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nabis use is self-reported by over 25% of pregnant women 
 [10] . The major psychoactive ingredient in cannabis is 
Δ9-tetrahydrocannabinol (THC), which acts primarily 
via the G-protein coupled cannabinoid receptor 1 (CB1R) 
 [11] , signaling via the activation of ERK kinases and/or 
the inhibition of adenyl cyclase (reviewed in  [12, 13] ). 

   CNR1  (CB1R)   expression is detected in the human fe-
tal cortex in the first trimester, increasing during develop-
ment  [14, 15]  and ultimately found in both excitatory and 
inhibitory neurons and in glia cells in the adult brain (re-
viewed in  [16] ). Evidence from neuron subtype-specific 
deletions suggests that CB1R may have different func-
tions and pharmacological properties in different cell 
types (reviewed in  [17] ) and that its subcellular localiza-
tion may mediate distinct signaling  [18, 19] . Endocan-
nabinoids play critical roles during fetal brain develop-
ment, being involved in neuronal differentiation, surviv-
al and the regulation of neurotransmitter systems  [20–22] . 

  Exposure to THC has been shown to alter neuronal 
excitability  [21, 23, 24]  via changes in expression of syn-
aptic components, such as glutamate receptor subunits 
( GRIA1, GRIA2, GRIN1, GRIN2A ,   and  GRIN2B )  [21, 24, 
25]  as well as  CNR1   [26, 27]  and  COX2   [21, 28] , two im-
portant mediators of intracellular cannabinoid signaling.

  Resolving the consequences of prenatal THC on hu-
man fetal brain development is complicated by variable 

 Keywords 

 Cannabinoid · Pluripotent stem cell · Gene expression 

 Abstract 

 Given the cognitive and behavioral effects following in utero 
Δ9-tetrahydrocannabinol (THC) exposure that have been re-
ported in humans and rodents, it is critical to understand the 
precise consequences of THC on developing human neu-
rons. Here, we utilize excitatory neurons derived from hu-
man-induced pluripotent stem cells (hiPSCs), and report that  
 in vitro THC exposure reduced expression of glutamate re-
ceptor subunit genes ( GRIA1 ,  GRIA2, GRIN2A , and  GRIN2B ). By 
expanding these studies across hiPSC-derived neurons from 
individuals with a variety of genotypes, we believe that a hiP-
SC-based model will facilitate studies of the interaction of 
THC exposure and the genetic risk factors underlying neuro-
psychiatric disease vulnerability.  © 2017 S. Karger AG, Basel 

 Introduction 

 Cannabis is the most prevalent illicit drug of abuse  [1] . 
Although prenatal exposure is associated with negative 
effects on fetal brain development in humans  [2–9] , can-
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THC exposures (dose, timing, and duration) between 
pregnancies, confounding exposures to multiple illicit 
drugs  [29] , and genotype-dependent effects  [30] . Because 
neural cells differentiated from human-induced pluripo-
tent stem cells (hiPSCs) most resemble fetal brain tissue 
 [31–34] , they provide an unprecedented platform for 
studying the molecular, cellular, and functional results of 
fetal THC exposure to neural cells, across a variety of ge-
netic backgrounds. In this study, we demonstrate that 
THC treatment of human excitatory neurons (whether 
generated by  NGN2  induction from hiPSCs ( NGN2 -
hiPSC neurons)  [35]  or hiPSC-derived neural progenitor 
cells ( NGN2 -NPC neurons)  [36] , or via directed differen-
tiation from NPCs (forebrain neurons)  [37, 40]  recapitu-
lated several known molecular consequences of THC ex-
posure, such as changes in glutamate receptor subunit ex-
pression, at least partially in a CB1R-dependent manner.

  Methods 

 hiPSC Reprogramming and NPC Differentiation 
 For cohort 1, human fibroblasts were obtained in collaboration 

with Judith Rapoport, MD (NIMH) as previously described  [38]  
(NSB553, NSB2607, NSB690). Derivation of hiPSCs was done by 
Sendai virus reprogramming and then cultured on mEF plates us-
ing HUES media ((DMEM/F12 [Life Technologies], 20% KO-Se-
rum Replacement [Life Technologies], 1× Glutamax [Life Tech-
nologies], 1× NEAA [Life Technologies], 55 μ M  β-mercaptoethanol 
[Sigma], and 20 ng/mL FGF2 [Invitrogen]). hiPSCs were passaged 
approximately 1:   3 every 5–7 days with 1 mg/mL Collagenase (Invi-
trogen) in DMEM (Life Technologies) and fed every day. Passage-
matched hiPSCs were used for all experiments. Cohort 1 NPCs 
were derived from hiPSCs using dual-SMAD inhibition as previ-

ously described  [39, 40] . NPCs were cultured on Matrigel (BD)-
coated plates in NPC media (DMEM/F12, 1× N2 [Life Technolo-
gies], 1× B27-RA [Life Technologies], and 20 ng/mL FGF2), main-
tained at high density and passaged with Accutase (Millipore).

