysis of 8,700 mood disorder 
subjects identified association with multiple loci including PKC epsilon

Carroll [141], 2010 Genetic linkage study SNP in PKC alpha may play a role in pedigree analysis of psychotic and mood 
disorder

Kandaswamy [142], 
2012

Genetic linkage study Genotyped 4 microsatellite markers and 9 SNPs; PKC zeta may play a role in 
susceptibility to BD

Le-Niculescu [172], 
2013

Convergent functional 
genomics

(1) No SI to high SI – differentially expressed genes are identified; (2) CFG – 
prioritize genes to relevance to suicidality; (3) expression of these genes in blood 
of live BD vs. suicide completers; found 13/41 show relevance from no SI to 
high SI to completers, 6/13 significant; (4) SAT1, PTEN, MARCKS, MAP3K3 
differentiated past and future hospitalization in patients with BD

Kittel-Schneider [163], 
2016

Proof of concept study: 
mRNA from peripheral 
blood and fibroblasts of 
heterozygote DGKH 
risk variants carrier 
with BD and non-risk 
variant carriers with 
and without BD

DGKH1 expression was increased in peripheral blood of risk variant carriers; 
PKCD expression was significantly elevated in fibroblasts from DGKH risk 
variant carriers; current depressive episode had lower PKC delta levels, and 
lithium treatment was found to be associated with elevated PKC alpha levels

BD, bipolar disorder; PIP2, phosphatidylinositol-4,5-bisphosphate; RACK-1, receptor for activated C kinase-1; PLC, phospholipase 
C; MARCKS, myristoylated alanine-rich C-kinase substrate; PMA, phorbol esters (phorbol 12-myristate 13-acetate); GWAS, genome-
wide association study; SNP, single nucleotide polymorphism; SI, suicidal ideations; SAT1, spermidine/spermine N1-acetyltransferase; 
PTEN, phosphatase and tensin homolog (PTEN); MAP3K3, mitogen-activated protein kinase kinase kinase 3; DGKH, gene coding for 
diacylglycerol kinase; PKCD, gene coding for PKC delta; CFG, convergent functional genomics; VPA, valproic acid.
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 Table 4. Summary of the clinical studies

First author 
[Ref.], year

Study Mood state Treatment Duration Observation

Bebchuk [73], 
2000

Proof of 
concept study

Mania Single-blind, open-label, add-on 
(some patients were on no other 
medications)

Rapid resolution of manic 
symptoms

Kulkarni [78], 
2006

Pilot study: 
double-blind, 
placebo 
controlled
(n = 13)

Mania or 
hypomania

Group 1: TMX 40 mg/day; group 2 
MPA 20 mg/day; and group 3 
placebo; adjunct to lithium or VPA

28 days Mean CARS-M score change at 
the end of trial: group 1 = –22.2 ± 

12.49, group 2 = –13.0 ± 10.76, 
group 3 = –8.50 ± 7.3; 1 vs. 3 p < 
0.05, 2 vs. 3 p < 0.01, 1 vs. 2 p > 
0.05

Zarate [76], 
2007

Double-blind, 
placebo 
controlled 
(n = 16)

Mania or 
mixed state

TMX monotherapy (20 – 140 mg/
day)

21 days 63% response in TMX vs. 13% in 
placebo group

Yildiz [75], 
2008

Double-blind, 
placebo 
controlled 
(n = 50)

Mania or 
mixed state

TMX 80 mg/day vs. placebo; 
lorazepam: pro re nata use of 
lorazepam up to 5 mg/day allowed, 
avoided after 12 days, and not 
administered 12 h prior to YMRS

21 days Mean decrease in YMRS: TMX = 
5.84 ± 0.64/week vs. placebo = 1.5 ± 

0.73/week, p < 0.001

Amrollahi [79], 
2011

Double-blind, 
placebo 
controlled 
(n = 40)

