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ABSTRACT
During pregnancy, iron needs to increase substantially to support feto-
placental development and maternal adaptation to pregnancy. To meet
these iron requirements, both dietary iron absorption and the mobili-
zation of iron from stores increase, a mechanism that is in large part
dependent on the iron-regulatory hormone hepcidin. In healthy human
pregnancies, maternal hepcidin concentrations are suppressed in the
second and third trimesters, thereby facilitating an increased supply
of iron into the circulation. The mechanism of maternal hepcidin sup-
pression in pregnancy is unknown, but hepcidin regulation by the
known stimuli (i.e., iron, erythropoietic activity, and inflammation) ap-
pears to be preserved during pregnancy. Inappropriately increased ma-
ternal hepcidin during pregnancy can compromise the iron availability
for placental transfer and impair the efficacy of iron supplementation.
The role of fetal hepcidin in the regulation of placental iron transfer still
remains to be characterized. This review summarizes the current un-
derstanding and addresses the gaps in knowledge about gestational
changes in hematologic and iron variables and regulatory aspects of
maternal, fetal, and placental iron homeostasis. Am J Clin Nutr
2017;106(Suppl):1567S–74S.
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IRON REQUIREMENTS DURING PREGNANCY

During pregnancy, physiologic iron demands increase sub-
stantially to support fetoplacental development and maternal ad-
aptation to pregnancy. Table 1 summarizes iron economy during
pregnancy [the estimates are based on a 120-lb (54-kg) woman].
Baseline maternal body iron losses during 9 mo have been esti-
mated at w230 mg (5) and would be higher were it not for the
cessation of menstruation. The development of the placenta and
fetus requiresw360 mg Fe. An additional 450 mg Fe is needed to
expand maternal red blood cell (RBC) mass during pregnancy.
Thus, w1 g of iron must be acquired during pregnancy to pre-
serve the maternal iron balance and support fetoplacental de-
velopment. Some of that iron is recycled after pregnancy when
the erythrocyte mass contracts to prepregnancy concentrations
with the exception of the iron that is lost through bleeding at
delivery (w150 mg). Therefore, the average net pregnancy-
related loss of iron to the mother has been estimated to be
740 mg. However, iron requirements are not uniform throughout
the 3 trimesters of pregnancy. In the first trimester, the require-
ments (estimated at w0.8 mg/d) are lower than before pregnancy
because menstruation stops. As pregnancy advances, maternal

RBC mass increases and placental and fetal growth accelerates,
which result in the rise in physiologic iron requirements to 3.0–
7.5 mg/d in the third trimester (1).

To meet the accelerating physiologic iron requirements, both
dietary iron absorption and the mobilization of iron from stores
need to increase. Many women enter pregnancy with insufficient
iron stores to meet the needs of the pregnancy. In the United
States, the prevalence of iron deficiency (ID) in women of child-
bearing age has been reported to be 12% with a higher rate in
Black and Hispanic women (19% and 22%, respectively) (6).
Because ID and ID anemia (IDA) during pregnancy have been
associated with adverse outcomes for the mother and the child,
including increased risk of maternal mortality, premature birth,
low birth weight, and neurodevelopmental impairment in infants
(7, 8), iron supplementation has been nearly universally rec-
ommended during pregnancy. Nevertheless, in the developed
world, more women are iron replete than iron deficient when they
become pregnant, thus prompting considerations of potential
risks of indiscriminate iron supplementation.

REGULATION OF IRON AVAILABILITY DURING
PREGNANCY

As assessed by the uptake of stable or radioactive iron isotopes,
nonheme iron absorption during pregnancy increases as gestation
progresses (2, 9). It is likely that heme absorption increases in a
similar manner (10). Moreover, iron stores are efficiently mobilized
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during pregnancy, as reflected by the decreased liver and spleen
iron contents in animal models compared with nonpregnancy
concentrations (11–13). Both of these processes increase iron
availability for transfer across the placenta and for maternal
hematologic adaptation.

The regulation of iron availability during pregnancy is at least in
part dependent on maternal hepcidin concentrations. Hepcidin,
which is an iron-regulatory hormone, is produced by the liver and
controls plasma iron concentrations and tissue iron distribution
(14). Hepcidin acts by inhibiting the followingmajor iron flows into
plasma: intestinal iron absorption, release from macrophages that
recycle iron from old RBCs, and mobilization of stored iron from
the liver (Figure 1). Hepcidin exerts its effects through its receptor
the iron exporter ferroportin. Ferroportin is expressed in all the
tissues that actively export iron into plasma (15). Hepcidin
binds to ferroportin and triggers its degradation, resulting in
iron sequestration in target cells and decreased iron flow into
plasma. Thus, iron delivery to consuming tissues (e.g., bone
marrow and placenta with fetus) is inversely correlated with
hepcidin concentrations.