  For cohort 2, human fibroblasts were obtained from ATCC 
(CRL-2522) and Coriell (GM03440, GM03651, GM04506, and 
AG09319). hiPSCs were reprogrammed using tetracycline-induc-
ible lentiviral vectors and differentiated to NPCs as previously de-
scribed  [40] . 

  Passage-matched NPCs were used for all experiments. All
hiPSC and NPCs used were mycoplasma-free ( Table 1 ).

  Neural Induction/Differentiation 
  NGN2 -hiPSC neurons: hiPSCs were washed with PBS, dissoci-

ated with Accutase (Millipore), and plated on Matrigel (BD)-coat-
ed plates in MEF-conditioned HUES (DMEM/F12, 20% Knockout 
Serum Replacement, 1× NEAA, 1× Glutamax, 1× β-mercapto-
ethanol, 20 ng/mL FGF2) media with ROCK inhibitor (10 μ M  
Y27631). Tetracyline-inducible lentivirus expressing  NGN2  was 
constituted in MEF-conditioned HUES media and spinfected into 
dispersed hiPSCs (1,000  g , 1 h) after 24 h recovery (day –1). Media 
was changed at day 0 to neural differentiation media (DMEM/F12, 
1× B27, 1x N2, 20 ng/mL BDNF, 20 ng/mL GDNF, 1 m M  d-cAMP, 
200 n M  ascorbic acid, 1 μg/μL laminin, and 1 μg/mL doxycycline) 
to commence neural induction. Cells were selected with 0.2 μg/mL 
puromycin from days 2 to 4. Media was replaced at day 2; subse-
quently, only 50% of the media was changed every other day. 

   NGN2 -NPC neurons: NPCs were dissociated with Accutase, 
plated on Matrigel, spinfected with doxycycline-inducible  NGN2  
lentivirus, and selected with 0.2 μg/mL puromycin, as previously 
described  [36] . Neurons were fed neural differentiation media ev-
ery other day for 3 weeks after induction.

  hiPSC forebrain neurons: NPCs were dissociated with Ac-
cutase, plated on polyornithine/laminin- ( Fig. 3 b–d) or Matrigel- 
( Fig. 3 e–g,  Fig. 4 ) coated plates for 6 weeks as previously described 
 [40] . Neurons were fed neural differentiation 1–2 times per week 
for 6 weeks.

 Table 1. Case and control hiPSC and NPC lines

Cohort Individual Source Sex hiPSC/NPC line ID

1 C1 NIH male NSB553 hiPSC#2 / NSB553 hiPSC#S1 NPC#1
1 C2 NIH male NSB2607 hiPSC#4 / hiPSC#4 NPC#1
1 C3 NIH male NSB690 hiPSC#3 / NSB690 hiPSC#2 NPC#1
1 C4 NIH female NSB3183 hiPSC#1
1 C5 NIH female NSB3121 hiPSC#1
2 Ca ATCC male BJ hiPSC#2 NPC#A
2 Cb Coriell male GM03440 hiPSC#5 NPC#1
2 Cc Coriell female GM03651 hiPSC#A NPC#A
2 Cd Coriell female GM04506 hiPSC#B NPC#A
2 Ce Coriell female AG09319 hiPSC#2 NPC#A
2 S1 Coriell male GM01792 hiPSC#1 NPC#A, GM01792 hiPSC#1 NPC#E
2 S2 Coriell male GM02038 hiPSC#1 NPC#A, GM02038 hiPSC#1 NPC#B
2 S3 Coriell female GM01835 hiPSC#1 NPC#5
2 S4 Coriell female GM02497 hiPSC#1 NPC#C
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  THC was dissolved in DMSO to 1 mg/mL and prepared as pre-
viously described  [38] ; in all experiments, an equivalent volume of 
DMSO was used as a vehicle control. THC treatment of  NGN2 -
hiPSC and  NGN2 -NPC neurons occurred with each media change 
(every other day) for the final 7 days of maturation (5 n M  every
48 h for 7 days); induced neurons were harvested for experiments 
on the 21st day. For forebrain neurons, cells were treated with ei-
ther 5 n M  THC every 48 h for 7 days or with acute THC exposure 
(1 μ M  THC for 24 h) and chronic THC treatment (50 μ M  THC 
daily for 7 days) immediately prior to harvest at 6 weeks. The CB1R 
antagonist SR141716A (RIM, Tocris) was dissolved in DMSO and 
used at a final concentration of 20 n M ; an equivalent volume of 
DMSO was used as a vehicle control. 

