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Abstract

An automated dried blood spot (DBS) elution coupled with solid phase extraction and tandem 

mass spectrometric analysis for multiple fentanyl analogs was developed and assessed. This 

method confirms human exposures to fentanyl, sufentanil, carfentanil, alfentanil, lofentanil, α-

methyl fentanyl, and 3-methyl fentanyl in blood with minimal sample volume and reduced 

shipping and storage costs. Seven fentanyl analogs were detected and quantitated from DBS made 

from venous blood. The calibration curve in matrix was linear in the concentration range of 1.0 

ng/mL to 100 ng/mL with a correlation coefficient greater than 0.98 for all compounds. The limit 

of detection varied from 0.15 ng/mL to 0.66 ng/mL depending on target analyte. Analysis of the 

entire DBS minimized the effects of hematocrit on quantitation. All quality control materials 

evaluated resulted in <15% error; analytes with isotopically labeled internal standards had <15% 

RSD, while analytes without matching standards had 15–24% RSD. This method provides an 

automated means to detect seven fentanyl analogs, and quantitate four fentanyl analogs with the 

benefits of DBS at levels anticipated from an overdose of these potent opioids.

Background

Dried blood spots (DBS) have many advantages over traditional clinical sample formats 

including increased analyte stability, small sample volume (<20 μL), decreased infection 

hazard for those handling samples, and reduced cost for shipping and storing. Used 

extensively for neonatal screening since the 1960s,1 improvements in analytical 

instrumentation sensitivity has made DBS a convenient biological matrix for pharmaceutical 

studies and exposure analyses.2–4

Traditional preparation of DBS often requires a manually intensive process of punching, 

extracting each punch individually, concentrating, and reconstituting prior to analysis of 
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each spot. Automation of extraction processes minimizes the number of manual steps, 

reducing potential errors. Recent technologies for automating the extraction and/or mass 

spectrometric detection of DBS include paper spray,5 thin-layer chromatography,6,7 liquid-

surface analysis,8 and on-line DBS sample extraction with and without additional clean-

up.9–18 Flow-through extraction of DBS coupled to on-line SPE has also been developed;19 

this system performs an automated desorption of DBS, complete with the addition of 

internal standard, followed by online SPE with subsequent analysis by a mass spectrometer. 

Incorporation of a large size (6-mm) clamp accommodates desorption of an entire small 

volume (~5 μL) DBS, minimizing quantitation challenges resulting from spot spread caused 

by hematocrit variations among blood samples.16,20,21 Additionally, the option for heated 

desorption solvent, has shown improvements to variations in extraction due to 

hematocrit.20,22,23 The automated desorption of DBS has been applied to multiple analytes 

with mass spectrometric analysis.15,17,20,24,25 More specifically, fentanyl has been 

quantitated from DBS using automated desorption but required separate SPE and LC 

separation.25 Fentanyl and two analogs have also been detected from DBS using manual 

extraction with HPLC-MS/MS.26,27

Fentanyl, initially synthesized by Janssen Pharmaceuticals in the 1960s, was the first in a 

class of potent opioid analgesics developed for chronic pain treatment, palliative care, and 

use as an anesthetic. Multiple analogs of fentanyl have been developed with varying 

potencies for use in the medical and veterinary fields.28 Analogs with no approved medical 

use have also been synthesized and are restricted as Schedule I compounds by the US Drug 

Enforcement Agency (DEA).29 As a strong opioid, fentanyl and its derivatives are frequently 

misused, resulting in overdoses and deaths.28 The drug poisoning rate involving opioid 

analgesics has approximately quadrupled from 1999 to 2013 with over 16,000 opioid-related 

deaths occurring in 2013.31 Fentanyl analogs have reportedly been misused in the US and 

Europe,30, 32–34 and as a result these compounds are an increasing public health concern.

Fentanyl exposures are confirmed through the analysis of clinical samples.35–41 Following 

overdose, the unaltered drug has been detected at concentrations ranging from 1.4–383 

ng/mL in whole blood.35,36,37,38,40 Although metabolites may also be present, they are 

detected at lower levels in blood than the unaltered drug; the use of other pharmaceuticals 

may further reduce the measured amount of metabolites.39

This paper describes the development and validation of an automated method for the 

quantitation of seven fentanyl analogs in DBS using flow through desorption coupled to on-

line solid phase extraction tandem mass spectrometry. The reported method incorporates 

isotopically labeled internal standards for four of the seven analogs. To our knowledge, no 

method has been developed for the analysis of multiple fentanyl analogs using automated 

DBS extraction. This work is critical for addressing the public health concern created by the 

misuse of these compounds.
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Experimental

Appropriate safety control measures (including engineering, administrative, and personal 

protective equipment) were used for all procedures based on a site-specific risk assessment 

that identified physical, health, and procedural hazards.