Mania Group A: lithium (1 – 1.2 mEq/L) + 
TMX (80 mg/day); group B: 
lithium (1 – 1.2 mEq/L) + placebo

42 days YMRS score – group A = 3.15 ± 

1.78, group B = 9.45 ± 8.50; p < 
0.01

Kulkarni [77], 
2014

Double-blind, 
placebo 
controlled 
(n = 51)

Mania Group 1: TMX 40 mg/day; group 2 
MPA 20 mg/day; and group 3 
placebo; adjunct to lithium, VPA, 
or carbamazepine, and/or mood-
stabilizing antipsychotic

28 days CARS-M scores decreased more 
quickly in group 2 (MPA); no 
significant difference in mean 
CARS-M score change across 
groups at the end of trial; MPA 
but not TMX was beneficial in 
treating acute mania in women

Yildiz [87], 
2016

Double blind, 
placebo 
controlled 
(n = 48)

Mania MRS scan at baseline and after 3 
weeks of treatment

21 days TMX increased marker of brain 
energy metabolism (total 
creatinine) and neuronal viability 
(NAA) in the dorsomedial PFC

Ahmad [82], 
2016

Double blind, 
active-controlled 
trial (n = 84)

Mania or 
mixed state

Endoxifen (4 mg/day or 8 mg/day) 
or divalproex (1,000 mg/day) in a 
2:1 ratio

21 days Significant decrease in YMRS 
score in as early as 4 days in 
endoxifen group; the effect 
remained significant throughout 
21 days. Response rate 45 and 65% 
at 4 and 8 mg/day of endoxifen 
treatment, respectively.

Talaei [13], 
2016

Meta-analysis of 
5 randomized 
controlled trials

n.a. n.a. n.a. TMX monotherapy-associated 
difference in mean mania score 
change was 22.09 (p < 0.01); 
pooled odds ratio of response to 
TMX was 15.36 (95% CI, 2.99 – 

78.73; p = 0.001)

CARS-M, Clinician administered rating scale – Mania; MPA, medroxyprogesterone; TMX, tamoxifen; YMRS, Young Mania Rating 
Scale; MRS, magnetic resonance spectroscopy; NAA, N-acetylaspartate; VPA, valproic acid; PFC, prefrontal cortex.
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nation, increased intracellular Ca 2+  ions have been ob-
served in BD  [40, 62, 63] . Verapamil, a calcium channel 
blocker with PKC inhibitory activity, is reported to sig-
nificantly improve manic symptoms when combined 
with lithium  [64] .

  Clinical Studies 
 In patients with BD, PKC activity is studied mostly in 

the postmortem brain sample and platelets (usually dur-
ing acute manic episode). A study in cortical homoge-
nates of patients with BD showed that PKC levels and 
membrane-bound PKC activity were found to be in-
creased in comparison with healthy controls  [65] . PKC is 
anchored in the membrane by receptor for activated C 
kinase-1 (RACK-1)  [66] . In frontal cortical homogenate, 
membrane PKC was found to be associated more with 
RACK-1 in BD samples  [67] . Furthermore, in vitro stim-
ulation of PKC by PMA produced enhanced stimulus-
induced association between PKC and RACK-1 in sam-
ples from BD subjects in comparison to matched controls 
 [67] . Platelets from manic patients also show higher 
membrane-bound PKC activity in comparison with 
healthy controls and patients with depression and schizo-
phrenia  [40, 68] . Moreover, chronic treatment with lith-
ium has been observed to decrease both cytosolic and 
membrane-bound PKC levels in platelets from patients 
with BD  [69] .