  Lentivirus Generation 
 Lentivirus production was as previously described  [36] : 12.2 μg 

lentiviral DNA, 8.1 μg MDL-gagpol, 3.1 μg Rev-RSV, and 4 μg 
CMV-VSVG were mixed together with 500 μL of Opti-MEM (Life 
Technologies) and 1 μg/μL polyethylenimine (Polysciences) 25kD 
linear and added per 15 cm plate of HEK 293T cells. Medium was 
changed 5 h later. Virus was harvested from media supernatant 48 
h after transfection and again 48 h later. Virus was concentrated 
by ultracentrifugation at 13,000  g  for 2 h, resuspended in DMEM, 
aliquoted, and stored at –80   °   C.

  qRT-PCR 
 Total RNA was extracted from cells using Trizol (Life Tech-

nologies). One-step qRT-PCR was performed from 500 ng RNA, 

 Table 2. Summary of the effect of THC on gene expression

Gene Evidence Species/brain 
region

Dose Method Direction NGN2-
hiPSC 
neurons

NGN2-
NPC 
neurons

Forebrain 
neurons

GRIA1 Fan et al. 
[24] 

mouse 
hippocampus

in vivo: 
10 mg/kg/day, i.p., 
for 7 days

qPCR and 
western blot

decrease decrease decrease decrease

Suarez et al. 
[52]

rat cerebellum in vivo: 
5 mg/kg, orally from 
gestational day 5 to 
postnatal day 20

IHC decrease

GRIA2 Fan et al. 
[24] 

mouse 
hippocampus

in vivo: 
10 mg/kg/day, i.p., 
for 7 days

qPCR and 
western blot

decrease decrease decrease decrease

Suarez et al. 
[52]

rat cerebellum in vivo: 
5 mg/kg, orally from 
gestational day 5 to 
postnatal day 20

IHC decrease

GRIN2A Fan et al. 
[24] 

mouse 
hippocampus

in vivo: 
10 mg/kg/day, i.p., 
for 7 days

qPCR and 
western blot

decrease decrease decrease decrease

GRIN2B Fan et al. 
[24] 

mouse 
hippocampus

in vivo: 
10 mg/kg/day, i.p., 
for 7 days

qPCR and 
western blot

decrease decrease decrease decrease

CNR1 Zhuang et al. 
[27]

mouse 
hippocampus, 
cerebellum and 
striatum

in vivo: 
10 mg/kg/day, i.p. 
from 6 h to 21 days

qPCR increase in 
cerebellum 
and hippo-
campus; 
decrease in 
striatum

increase increase increase

COX2 Chen et al. 
[21]

NG108-15 cells 
and hippocampal 
cell culture

in vitro: 
30 μM for 12 h
in vivo: 10 mg/kg/day, 
from 4 h to 7 days

qPCR and 
western blot

increase increase increase increase

Mestre et al. 
[28]

murine 
brain-derived 
endothelial cells

in vitro:
25 nM, 100 nM, and
1 μM for 20 h

WIN55; 
western blot

increase
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  Fig. 1.  THC-induced alteration in gene expression in  NGN2 -hiPSC 
neurons.  a  Schematic of  NGN2 -hiPSC neuron induction from
hiPSCs.  b–d  Real-time PCR analysis of  GRIA1, GRIA2, GRIN1, 
GRIN2A, GRIN2B, CNR1 ,   and  COX2  expression in  NGN2 -hiPSC 
neurons treated with DMSO (control) or THC (5 n M ) for 7 days. 

