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mental delay (DD) and/or intellectual disability (ID) 
compared to karyotyping, primarily because of its higher 
sensitivity for submicroscopic deletions and duplications 
[Miller et al., 2010]. However, whole-exome sequencing 
(WES) in DD/ID revealed de novo mutations in protein 
coding genes in 60% of individuals, having a higher per-
formance [Hochstenbach et al., 2011]. 

 Next-generation sequencing is a powerful tool for the 
diagnosis of mendelian disorders with variable pheno-
types without a family history, leading to the discovery of 
new genes associated with diseases or a new disease asso-
ciated with specific loci [Yang et al., 2013; Xue et al., 2015; 
Retterer et al., 2016]. The clinical yield of this test will 
continue to increase over time, allowing providers to ef-
ficiently arrive at a diagnosis [Lee et al., 2014; Xue et al., 
2015]. According to Yang et al. [2014], this method iden-
tifies underlying genetic defects in 25% of patients re-
ferred for a possible genetic condition.

  According to the American College of Medical Genet-
ics (ACMG), indications for WES [ACMG, 2012] are 
when (1) clinical diagnostic assessment of a phenotypi-
cally affected individual with history data strongly impli-
cate a genetic etiology, but the phenotype does not cor-
respond with a specific disorder for a specific gene, (2) the 
phenotype demonstrates a high degree of genetic hetero-
geneity without a specific test available, and (3) specific 
genetics tests available for the phenotype have failed.

 Keywords 

  AHDC1  mutation · Whole-exome sequencing · Xia-Gibbs 
syndrome 

 Abstract 

 Xia-Gibbs syndrome is an autosomal dominant multisystem 
developmental disorder characterized by global develop-
mental delay, hypotonia, obstructive sleep apnea, seizures, 
retrocerebellar cysts, delayed myelination, micrognathia, 
and mild dysmorphic features. Using whole-exome sequenc-
ing, we identified a de novo  AHDC1  frameshift mutation 
c.2030_2030delG (p.G677Afs * 52) in a Colombian patient, 
which was absent in both parents. Furthermore, we summa-
rized the phenotypes of patients reported in the literature. 

 © 2017 S. Karger AG, Basel 

 Many patients living with rare genetic diseases have 
gone through several rounds of genetic testing (e.g., 
karyotyping, candidate gene sequencing, aCGH, next-
generation sequencing), frequently not receiving an ac-
curate diagnosis or proper information regarding the 
prognosis of the disease. This may lead to treatment delay 
and a risk of morbidity/mortality [Gahl et al., 2012].

  aCGH offers a higher diagnostic rate (15–20%) for ge-
netic testing of individuals with unexplained develop-
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  Xia-Gibbs syndrome (OMIM 615829) was mentioned 
for the first time by Xia et al. [2014] after analysis of par-
ent-offspring trios of 4 probands with DD, hypotonia, 
mild dysmorphic features, sleep apnea, and other symp-
toms, finding 3 new allelic variants in the  ADHC1  (AT 
hook DNA-binding motif containing 1) gene likely to be 
pathogenic; it was the first report in genome databases. 
Yang et al. [2015] reported 6 frameshifts or nonsense del-
eterious de novo variants and 1 recurrent variant in the 
same gene, associated with expressive language delay, hy-
potonia, and sleep apnea. Recently, Bosch et al. [2016] 
identified a de novo variant in an older patient with a his-
tory of DD and speech delay as well as characteristic fa-
cies. Previously, a de novo missense variant in a case of 
schizophrenia [Guipponi et al., 2014] and a de novo bal-

anced translocation with a breakpoint in the  AHDC1  in-
tron 1 in a boy with bicuspid aortic valve, aortic coarcta-
tion, patent ductus arteriosus, and DD/ID have been re-
ported in this gene [Quintero-Rivera et al., 2015]. Several 
large CNV deletions including the  AHDC1  gene have 
been described in pediatric patients with DD/ID [Itsara 
et al., 2009; Cooper et al., 2011; Coe et al., 2014]. Although 
due to the large size of the deletions, it is uncertain wheth-
er  AHDC1  is the only gene contributing to the neurode-
velopmental phenotype. Xia et al. [2014] proposed that 
 AHDC1 -associated ID is due to a dominant-negative 
mechanism, given the autosomal-dominant inheritance 
and the single coding exon of this gene.

  The  AHDC1  gene located in chromosome 1p36.11 en-
codes a protein of 1,603 amino acids, consisting of 7 exons 
with only 1 coding exon (exon 6), containing 2 AT-hooks, 
which likely function in DNA binding. AT-hook motifs 
are known as auxiliary protein motifs that cooperate with 
other DNA-binding activities and facilitate DNA struc-
ture changes [Aravind and Landsman, 1998]. The  AHDC1  
gene   is part of the CBX family of proteins associated with 
human chromodomain-containing Polycomb proteins 
[Vandamme et al., 2011]. In vivo assays have demonstrat-
ed that AHDC1 interacts with several nuclear proteins 
involved in epigenetic regulation during development 
[Vandamme et al., 2011], mainly in neural sites and neu-
ron proteins for transport [Uhlén et al., 2015]. In mice, 
 Ahdc1  is expressed at embryonic day E11.5 and E16.5 in 
the developing brain [Quintero-Rivera et al., 2015], sug-
gesting that AHDC1 may be involved in early brain de-
velopment.