  Further support to PKC hyperactivity in BD is drawn 
from the use of TMX in human BD patients. TMX is a 
prodrug with little affinity towards estrogen receptor, but 
its metabolites have high affinity and compete with estro-
gen for binding  [70] . TMX also displays PKC inhibitory 
activity  [71]  and is the only PKC inhibitor that crosses the 
blood brain barrier  [72] . In 2000, Bebchuk et al.  [73]  re-
ported a proof-of-concept study in which TMX resolved 
acute manic symptoms in humans for the first time. Since 
then, several small-scale clinical trials have been conduct-
ed to test the utility of TMX in BD management  [74–77] . 
Patients with BD managed with TMX for 3 weeks showed 
a marked improvement in their manic presentation in as 
early as 5 days, an effect that remained significantly dif-
ferent throughout the 3-week trial  [76] . TMX is also ef-
fective as an adjunct to lithium or valproic acid  [78] . In a 
longer double-blind, randomized, placebo-controlled 
6-week study, it was demonstrated that the combination 
of TMX with Li was superior to Li alone for the rapid re-
duction of manic symptoms  [79] . Furthermore, TMX has 
also been reported to be an effective antimanic treatment 
in pediatric population  [80] . In a recent meta-analysis, 
TMX was found to be effective as monotherapy and as an 

adjunctive treatment for manic symptoms  [13] . Recently, 
monotherapy with endoxifen, a metabolite of TMX and a 
potent PKC inhibitor  [81] , was found to be as effective as 
with valproic acid (extended release 1,000 mg/day) in 
mitigation of manic symptoms  [82] . Interestingly, me-
droxyprogesterone acetate, a progestin, also shows sig-
nificant improvement in mania symptoms and may have 
a therapeutic utility in the future  [77, 78] .

  BD is also associated with inefficient energy homeo-
stasis in the brain, including decreases in mitochondrial 
respiration, high-energy phosphates, pH, along with 
changes in mitochondrial morphology, increases in mi-
tochondrial DNA polymorphisms, downregulation of 
nuclear mRNA molecules and proteins involved in mito-
chondrial respiration  [83–85] , and decreased neuronal 
viability marker, N-acetylaspartate (NAA)  [86] . Recently, 
in a double-blind placebo-controlled magnetic resonance 
spectroscopy study, TMX was shown to increase total cre-
atinine and NAA in dorsomedial PFC in patients with 
BD, suggesting enhanced neuronal viability  [87] .

  In contrast to putative hyperactive PKC signaling in 
BD, Young et al.  [88]  did not observe any significant dif-
ference in PKCα levels and activity between platelets from 
control, drug-free BD patients, and lithium-treated BD 
patients. In another contradictory finding in a recent re-
port, Hayashi et al.  [61]  reported increased PKC activity 
in response to lithium in cultured adipocytes from pa-
tients with BD. These conflicting observations could be 
due to differences in patient characteristics and differ-
ences in tissues studied, respectively. In addition, the lat-
ter observation also implies that lithium may have tissue-
specific actions on PKC signaling.

  Downstream Targets of PKC 

 In addition to corroborating hyperactive PKC signal-
ing in BD, studying downstream targets of PKC in BD 
may yield additional therapeutic targets. We will discuss 
recent work that has identified key downstream sub-
strates of PKC such as neurogranin, neurotrophic factors 
(NTFs), growth-associated protein 43 (GAP-43; and sev-
eral aliases such as B-50, F1, and neuromodulin), myris-
toylated alanine-rich C-kinase substrate (MARCKS), 
synaptosomal-associated protein 25 (SNAP-25), along 
with effect of PKC on glutamatergic neurotransmission, 
oxidative stress, apoptotic, and cyclic AMP signaling 
( Fig. 1 ).

  Neurogranin is a brain-specific calmodulin-binding 
protein that is expressed in the dendritic spines  [47] . Neu-
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rogranin is also a postsynaptic PKC substrate  [89] , regu-
lates synaptic plasticity  [90] , and is implicated in schizo-
phrenia  [91, 92] . In both AMPH and PSD models, along 
with imipramine treated rats, phosphorylation of neuro-
granin was increased  [47] . Interestingly, neurogranin 
phosphorylation, which is associated with promanic in-
terventions, was reversed by lithium  [47] . Moreover, cul-
tured hippocampal neurons have also been observed to 
lose their dendritic spines in response to sustained activa-
tion of PKC  [93] .