C1–C5 indicate neurons induced from 5 different individuals 
(controls 1–5). Values are expressed as mean ± SEM, relative to 
DMSO-treated levels for C1.  *   p  < 0.05,  *  *   p  < 0.01,  *  *  *   p  < 0.001, 
 *  *  *  *   p  < 0.0001. 

  Fig. 2.  THC-induced alteration in gene expression in  NGN2 -NPC 
neurons.  a  Schematic of  NGN2 -NPC neuron induction from
hiPSC forebrain NPCs.  b–d  Real-time PCR analysis of  GRIA1, 
GRIA2, GRIN1, GRIN2A, GRIN2B, CNR1 ,   and  COX2  expression 
in  NGN2 -NPC neurons treated with DMSO (control) or THC

(5 n M ) for 7 days. C1–C3 indicate neurons induced from 3 differ-
ent individuals (controls 1–3). Values are expressed as mean ± 
SEM, relative to DMSO-treated levels for C1.  *   p  < 0.05,  *  *   p  < 0.01, 
 *  *  *   p  < 0.001,  *  *  *  *   p  < 0.0001.  

(For figure see next page.)
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and the results reported include at least 3 independent RNA prep-
arations (qRT-PCR from cohort 2 for Fig.  3 was from an inde-
pendent RNA preparation and required, following Trizol RNA
purification, clean up with chloroform followed by ethanol
precipitation with glycogen and conversion to cDNA using the
high-capacity RNA-to-cDNA kit [Thermofisher]). Primers 
spanned intron/exon junctions (except for  ACTIN  and  MAP2 ); 
primer specificity and the absence of genomic RNA contamination 
was confirmed by the melting curve of the products. The PCR cy-
cling parameters were 94   °   C for 2 min, 40 cycles at 94   °   C for 15 s, 

60   °   C for 20 s, and 72   °   C for 40 s. The comparative threshold cycle 
value (Ct) method was used for data analysis. mRNA values were 
normalized to both  GAPDH  and  ACTIN  by dividing the expres-
sion level (per technical replicate) by the average of the 2 house-
keeping Ct values (per technical replicate). Primer sequences are 
listed in online supplementary Table 1. 

  Statistical Analysis 
 Statistical analyses were performed using GraphPad Prism ver-

sion 7.0b for Mac OS X (GraphPad Software, San Diego, CA, 
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  Fig. 3.  THC-induced alteration in gene ex-
pression in hiPSC forebrain neurons from 
cases with schizophrenia and healthy con-
trols.    a  Schematic of directed differentia-
tion from hiPSCs.  b–d  Real-time PCR 
analysis of  GRIA1, GRIA2, GRIN2A, 
GRIN2B, CNR1 ,   and  COX2  expression in 
hiPSC forebrain neurons treated with 
DMSO (control), 1 μ           M  THC for 24 h, and 
50 n M  THC for 7 days. Ca–Cd indicate 
neurons induced from 4 different individu-
als (controls a–d). Values are expressed as 
mean ± SEM, relative to DMSO-treated 
levels for Ca.  e–g  Real-time PCR analysis    of 
GRIA1, GRIA2 ,   and  CNR1  expression in 
hiPSC forebrain neurons treated with 
DMSO (control) or 1 μ M  THC for 24 h. Ca–
Cc indicate neurons induced from 3 con-
trols and Sa–Sc from 3 patients with schizo-
phrenia (controls and schizophrenia pa-
tients a–c). Values are expressed as mean ± 
SEM, relative to DMSO-treated levels for 
Ca.  *      p  < 0.05,  *  *      p  < 0.01,  *  *  *      p  < 0.001, 
 *  *  *  *    p  < 0.0001.  p  SZ-  CNR1   acute vs. chronic  = 
0.0008. 
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USA). Data are presented as the mean  ±  SEM and were analyzed 
by two-way ANOVA with the Sidak multiple comparison test or 
Friedman test with Dunn’s multiple comparisons test. Values are 
expressed as mean ± SEM.  p  > 0.05 (ns);  *   p   ≤  0.05;  *  *   p   ≤  0.01; 
 *  *  *   p   ≤  0.001;  *  *  *  *   p   ≤  0.0001.