Relatively few studies have examined hepcidin during preg-
nancy, but initial reports have indicated that, in healthy preg-
nancies, maternal hepcidin concentrations are decreased in the
second and third trimesters in humans (Figure 2) (16, 17) or
during the third week in rats (18). The lowering of maternal
hepcidin would allow an increased supply of iron into the cir-
culation both from the enhanced absorption of dietary iron and
the enhanced release of iron from stores. One study in 19
pregnant women who ingested stable iron isotopes in their third
trimesters confirmed that the net dietary nonheme and heme iron
that was transferred to the fetus was inversely correlated with
maternal serum hepcidin (measured at delivery) (10).

To our knowledge, the mechanism of maternal hepcidin sup-
pression during pregnancy is completely unknown. Plasma dilution
may partially contribute, but the magnitude of hepcidin decrease
cannot be explained by only a 30–50% increase in plasma volume.
Moreover, plasma dilution would not explain the profound sup-
pression of hepatic hepcidin messenger RNA that has been ob-
served in animal studies (18). The gradual development of ID may
also be a signal to suppress hepcidin. Hepcidin is lowest in
pregnant women with iron-restricted erythropoiesis; however, even
mothers with replete iron stores have low hepcidin concentrations
at delivery (19), thus suggesting that maternal hepcidin may be
actively suppressed during pregnancy. The identification of the
pregnancy-related hepcidin suppressors is an important goal for
the understanding of iron regulation during pregnancy.

Major stimuli that are known to regulate hepcidin production
include iron (both circulating and stored iron increase hepcidin),
erythropoietic activity (suppresses hepcidin), and inflammation
(increases hepcidin) (14). The regulation of hepcidin by all of
these pathways appears to be preserved during pregnancy (20) but
at a lower set point as pregnancy advances. In human studies,
throughout pregnancy and even at delivery, maternal hepcidin
concentrations are positively correlated with serum ferritin (SF)
and transferrin saturation (TSAT) and inversely correlated with
soluble transferrin receptor (sTfR) and hemoglobin, indicating
the stimulation of hepcidin production by iron and the sup-
pression of hepcidin production by ID and erythropoietic activity
(10, 16, 17, 19, 21). However, immediately after delivery, serum
hepcidin concentrations increase (Figure 2), presumably because
of dramatic physiologic changes that are associated with labor

FIGURE 1 Hepcidin-ferroportin interaction controls systemic iron ho-
meostasis. By causing degradation of Fpn, hepcidin decreases iron supply
into plasma. Thus, lowering of maternal hepcidin during pregnancy increases
iron bioavailability for placental transfer. Fetal hepcidin may control placen-
tal Fpn and the transfer of iron into fetal circulation. Fpn, ferroportin; RBC,
red blood cell; Tf, transferrin.

FIGURE 2 Median (IQR) serum hepcidin concentrations in 31 women
during pregnancy and postpartum. ***Compared with first-trimester values,
P , 0.0001. Reproduced from reference 16 with permission.

TABLE 1

Iron balance in pregnancy1

Iron fate Amount, mg

Fetal iron 270

Placental iron 90

Baseline maternal body iron loss 230

Expansion of maternal RBC mass 450

Total iron needs during pregnancy 1040

RBC-mass contraction after delivery (450 mg) minus the

blood lost at delivery (150 mg)

2300

Net pregnancy iron loss to the mother 740

1All values are means. Adapted from references 1–4 with permission.

RBC, red blood cell.
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and delivery and are not correlated with SF or serum iron
concentrations.

To our knowledge, how iron supplementation affects maternal
hepcidin during pregnancy is not known. The ingestion of iron
supplements in nonpregnant adults increases hepcidin rapidly
(22–24) and, consequently, decreases iron absorption. If iron
supplementation in pregnancy has the same effect on maternal
hepcidin, daily iron supplementation may not be optimal to
achieve the most efficient iron absorption. Indeed, a 2015 Co-
chrane review of randomized trials from 15 countries showed
that maternal and infant outcomes at birth were not better with
daily iron supplementation compared with intermittent iron
supplementation, but intermittent supplementation was associ-
ated with fewer side effects (25).