  NTFs, such as brain-derived neurotrophic factor 
(BDNF), nerve growth factor (NGF), and neurotroph-
in-3, are observed to regulate gene expression and regu-
late synaptic plasticity via PKC signaling  [94, 95] . Fur-
thermore, PKC not only acts as a second messenger but 
BDNF and NGF also modulate the activity of PKC  [96, 
97] . PKC, in turn, influence the expression of NTFs, such 
as NGF  [98] , BDNF  [99] , and glial cell line-derived neu-
rotrophic factor  [100] . These observations underscore 

the complexity and interdependence of these signaling 
cascades that fine-tune the synaptic strength. In vivo, 
AMPH-treated rats show increased PKC but decreased 
BDNF and NGF expression  [7] . This reduction in NTFs 
was reversed by lithium and TMX  [7] . Hence, although 
lithium may appear to decrease neuroplasticity markers 
such as MARCKS and GAP-43, it may enhance synaptic 
strength by increasing NTF expression. In addition, lith-
ium also elongates cilia in PC12 neuronal cells and hu-
man astrocytes via cAMP singling pathway  [101] . Also, 
lithium has been observed to promote synapse formation 
in hippocampus, independent of PKC activity  [102] . 
Hence, lithium may partly influence neuroplasticity 
through PKC-independent mechanisms.

  GAP-43   is also implicated in neurite outgrowth during 
neuronal differentiation and in synaptic plasticity  [103, 
104] , since loss of function of GAP-43 inhibits neu-
rotransmitter release  [105] . GAP-43 is regulated by PKC 
protein, but it acts as an adaptor that binds to membrane 

  Fig. 1.  Hypothetical schema of the effects of hyperactive protein 
kinase C (PKC) signaling in an animal model of bipolar disorder. 
1, activated phospholipase C dissociates phosphatidylinositol-4,5-
bisphosphate (PIP2) into diacylglycerol (DAG) and inositol tri-
phosphate (IP3); 2, DAG as a cofactor activates PKC; 3, increased 
insertion of PKC in the membrane; 4, increased stimulus-induced 
membrane translocation of PKC; 5, increased myristoylated ala-
nine-rich C-kinase substrate (MARCKS) phosphorylation; 6, in-
creased membrane alignment of neurotransmitter-containing ves-

icles; 6, increased phosphorylation of synaptosomal-associated 
protein 25 (SNAP-25) and increased neurotransmitter release; 7, 
increased alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropion-
ic acid (AMPA) and N-methyl- D -aspartate (NMDA) receptor 
phosphorylation and membrane insertion; P, monophosphate/
phosphorylation; 5HT, serotonin; Glu, glutamate; PSD, paradoxi-
cal sleep deprivation; PMA, phorbol esters (phorbol 12-myristate 
13-acetate); PLC, phospholipase C. 
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lipid-rafts  [106] . GAP-43 is also expressed in astrocytes 
and is also regulated by PKC  [107] . GAP-43 levels are 
found to be decreased in postmortem samples of hippo-
campi from patients with BD in comparison with matched 
controls indicating impaired neuroplasticity  [108] . On 
the other hand, lithium administration decreases GAP-43 
expression in both immortalized hippocampal cell cul-
ture and in the frontal cortex and hippocampus through 
myo-inositol depletion  [109] . However, its role in BD 
pathophysiology remains unknown, since the decrease in 
GAP-43 could be a treatment effect of lithium or an inde-
pendent marker of impaired synaptic plasticity in BD. 
Further research is needed to address these issues.