Chemicals, standards, and reagents

Fentanyl and 2H5-fentanyl were purchased from Cerilliant (Round Rock, TX). Carfentanil, 

sufentanil, and their corresponding N-phenyl-2H5 labeled forms, as well as 13C6-alfentanil 

HCl were custom synthesized by Battelle (Columbus, OH). Lofentanil, alfentanil, 3-methyl 

fentanyl, and α-methyl fentanyl, were generous gifts from a variety of sources listed in the 

Acknowledgements. Structures of all target analytes are shown in Figure 1. High-

performance liquid chromatography (HPLC)-grade methanol and acetonitrile were 

purchased from Tedia Company, Inc. (Fairfield, OH). Formic acid (99%) and ammonium 

hydroxide (28.6%) were purchased from Sigma Aldrich (Pittsburgh, PA). Deionized (DI) 

water (>18MΩ·cm) was prepared on-site using an installed water purification system (Aqua 

Solutions, Inc., Jasper, GA). Pooled whole blood and a convenience set of individual whole 

blood samples were purchased from Tennessee Blood Services (Memphis, TN). Use of 

deidentified spiked blood from a commercial source was not deemed to constitute human 

subject research.

Stocks and working solutions

Individual stock solutions for each analyte were prepared at 10.0 μg/mL in DI water. From 

the stock solutions, a working solution containing all fentanyl analogs at 500 ng/mL was 

prepared volumetrically in DI water. This working solution was then diluted to create 

solution A at 50.0 ng/mL in DI water and solution B at 5.00 ng/mL. For internal standards, 

individual stock solutions were prepared at 100 μg/mL in DI water (2H5-fentanyl, 2H5-

carfentanil, and 2H5-sufentanil) and at 20.0 μg/mL in DI water (13C6-alfentanil HCl). These 

stocks were diluted to prepare a mixture of all labeled compounds at 25.0 ng/mL in DI 

water. All solutions were stored at −20°C.

Materials preparation

Calibrators were prepared volumetrically in pooled whole human blood using the working 

solutions to achieve final concentrations of 1.00, 10.0, 25.0, 50.0, and 100 ng/mL. Two 

quality control standards (QCs) were prepared in the same manner as the calibrators at low 

(QL) and high (QH) concentrations of 7.50 and 75.0 ng/mL, respectively, also in pooled 

whole blood. All calibrators, QC samples, and individual blood samples were spotted at 5.00 

μL onto FTA DMPK-C blood spot cards (GE LifeSciences, Pittsburgh, PA). The cards were 

allowed to dry at ambient temperature for a minimum of two hours before analysis or 

storage with desiccant at −20°C.

Instrumentation

Flow-through extraction of all dried blood spots was performed using a prototype device 

from Spark Holland (Emmen, Netherlands) consisting of an automated cartridge exchanger 

(ACE), a high pressure dispensing pump (HPD) for solvent delivery, two high performance 
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liquid chromatography (HPLC) pumps, and a DBS card autosampler (DBSA) with 6-mm 

clamp head and 20 μL sample loop for internal standard addition. Analytes were detected 

using an AB Sciex 6500 Triple Quadrupole Mass Spectrometer (MS) (Foster City, CA). 

Individual whole blood samples were centrifuged in a capillary tube at 12000 rpm using a 

M24 Hematocrit Centrifuge (LW Scientific, Lawrenceville, GA) for measurement of 

hematocrit using a Micro-Capillary Reader (Damon/IEC Division, Needham Heights, 

MA).20

On-line DBS sample preparation, extraction procedure, and analysis

Analytes were desorbed using 1.2 mL of heated (100°C) 15:85 methanol: aqueous 1% 

formic acid. Internal standard was added using a 20 μL sample loop with the desorption 

solution prior to contact with the DBS. Analytes and internal standard were then trapped on 

a HySphereTM C18 HD SPE cartridge (7 μM, 10 × 2.0 mm ID) (Spark Holland, Emmen, 

Netherlands) which was preconditioned with 1 mL of methanol and equilibrated with 1 mL 

of aqueous 1% formic acid. The analytes were eluted off the SPE cartridge directly onto the 

mass spectrometer with a 3 minute gradient of 100% aqueous 1% formic acid to 100% 

acetonitrile at a flow rate of 0.5 mL/min. Each SPE cartridge was only used once.