  Results 

 THC Exposure Alters Gene Expression of Glutamate 
Receptor Subunits 
 We and others have previously demonstrated that 

 NGN2 -hiPSC neurons  [35] ,  NGN2 -NPC neurons  [36] , 
and directed differentiation forebrain neurons  [37, 40]  
have neuronal morphology (online suppl. Fig.  1, 2; see 
www.karger.com/doi/10.1159/000477762 for all online 
suppl. material), are positive for neuronal markers such 
as βIII-TUBULIN, the dendritic marker MAP2AB (on-

line suppl. Fig.  2), the excitatory synaptic marker 
VGLUT1, and other synaptic proteins. Gene expression 
studies indicate that a variety of neuronal enzymes and 
synaptic proteins are expressed and that these cells are 
most similar to fetal forebrain tissue  [31, 42] . All three 
populations of neurons undergo action potentials and 
show evidence of spontaneous neuronal activity  [35–37] .

  In mice, THC is typically used to induce dose- and 
time-dependent alterations in gene expression in vivo at 
concentrations from 5 to 10 mg/kg body weight for 4 h to 
7 days; it has been used on primary mouse neurons in vi-
tro at doses ranging from 25 n M  to 30 μ M  for 12–20 h 
( Table 2 ). Critically, because THC induced cell death in 
two human neuroblastoma cell lines (SK-N-SH and 
NUB-6) in treatments as low as 20 n M  THC  [43] , we first 
treated hiPSC-derived neurons with a minimal dose of 
THC (5 n M  for 7 days), increasing in later experiments 
(50 n M  THC for 7 days and 1 μ M  THC for 24 h).

  We tested the effect of 7-day 5-n M  THC treatment, 
relative to DMSO-treated vehicle controls, on glutamate 
receptor gene expression across 3-week-old  NGN2 -
hiPSC neurons from 5 independent control hiPSC lines 
(cohort 1, controls 1–5) as well as 3-week-old  NGN2 -
NPC neurons from 3 independent control NPC lines
(cohort 1, controls 1–3), in order to determine if THC ef-
fects are consistent in excitatory neurons derived from 
multiple control individuals via differing methodologies. 
Across 3 independent experimental replicates (triplicate 
biological samples within each experimental replicate) 
for both  NGN2 -hiPSC and  NGN2 -NPC neurons, THC 
treatment reduced  GRIA1 ,  GRIA2, GRIN2A ,   and  GRIN2B  
expression ( NGN2 -hiPSC neurons:  p  GRIA1  = 0.0345, 
 p  GRIA2  = 0.0064,  p  GRIN1  = 0.0518,  p  GRIN2A  < 0.0001,
 p  GRIN2B  < 0.0001,  p  CNR1  < 0.0001,  p  COX2  < 0.0001; 
 NGN2 -NPC neurons:  p  GRIA1  = 0.0004,  p  GRIA2  = 0.0367, 
 p  GRIN1  = 0.6205,  p  GRIN2A  < 0.0001,  p  GRIN2B  < 0.0001, 
 p  CNR1  = 0.0054,  p  COX2  < 0.0001; two-way ANOVA with 
Holm-Sidak test for multiple comparisons). Changes in 
 GRIA1  were confirmed across 2 independent experimen-
tal replicates of western blot, from 3 controls each (cohort 
1, controls 1–3), which demonstrated that GLUA1 ( p  = 
0.0367) (online suppl. Fig. 3), but not MAP2 ( p  = 0.6342) 
(online suppl. Fig. 4), protein levels were decreased fol-
lowing 5-n M  THC treatment of  NGN2 -NPC neurons. 
THC also increased  CNR1  and  COX2  expression in  NGN2 -
hiPSC and  NGN2 -NPC neurons ( Fig. 1 ,  2 ;  Table 2 ).

  To validate these findings, we further tested the effect 
of acute THC exposure (1 μ M  THC for 24 h), relative to 
DMSO-treated vehicle controls, of 6-week-old forebrain 
neurons generated via directed differentiation from 4 in-
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dependent control NPC lines (cohort 2, controls a–d) 
(triplicate biological samples within 1 experimental rep-
licate). Again, we observed that THC treatment reduced 
 GRIA1 ,  GRIA2, GRIN2A ,   and  GRIN2B  expression and in-
creased  CNR1  and COX2 expression ( p  GRIA1/acute  = 0.1542, 
 p  GRIA1/chronic  = 0.0267,  p  GRIA2/acute  = 0.9590,  p  GRIA2/chronic  = 
0.0417,  p  GRIN2A/acute  = 0.9701,  p  GRIN2A/chronic  = 0.02709, 
 p  GRIN2B/acute  = 0.9636,  p  GRIN2B/chronic  = 0.0106,  p  CNR1/acute  = 
0.0512,  p  CNR1/chronic  = 0.012,  p  COX2/acute  = 0.1542,
 p  COX2/chronic  = 0.0267, nonparametric Friedman ANOVA 
with Dunn’s multiple comparison test) ( Fig. 3 b–d). Simi-
lar to the changes observed in controls, when this same 
THC treatment paradigm (1 μ M  THC treatment for 24 h) 
was applied to 6-week-old forebrain neurons derived 