  MARCKS   is a membrane-bound actin crosslinking 
protein that regulates vesicular trafficking and mobility 
of structural phospholipids such as phosphatidylinosi-
tol-4,5-bisphosphate (PIP2) in the membrane plane  [110, 
111] . MARCKS undergoes dissociation from the mem-
brane and translocates to cytoplasm after phosphoryla-
tion by PKC  [112] . An increase in PKC-mediated phos-
phorylation of MARCKS (pMARCKS) in the PFC was 
observed in AMPH treatment and PSD models of mania 
 [47] . In patients with BD, treatment with tricyclic antide-
pressants (TCA) can often induce mania  [113] . The ad-
ministration of imipramine, a TCA, in rats increases the 
pMARCKS in the PFC  [47] . Myo-inositol is an important 
component of PIP2 and provides the building blocks for 
inositol phosphate-mediated second messenger signaling 
 [114] . Lithium treatment decreases the levels of MARCKS 
 [115]  through myo-inositol depletion  [109] . Lithium also 
reversed the increase in pMARCKS in the PFC of AMPH 
and imipramine-treated and sleep-deprived rodents  [47] . 
Valproic acid actions, on the other hand, are independent 
of myo-inositol  [116]  but also decrease MARCKS expres-
sion  [117] . These observations highlight that although 
lithium and valproic acid have different mechanisms of 
actions, they share PKC as a target and affect its down-
stream signaling.

  SNAP-25 is a t-SNARE protein that regulates neu-
rotransmitter release by exocytosis  [118]  and is a major 
PKC substrate  [119, 120] . PKC activation with PMA has 
been shown to increase SNAP-25 phosphorylation and 
redistribute dopamine- and acetylcholine-containing 
vesicles to plasma membrane, along with increased depo-
larization-induced dopamine release  [121] . Phosphoryla-
tion of SNAP-25 was increased in cerebral cortex, hip-
pocampus, and amygdala of mice following cold-water 
restraint stress  [120] . Interestingly, increased phosphory-
lation of SNAP-25 in both hippocampus and PFC was 
also seen in a PSD model of mania, suggesting increased 

neurotransmitter release  [48] . In fact, in support of this 
proposition, euthymic BD patients have been observed to 
have enhanced dopamine release compared with healthy 
subjects  [122] . The effect of mood stabilizers or TMX on 
SNAP-25 phosphorylation, however, remains to be stud-
ied.

  Glutamatergic excitotoxicity is another putative mech-
anisms proposed in BD pathophysiology  [123] . A meta-
analysis revealed that glutamate levels were increased in 
several brain regions of patients with BD  [124] . Regard-
ing glutamatergic signaling, AMPH-treated, sleep-de-
prived, and imipramine-treated rats showed that the in-
crease in the phosphorylation of N-methyl- D -aspartate 
(GluN1S896) and alpha-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (GluA1T840) receptor in the 
PFC was PKC mediated, leading to an increase in traffick-
ing of these receptors to neuronal membranes  [47] . More-
over, the same study showed that these events were inhib-
ited by chronic (3-week) lithium treatment, providing an-
other explanation for antimanic properties of lithium 
 [47] .

  Oxidative stress secondary to mitochondrial dysfunc-
tion is also implicated in BD pathophysiology  [125] . In a 
meta-analysis, oxidative stress markers were observed to 
be increased in BD  [126] . Quercetin is a flavanol that con-
tains a polyphenolic structure that scavenges free radicals 
and hence, acts as an antioxidant, and it also exhibits 
pleiotropic nonspecific PKC inhibition  [127] . Kanazawa 
et al.  [53]  showed that the quercetin administration was 
able to reverse the increase in lipid peroxidation in PFC, 
hippocampus, and striatum in a mouse model of mania 
induced by PSD. Quercetin also blocked methylpheni-
date-induced hyperlocomotion and oxidative stress in 
PFC, hippocampus, and striatum of mice  [51] . It appears 
that oxidative stress is downstream to PKC signaling as 
TMX, a selective PKC inhibitor, also prevented and re-
versed oxidative stress in AMPH-treated rats  [50] .