  In this study, we described the first Colombian patient 
with Xia-Gibbs syndrome, with a new mutation in the 
 AHDC1  gene identified by WES and compared the 12 
cases reported in the literature to better understand the 
clinical phenotype and the association with the  AHDC1  
gene.

  Patient and Methods 

 Case Report 
 The 8-year-old Colombian girl is the first child born at term to 

27-year-old nonconsanguineous parents after prolonged labor 
and perinatal hypoxia, with an Apgar score of 6 at 10 min. The 
child was admitted to the neonatal intensive care unit requiring 
mechanical ventilation for 27 days. Clinical follow-up showed hy-
potonia and DD (head control at 7 months, sitting at 12 months, 
standing at 24 months, walking at 28 months, and currently speak-
ing only 2 words) with dysmorphic features including midfacial 
hypoplasia, hypertelorism, micrognathia, epicanthic fold, promi-
nent teeth, upslanting palpebral fissures ( Fig. 1 ), and laryngoma-

a

b

  Fig. 1.   a  Patient at the age of 5 years. Facial features showing mid-
facial hypoplasia, hypertelorism, micrognathia, epicanthic fold, 
prominent teeth, and upslanting palpebral fissures.  b  Brain MRI 
showing frontal and temporal cortical atrophy, with loss of poste-
rior ventricular white matter (arrows). 
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lacia requiring 8 surgical interventions due to glottal stenosis. Her 
family history was unremarkable

  Brain MRI revealed frontal and temporal cortical atrophy with 
loss of posterior ventricular white matter ( Fig. 1 ). The girl’s karyo-
type, microarray, and metabolic tests were normal.

  Molecular Analysis 
 WES was performed using Illumina HiSeq platform (overall 

performance of 90% exome coverage at 40× depth) identifying a 
new mutation in  AHDC1  (c.2030_2030delG; p.Gly677AlafsX52) 
verified by Sanger sequencing and absent in both maternal and 
paternal DNA. It was therefore interpreted as a de novo event that 
results in a frameshift of the  AHDC1  open reading frame and is 
predicted to cause a premature termination codon after 52 amino 
acids. Predicted truncating mutations in  AHDC1  are absent in the 
genome mutation databases dbSNP and ExAC. The pathogenic ef-
fect of the described mutation in  AHDC1  was predicted by the 
bioinformatic tools PolyPhen-2 (prediction “probably damag-
ing” – score of 0.958) [Adzhubei et al., 2010], MutationTaster (pre-
diction “disease causing”) [Schwarz et al., 2014], and SNPs&GO 
(RI = 8 Effect = neutral) [Calabrese et al., 2009]. Furthermore, gly-
cine is a conserved amino acid between species; therefore, any 
change in this amino acid can generate alterations of the protein 
structure.

  Discussion 

 Here, we report a proband with DD and dysmorphic 
facial features due to a frameshift mutation in  AHDC1 , 
which was discovered by WES. To date, 12 individuals 
with  AHDC1  mutations have been reported in the litera-
ture. Developmental histories of patients evidenced that 
all had delayed speech and psychomotor delay; most in-
dividuals had mild dysmorphic facial features that could 
be seen at a young age and had a history of sleep distur-
bance because of anomalies of the upper airway structure.

  The independent occurrence of 12 de novo mutation-
al events at this locus in unrelated individuals with similar 
phenotypes is highly unlikely, suggesting that mutations 
in  AHDC1  cause this complex disorder, which has not 
been previously reported in the literature since Xia et al. 
[2014]. It is remarkable that all cases were detected by 
WES after several genetic tests. Clinical features of the re-
ported cases of Xia et al. [2014], Yang et al. [2015], and 
Bosch et al. [2016] compared with the clinical presenta-
tion of our case are summarized in  Table 1 .

  Xia et al. [2014] proposed that  AHDC1 -associated ID 
is due to a dominant-negative mechanism, given the au-
tosomal-dominant inheritance and the single coding 
exon of this gene [Xia et al., 2014]. This results in an in-
sufficient dosage of encoded protein which would sever 
the link between DNA damage response and proper brain 
development [Quintero-Rivera et al., 2015]. This is based T
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on a model in which the protein encoded by the gene with 
the gene dosage imbalance or mutation affects the bind-
ings to other protein(s) to form a functional complex 
which may lead to the formation of inactive complexes 
[Poot et al., 2011].

  Although there are no functional or computational 
studies of these proteins, we speculate that  AHDC1  vari-
ants may interrupt protein translation, possibly disrupt-
ing the interaction with other proteins important for 
brain development and function.

  WES has proven to be an important tool to improve 
our ability to diagnose patients with heterogeneous dis-
eases; especially, the expanded use of WES has led us to 
find new genes causing diseases and new diseases caused 
by genes. Variants in  AHDC1  should be validated with in 
vivo and in vitro assays to understand the mechanisms of 
the genotype/phenotype relationship.
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