from 3 cases with schizophrenia, we again observed
reduced  GRIA1  and  GRIA2  and increased  CNR1  ex-
pression   in   acute and chronic THC-treated neurons
( p  GRIA1   control vs. acute  < 0.0001;  p  GRIA1   control vs. SZ-GRIA1 control  <
0.0001;  p  SZ-  GRIA1   control vs. acute  < 0.0001;  p  GRIA2   control vs. acute  =
0.0017;  p  GRIA2   control vs. SZ-GRIA2 control  < 0.0001; 
 p  SZ-  GRIA2   control vs. acute  = 0.5479;  p  CNR  1 control vs. acute  < 0.0001; 
 p  CNR  1 control vs. SZ-CNR1-control  = 0.8261;  p  SZ-  CNR1   control vs. acute  =
0.028) ( Fig. 3 e–g). 

  Finally, when using a THC treatment paradigm con-
sistent with that used for the  NGN2  neurons (5 n M  THC 
treatment for 7 days on 6-week-old forebrain neurons), 
we also observed reduced  GRIA1  and  GRIA2  and in-
creased  CNR1  ( p  GRIA1  < 0.0001,  p  SZ-GRIA1  < 0.0001,

Ca Cb Cc

GRIA1

GRIA2

CNR1

Cd Ca Cb Cc Cd Sa Sb Sc Sd Sa Sb Sc Sd
0

2

4

6 DMSO

5 nM THC

Ca Cb Cc Cd Ca Cb Cc Cd Sa Sb Sc Sd Sa Sb Sc Sd
0

1

2

3

4

Ca Cb Cc Cd Ca Cb Cc Cd Sa Sb Sc Sd Sa Sb Sc Sd
0

1

2

3

4

5

m
RN

A 
ex

pr
es

si
on

(fo
ld

 c
ha

ng
e)

m
RN

A 
ex

pr
es

si
on

(fo
ld

 c
ha

ng
e)

m
RN

A 
ex

pr
es

si
on

(fo
ld

 c
ha

ng
e)

****

****

****

****

****

***

a

b

c

  Fig. 4.  THC-induced alteration in gene ex-
pression in hiPSC forebrain neurons from 
cases with schizophrenia and healthy con-
trols.    a–c  Real-time PCR analysis    of GRIA1, 
GRIA2 ,   and  CNR1  expression in hiPSC 
forebrain neurons treated with DMSO 
(control) or THC (5 n           M ) for 7 days. Ca–Cd 
indicate neurons induced from 4 controls 
and Sa–Sd from 4 patients with schizo-
phrenia (controls and schizophrenia pa-
tients a–d). Values are expressed as mean ± 
SEM, relative to DMSO-treated levels for 
Ca.      *    p  < 0.05,        *  *    p  < 0.01,  *  *  *    p  < 0.001, 
 *  *  *  *   p  < 0.0001.                    
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 p  GRIA2  < 0.0001,  p  SZ-GRIA2  < 0.0001,  p  CNR1  < 0.0001, 
 p  SZ-CNR1  < 0.0003 ( Fig. 4 ). 

  Although these data suggest that neurons derived from 
cases with schizophrenia and controls respond similarly 
to THC, given the size of this small cohort, we caution 
that we are likely underpowered to conclude that there 
are (or are not) meaningful diagnosis-dependent differ-
ences in THC response. 