Analytes were measured using TuboIonSpray® MS/MS in positive ion mode. Two 

transitions were monitored for each analyte and one transition was monitored for each 

internal standard, shown in supplemental table 1. Analyte-specific MS parameters were 

optimized for highest signal. Additional parameters used during analysis include the 

following values: curtain gas (CUR), 40 psi; nebulizer gas (GS1), 40 psi; turbo gas (GS2), 

40 psi; turbo gas temperature (TEM), 550°C with the interface heater (IHE) on; collision gas 

(CAD), 7 producing a pressure reading of nitrogen @ 2.0 × 10–5 Torr; ionspray potential 

(IS), 4200 V; and entrance potential (EP), 10 V.

Data Processing

Data analysis was performed using Analyst software (Sciex, Version 1.5.1). Linear 

regression analysis of the calibrator concentration versus the ratio of the quantification ion 

area to the internal standard ion area with 1/x weighting was used for quantitation. 

Isotopically-labeled analytes were used as internal standards for corresponding unlabeled 

analogs. Isotopically-labeled carfentanil was also used as internal standard for lofentanil, α-

methyl fentanyl, and 3-methyl fentanyl due to similar structure and retention time. All 

calibration curves meeting the correlation coefficient requirement of 0.980 or greater were 

accepted for use.

Method Characterization

Data from 20 replicate calibration curves and QC samples were evaluated to assess accuracy 

and precision over 8 weeks with two analysts running a maximum of two curves per day. 

Potential matrix interferences (selectivity) were evaluated by analyzing 20 unidentified 

patient samples from individuals with no anticipated exposure to fentanyls. Ten individual 

whole blood samples were also fortified at 6.0 and 30 ng/mL, five at each spiking level. 

Each individual blood sample was analyzed in triplicate.
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Matrix Effects

Matrix effects were evaluated by adding the analyte mixtures (solution A and solution B) to 

the desorption solvent using the internal standard sample loop described above. Both 

solutions were passed through a blank card as well as DBS from two different blood pools. 

Area counts were used to calculate matrix effects for each compound using the following 

equation:

Matrix Effects (%) = ((Response with blank card matrix -Response with DBS matrix)/

(Response with blank card matrix))×100%

Limit of Detection

The limit of detection (LOD) was determined from the 20 replicate results obtained for the 

four lowest calibrators. The deviation of the blank (S0) for each analyte in this method was 

extrapolated from the plot of the standard deviations of the lowest four calibrators versus 

their respective concentrations. S0, the y-intercept of the linear regression analysis of these 

data points, was multiplied by three to determine the LOD.41 These results were confirmed 

by the analysis of low level spikes at the estimated LOD values made in the same manner as 

the calibrators and QCs.

Results and Discussion

Automated DBS extraction, online-SPE and MS conditions

Automated DBS extraction was applied to the analysis of multiple fentanyl analogs to 

promote the use of DBS as a sampling mechanism. This novel instrument design introduced 

internal standard to the sample during desorption of the analytes, reducing manual steps 

required for analysis and possibly enabling field collection of DBS. Initial mass 

spectrometric parameters were determined by individually infusing each compound into the 

electrospray source and optimizing for highest response. Two mass spectrometric transitions 

were selected per compound to achieve maximum sensitivity and minimal matrix 

interferences.

Multiple online-SPE cartridges were investigated for compatibility with the automated DBS 

desorption. These sorbents included Oasis® HLB (Waters, Milford, MA), which was 

previously used for these compounds41 Resin SH, C2-SE, CN-SE, C8-SE, C18 HD, Resin 

GP, MM anion, and MM cation (HySphere™) (Spark, Emmen, Netherlands). The C18 HD 

cartridge, which has been used previously with this system for similar compounds25 gave the 

highest response with baseline resolution from matrix peaks for all analytes, and thus was 

selected for further development.