  GSK-3beta is a constitutively active kinase with high 
basal activity and inactivated by phosphorylation  [128] . 
GSK was first characterized for its role in glycogen me-
tabolism but later earned its major recognition in devel-
opmental and cancer biology  [128] . GSK-3beta is inhib-
ited by both lithium  [129]  and valproic acid  [130] . Lithi-
um directly inhibits GSK-3beta at supra-therapeutic 
levels  [131]  and indirectly, at therapeutically relevant 
concentration, through phosphorylation of its key inhib-
itory site, serine-9 via PI3-PKC pathway  [132] . The effect 
of lithium on GSK-3beta expression, however, may be 
brain region dependent. For example, in a recent in vivo 
experiment, we observed that lithium treatment de-
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creased total GSK-3beta expression in PFC but increased 
it in the hippocampus  [7] . Nevertheless, AMPH treat-
ment significantly increased GSK-3beta expression and 
decreased phosphorylated GSK-3beta (pGSD-3beta – in-
active form) in all mood-regulating frontolimbic struc-
tures  [7] , suggesting a GSK-3beta hyperactivity. Lithium 
and TMX administration reversed the AMPH-induced 
overactivation of GSK-3beta, suggesting that the increase 
in the GSK-3beta activity may be partly mediated by PKC 
 [7] . Inhibition of GSK has also been shown to be neuro-
protective by inhibition of apoptotic signaling and neu-
rodegeneration  [133] , and is considered as one of the key 
future therapeutic avenues for BD  [134] .

  The cyclic AMP (c-AMP)/protein kinase A (PKA)/c-
AMP response element binding protein (CREB)   pathway 
plays an important role in synaptogenesis and synaptic 
plasticity  [135] . Although the c-AMP /PKA/CREB path-
way is not the focus of this review, it is important to note 
its cross-talk with phospholipase C (PLC)/PKC signaling 
pathway. The G protein-bound adenylate cyclase catalyz-
es the conversion of ATP into c-AMP, which activates 
PKA, which in turn regulates several intracellular pro-
cesses including phosphorylation of CREB, a transcrip-
tion factor  [136] . Increased c-AMP signaling is also im-
plicated in BD  [137–139] . In vivo microdialysis revealed 
that direct activation of PKC by PMA in the frontal cortex 
and hippocampus increases c-AMP in the dialysate  [39] . 
Moreover, AMPH-treated rats show a decreased PKA 
and CREB phosphorylation in the frontolimbic circuit 
(PFC, hippocampus, amygdala, and striatum), and this 
decrease was prevented and reversed by lithium and TMX 
treatment  [7] .

  Genetics 

 BD has high familial inheritability, and recent advanc-
es in genomic studies may provide insights into the ge-
netic basis of BD  [140] . Genetic studies have also impli-
cated PKC in BD  [141–143] . In the following section, we 
will briefly discuss putative gene candidates involving ac-
tivator protein 1 (AP-1), GSK-3beta, DAG kinase eta 
(DGKeta), and PKC interacting protein/histidine triad 
nucleotide binding protein 1 (PKCI/HINT1), that high-
light putative genetic mechanisms underlying BD. 

  AP-1 is a transcription factor, comprising Fos and Jun 
subunits  [144] , that regulates gene expression and neuro-
plasticity and is implicated in several chronic cardiovas-
cular  [145]  and psychiatric illnesses  [144] . AP-1 has been 
shown to increase its DNA binding in response to expo-

sure to lithium and valproic acid  [146–148]  and increase 
the translation of AP-1-regulated genes in vitro and in 
vivo  [39, 116] . Moreover, PKC signaling influences this 
key epigenetic effect by regulating phosphorylation Jun 
proteins  [149] .