  Altered Gene Expression by THC Involves a 
CB 1 -Dependent Mechanism 
 Because CB1R is the predominant cannabinoid recep-

tor expressed in the central nervous system, we tested 
whether THC-mediated gene expression changes were 
dependent on CB1R activity, by treating with SR141716A, 
a selective CB1R antagonist  [44] . THC-induced changes 
in  GRIA1  and  CNR1  mRNA expression in 3-week-old 

C1 C2 C3
0

0.5

1.0 THC/SR141716A

20 nM SR141716A

DMSO

5 nM THC

C1

CNR1

GRIA1

C2 C3
0

1

2

3

4

THC/SR141716A

20 nM SR141716A

DMSO

5 nM THC

m
RN

A 
ex

pr
es

si
on

(fo
ld

 c
ha

ng
e)

m
RN

A 
ex

pr
es

si
on

(fo
ld

 c
ha

ng
e)

*
*
*

*
*
*
*

*
*
*
*

*
*
*
*

*
*
*
*

*
*

*
*

THC

CB1RSR141716A

Altered gene expression
a

b

  Fig. 5.  THC-induced alteration in gene ex-
pression in  NGN2 -NPC neurons is medi-
ated by CB1 receptor.  a  Model of the effect 
of THC on gene expression via the CB1 re-
ceptor.  b  Real-time PCR analysis of  GRIA1  
and  CNR1  after treatment with THC 
(5 n             M ) or SR141716A (20 n M ) for 7 days.                                                       
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 NGN2 -NPC neurons were blocked by concurrent 20-n M  
SR141716A treatment (triplicate biological samples with-
in 2 experimental replicates), suggesting that THC-medi-
ated effects on  GRIA1  and  CNR1  may be dependent on 
CB1R activity ( GRIA1 :  p  THC  = 0.0312,  p  THC/SR141715A  = 
0.9767,  p  SR141715A  = 0.9048;  CNR1 :  p  THC  = 0.0045, 
 p  THC/SR141715A  = 0.7052,  p  SR141715A  = 0.9963, ordinary one-
way ANOVA followed by Dunnett’s test for multiple 
comparisons) ( Fig. 5 ).

  Discussion 

 Cannabinoids result in decreased glutamate receptor 
subunit protein levels in mice and a subsequent function-
al impairment in glutamatergic transmission  [21, 24] . 
Consistent with this, we demonstrate that THC induced 
similar effects on  NGN2 -hiPSC neurons,  NGN2 -NPC 
neurons, and forebrain neurons from control individuals, 
indicating that hiPSC-derived neurons may serve as a hu-
man cell-based platform for studying the molecular and 
cellular effects of THC on developing human neural cells 
across a variety of genetic backgrounds. Overall, our re-
sults are consistent with results from animal studies of 
THC effects ( Table 2 ). Of course, functional studies, in-
cluding an examination of synaptic density, size, and ac-
tivity, will be necessary to confirm the synaptic effects 
predicted by our gene expression analyses.

  Notably, we observed variation in expression levels of 
a number of the glutamatergic genes between control in-
dividuals, a finding that is consistent with postmortem 
analyses  [45]  and likely reflects both the genetic variation 
between individuals as well as technical differences that 
arise from both the reprogramming and neuronal differ-
entiation/induction processes. For this reason, THC-
treated neurons were compared to their isogenic vehicle-
treated controls.

  The established role of endogenous cannabinoids and 
CB1R in fine-tuning brain development during sensitive 
developmental periods suggests that overstimulation of 
cannabinoid signaling by THC may perturb critical phys-
iological processes at their most vulnerable periods and 
result in deficits in cortical circuits. Indeed, prenatal can-
nabinoid exposure is associated with lower IQs and delin-
quent behaviors in children  [2, 3] . Moreover, adolescent 
cannabis use is associated with an increased risk of devel-
oping schizophrenia and/or accelerated onset of symp-
toms  [5, 46–49] . Emerging evidence suggests that canna-
binoid exposure may have complex interactions with ge-
netic factors associated with schizophrenia and other 

neuropsychiatric disorders (reviewed in  [50, 51] ), such as 
the link between  CNR1  gene polymorphisms and canna-
binoid exposure on both brain structure and clinical out-
come in schizophrenia patients  [30] . By expanding this 
work across a variety of hiPSC-derived neurons from in-
dividuals with different schizophrenia risk alleles, we 
hope that our hiPSC-based model will facilitate studies of 
the interaction of THC exposure and genetic risk factors 
underlying schizophrenia vulnerability.

  Conclusions 

 In light of widespread cannabis use, our understand-
ing of the molecular and cellular effects of THC on hu-
man neural cells must improve. Our study suggests that 
cannabinoid exposure results in changes in glutamate sig-
naling in developing human neurons.
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