Desorption of fentanyl analogs from the DBS was optimized for several solvent conditions 

including composition, volume, temperature, and dispensing speed. To ensure retention of 

the analytes on reverse phase SPE, water was initially used for desorption. Formic acid was 

added to release any analogs potentially bound to proteins in the DBS;43 the analytes were 

found to be poorly desorbed with this solution. Given the high solubility of fentanyl in 

methanol, the addition of methanol to the desorption solvent was investigated to improve 
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recovery. A mixture of 85% aqueous 1% formic acid and 15% methanol was selected to 

maximize desorption while maintaining sufficient water content to also maximize retention 

on the SPE cartridge for all analytes. Solvent extraction volume was evaluated from 0.50 to 

1.5 mL; an increase in response for all analytes was seen until 1.2 mL, so this volume was 

selected. The desorption solvent temperature was tested at 50°C, 75°C, 100°C, and at 

ambient temperature (~25°C). A slight increase in response was seen as temperatures 

increased, so 100°C was chosen as the optimal temperature. This higher solvent temperature 

may overcome extraction challenges resulting from hematocrit variations.20 Dispensing 

speed of the solvent did not impact desorption; therefore, a nominal value of 2000 μL/min 

was used.

Elution from the online SPE cartridge was evaluated using both methanol and acetonitrile. 

Acetonitrile was selected as the strong elution solvent and resulted in improved peak shape 

and rapid elution of all compounds (Figure 2). Baseline separation was not achieved for all 

compounds, of particularly concern, the constitutional isomers α-methyl fentanyl and 3-

methyl fentanyl were not separated under these conditions. To address this issue, unique 

quantitation transitions were selected for each compound to prevent signal contribution 

between all analytes, including the isomers as previously documented.42 Because baseline 

resolution from detectable matrix interferences was achieved with SPE alone, no additional 

separation was deemed necessary for this method.

Matrix effects

Matrix effects were investigated in two blood pools at two concentrations, 5.0 ng/mL and 50 

ng/mL and analysed in triplicate. Data shown in Table 1 is from one pool at a single 

concentration, as both blood pools gave comparable results. As shown in Table 1, the matrix 

effects were high (68–96%) for all analytes at the 50 ng/mL concentration; similar matrix 

effects were seen at the lower concentration ranging from 58–91%. These high matrix 

effects were not unexpected as the DBS was extracted with a significant aqueous content, 

solubilizing many components of the blood which can suppress signal. Comparable matrix 

effects have been noted in urine for reverse phase SPE followed by LC-MS/MS.42 

Additionally, an in-house evaluation of plasma using similar SPE-LC-MS/MS parameters42 

resulted in matrix effects ranging 19–93% for the same fentanyls and normetabolites. The 

combination of SPE and HPLC has not significantly decreased matrix effects for these 

analytes from clinical samples. For this study, further reduction of matrix effects was not 

expected with the addition of HPLC separation. The main concern with high matrix effects 

remains the loss of sensitivity; however, the limit of detection (Table 1) for each analyte was 

lower than values expected following overdose (1.4–383 ng/mL).35,36,37,38,40

Method Characterization

This analytical method was characterized by evaluating 20 sets of calibration curves and QC 

samples in matrix at concentrations of 7.5 ng/mL and 75 ng/mL. Calibrators in dried blood 

spots were extracted and analyzed with the QC samples over the course of two months by 

two analysts. Sensitivity, accuracy, and precision were calculated based on the quantitation 

ion transition. The precision, defined by the %RSD, was <15% for analytes with matched 

isotopically labeled internal standards; for analytes without labeled internal standard, 
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precision ranged from 15–24% (Table 2). The accuracies for the QC samples and the lowest 

calibrator were within ±10% of the expected value for all analytes. For the four analytes 

with matched internal standards, accuracy and precision were within the FDA guidelines for 

biomedical testing.44

Linearity of the calibrator curves was confirmed through the back calculation of the 

calibrators, which resulted in mean accuracies within 10% for all analytes. Corresponding 

RSDs from the 20 analytical runs was less than 16% for all analytes, with the exception of 

α- and 3-methyl fentanyl with variances up to 25%. All curves achieved a correlation 

coefficient of 0.980 or higher. To confirm the selection of regression weighting, the sum of 

residuals were compared between no weighting, 1/×, and 1/×2; 1/× weighting resulted in a 

lower sum of residuals than no weighting. Although 1/×2 weighting had a lower sum of 

residuals overall, the correlation coefficient did not meet the criteria; therefore, 1/× 

weighting was selected.