  DGKeta gained attention after several genome-wide 
association studies found DGKeta as one of the replicated 
risk genes in BD  [150] . DGKeta is coded by DGKH gene, 
and polymorphisms in the DGKH gene have been ob-
served to confer susceptibility to BD  [151] . DGK risk hap-
lotypes in humans are also associated with enlarged 
amygdala in BD patients  [152] . Moreover, DGK is in-
volved in biosynthesis of glycerophospholipids (GPLs) 
 [153] . Alterations in membrane GPL composition has 
been implicated in several neuropsychiatric disorders, in-
cluding BD  [154] . DGKeta was observed to negatively 
regulate the PLC/PKC pathway by converting inactivat-
ing DAG, a cofactor of PKC, to phosphatidic acid  [155–
157] , hence preventing overactivation of PKC cascade. 
Recently, DGKeta and PKC have been shown to recipro-
cally inhibit each other  [158] . Specifically, in HEK 293 
cells, DGKeta overexpression increased and PKC acti-
vation decreased G-protein-coupled receptor (GPCR) 
signaling  [158] . DGKeta overexpression prevented PKC 
activation-induced desensitization of GPCR signaling 
 [158] . Pharmacological activation of PKC, in turn, pre-
vented DGKeta overexpression-induced enhanced GPCR 
(muscarinic and purinergic) signaling  [158]  ( Fig. 2 ). In 
the light of significant evidence in support of PKC hyper-
activity in BD, hypoactive DGKeta function can be hy-
pothesized in BD  [159] . In fact, DGKeta knockout mice 

  Fig. 2.  Reciprocal regulation of intracellular diacylglycerol kinase 
eta (DGKeta) and protein kinase C (PKC) activity. DGKeta en-
hances G-protein coupled receptor (GPCR) signaling, and PKC 
inhibits GPCR signaling. DGKeta and PKC each reciprocally in-
hibit this action. Both PKC and DGKeta have been found to be 
elevated in bipolar disorder. 
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display manic features that were ameliorated by lithium 
 [160] . In contrast, patients with BD show increased DG-
Keta expression  [161] . Given a reciprocal regulation be-
tween DGK and PKC  [162] , a compensatory increase in 
DGK expression can be hypothesized. However, future 
investigations are needed to further clarify the role of DG-
Keta in the pathophysiology of BD  [163] .

  PKCI/HINT1 is another gene candidate implicated in 
BD. PKCI/HINT1 is a haploinsufficient tumor suppres-
sor gene  [164] . In a meta-analysis, PKCI/HINT1 expres-
sion in dorsolateral PFC was found to be decreased in BD 
 [165] . PKCI/HINT1 knockout mice do not show baseline 
hyperlocomotion but display enhanced locomotor re-
sponse to AMPH treatment  [166] , increased risk-taking 
and antidepressant-like behavior  [167] , emotional arous-
al, and PKC expression  [168] . As increased PKCI/HINT1 
expression shows antineoplastic properties in colon and 
hepatic cells, a hypoactive PKCI/HINT1 may indicate ac-
tivated neoplastic signaling that underlies BD  [164] .

  Suicidality is a common occurrence in patients with 
BD, and PKC is also implicated in suicidal behavior in 
patients with BD  [169, 170] . In a meta-analysis of 8,700 
patients, both unipolar depression and BD were found to 
be associated with suicidality and gene locus for PKCε 
 [170] . Moreover, using the convergent functional ge-
nomics approach, MARCKS, a PKC substrate  [171] , was 
found to be one of the 6 peripheral biomarkers that pre-
dict past and future hospitalization in relation to suicidal-
ity in patients with BD  [172] . This observation further 
implicates hyperactive PKC signaling in the etiopatho-
genesis of BD.

  Conclusion 

 An understanding of the pathogenesis of BD is needed 
to develop more effective therapies. Research in the past 
decade has identified several mechanisms such as apop-
totic, neoplastic, inflammatory, energy homeostasis, syn-
aptic neurotransmission, and oxidative balance to be in-
volved in the pathophysiology of BD. However, PKC ap-
pears to play a central role in all these processes  [173] . 
This attribution is supported by the effectiveness of PKC 
inhibitors, such as TMX and endoxifen, in treating man-
ic symptoms in humans. Nevertheless, future research is 
warranted to develop safe and specific therapies for this 
devastating disorder.
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