The linear range for this method was established to confirm overdose exposures to these 

fentanyls, with calibrators from 1.0–100 ng/mL. The calculated LODs ranged from 0.15–

0.66 ng/mL (Table 1); however, to ensure the confirmation ion was detected for all analytes, 

the lowest calibrator was set at 1.0 ng/mL (Figure 2 and Supplementary Figure 1). It should 

also be noted that sensitivity was greatly impacted by the small sample volume used in this 

method. While past urinary methods had a lower limit of quantitation of 0.050 ng/mL, these 

methods required a 100-fold increase in sample volume (500 μL) plus a concentration 

step.42 For a 1.0 ng/mL sample the DBS method evaluated here injected 0.005 ng on 

cartridge, whereas 0.1 ng were injected on column for the urinary SPE-LC-MS/MS method. 

This significant difference confirms that sample volume plays a critical role in sensitivity 

and is the most limiting factor for this DBS method.

Carry-over between samples was also investigated, as this was identified as a concern in a 

previous study with this instrument.25 A blank DBS sample was evaluated following the 

highest calibrator on every run. There were no detectable responses in this blank sample, 

confirming that carry-over using a 5 μL spot was not an issue for this method.

A convenience set of twenty individual blood samples with no known exposure to these 

compounds were analyzed to measure any endogenous interferences. No interferences were 

observed at the anticipated retention time for either the quantitation or confirmation 

transition for any of the fentanyl analytes. These results indicated that this method is 

selective for fentanyl analogs and should not result in false positives.

Individual blood samples fortified at 6.0 ng/mL and 30 ng/mL were evaluated for accuracy 

and precision (N=3). The hematocrit of these samples was measured and ranged from 34.8% 

to 48.0% which is in the normal range for healthy adults. The 30 ng/mL spike level 

demonstrated high precision and accuracy for fentanyl, sufentanil, carfentanil, lofentanil, 

and alfentanil; however, α-methyl fentanyl and 3-methyl fentanyl showed more variability 

(Figure 3). Similar results were observed for all analytes for the 6.0 ng/mL spike level with 

the exception of alfentanil, which was biased low at this concentration. Although hematocrit 

has been documented to negatively impact quantitation from DBS,21–23,45,46 no trends 
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associated between concentration and hematocrit level was observed, therefore, no 

correlation was identified.

Conclusions

An automated method for desorption, extraction, and detection of seven fentanyl analogs 

from DBS has been developed and validated. Accuracy values for all analytes and precision 

for analytes with matching isotope enriched internal standards, except for alfentanil at 6.00 

ng/mL, were within the FDA specifications for bioanalytical methods.43 Thus this method 

can be used to quantitate four fentanyl analogs. With a reportable range of 1.0–100 ng/mL, 

concentrations measured in blood products from overdose cases can be detected.33–36,38 

Although, additional evaluation of clinical samples could necessitate a lower limit of 

detection as the potency for these analogs can vary greatly. Analysis of simulated clinical 

samples confirmed the ability of this method to positively identify fentanyl analogs in 

individual samples. Use of automated preparation with online SPE amenable to DBS 

samples provided a streamlined laboratory workflow and minimized analyst exposure to 

potentially hazardous substances while maximizing sample throughput. Future work should 

include analysis of clinical samples to determine the clinical relevant range for all analytes 

and investigation of samples with hematocrit outside the normal range.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Structures of fentanyl analogs with * indicating isotopically labeled internal standard. 

Analogs with out matched internal standard used carfentanil as a suragate internal standard.
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Figure 2. 
SPE-MS/MS chromatogram of fentanyl analogs eluted from 5 μL dried blood spots. 

Extracted ion chromatograms of (A) all analytes at a concentration of 7.5 ng/mL in pooled 

whole blood and of (B) sufentanil at a concentration of 1.0 ng/mL.
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Figure 3. 
Analysis of individual blood samples (A) five fortified at 6.0 ng/mL and (B) five fortified at 

30 ng/mL, N=3. The dotted lines represent 15% precision from spiked value.
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Table 1

Matrix effects in % and limit of detection (LOD). Matrix effects were calculated at a concentration of 50 

ng/mL (N=3).

Analyte Matrix Effects (%) Calculated LOD (ng/mL)

Fentanyl 80 ± 4 0.16

Sufentanil 96 ± 1 0.24

Carfentanil 83 ± 4 0.25

Alfentanil 92 ± 1 0.15

Lofentanil 68 ± 3 0.35

α-methyl fentanil 83 ± 4 0.66

3-methyl fentanil 88 ± 3 0.56
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