Hepcidin concentrations measured in either serum or urine were
not correlatedwith inflammatorymarkers in healthy pregnancies (16,
21), including those with multiple gestations (26), thereby
suggesting that the mild inflammation that occurs in healthy
pregnancies is not sufficient to increase hepcidin. However, it is
possible that hepcidin may be inappropriately increased in com-
plicated pregnancies that are associated with more intense in-
flammation, and this increase could compromise iron availability
during pregnancy. Elevated hepcidin would also be expected to
impair iron absorption from supplements that are commonly pre-
scribed to pregnant women and could even impair the efficacy of
intravenous iron therapy by trapping iron in macrophages. Mildly
elevated serum hepcidin concentrations have been reported in obese
compared with lean pregnant women (27, 28) and in pre-eclamptic
compared with healthy pregnancies (29). These concentrations did
not have an obvious negative impact on hematologic or ironvariables
in the mother or neonate in these studies, suggesting that hepcidin
concentrations were still sufficiently low to allow effective iron
utilization during pregnancy. Systematic studies of hepcidin in
complicated pregnancies are needed to determine the extent of
hepcidin elevation in different conditions and the impact of elevated
hepcidin on pregnancy outcomes.

Apart from the hepcidin-dependent mechanism that regulates
iron absorption and recycling, additional hepcidin-independent
mechanisms may exist in pregnancies, but this possibility re-
mains to be characterized. Concentrations of the apical iron
transporter in duodenal enterocytes divalent metal transporter
1 (DMT1) and the associated ferrireductase duodenal cytochrome
B were also increased in an animal model of pregnancy (18), but
the regulatory mechanisms are unknown. One such mechanism
could be related to the stabilization of the transcription factor
hypoxia-inducible factor (HIF)-2a in the duodenum. In mouse
models, ID and anemia promote the accumulation of HIF-2a,
which mediates the increased expression of ferroportin, DMT1,
and duodenal cytochrome B (30). Whether these HIF-2a–
dependent duodenal mechanisms regulate iron absorption in
pregnant women remains to be determined.

ROLE OF FETAL HEPCIDIN IN REGULATING
PLACENTAL IRON TRANSFER

During pregnancy, not only maternal but also fetal hepcidin
could determine the rate of placental iron transfer (Figure 1). In
this scenario, maternal hepcidin would regulate the amount of
iron that is presented to the placenta for uptake, whereas fetal
hepcidin would regulate the export of iron from the placenta into

the fetal circulation. Ferroportin is expressed on the basolateral side
of the placental syncytiotrophoblast, facing fetal circulation, and
would be expected to be accessible only by fetal hepcidin. The
transgenic overexpression of fetal hepcidin in mice confirmed that
fetal hepcidin can regulate placental ferroportin (31). Overexpressing
fetuses developed severe ID and had decreased viability. However,
whether endogenous fetal hepcidin in a normal or complicated
pregnancy contributes to the regulation of placental transfer remains
to be evaluated. Thus far, animal studies have shown very low
concentrations of fetal hepcidin during normal gestation (31, 32).
This finding suggests that fetal hepcidin would not exert much effect
on the placental ferroportin in healthy pregnancies. In humans, only
hepcidin from cord blood has been evaluated. Cord blood hepcidin
concentrations were higher thanmaternal concentrations and showed
no correlation with maternal hepcidin at delivery (20), but an in-
terpretation of these measurements is confounded by the physiologic
effects of delivery. Indeed, another study showed a positive asso-
ciation between cord hepcidin (at delivery) and maternal hepcidin at
midgestation (33).

CHANGES IN HEMATOLOGIC VARIABLES

Like many organ systems during pregnancy, the maternal he-
matologic system undergoes profound physiologic changes to
accommodate the development of the fetus and placenta (a sum-
mary is shown in Table 2). The total blood volume (plasma vol-
ume plus RBC volume) increases w1.5 L to facilitate the blood
flow in the uterus and placenta for nutrient and oxygen delivery to
the fetus and to blunt the effects of blood loss at delivery (35).

The plasma volume starts increasing during the first trimester
and expands until 30–34 wk, reaching a 30–50% greater volume
than in nonpregnant women (36, 37). A lesser increase in plasma
volume is associated with pathologies such as intrauterine
growth restriction and preeclampsia (38).

The RBC mass starts to increase at 8–10 wk of gestation and
continues to increase until delivery. Compared with prepregnancy
concentrations, the RBC mass increases by 15–20% in women
who are not taking iron supplements and by 20–30% in women
who are taking iron supplements (34). The RBC life span has been
reported to be slightly decreased during normal pregnancies (w9%
decrease in rats and assumed to be similar in women) (39, 40).

Erythropoietin production increases during pregnancy and
drives the increase in RBC mass. Erythropoietin concentrations
approximately double by the end of the third trimester (41). As in
nonpregnant adults, the kidney is the main source of maternal
erythropoietin during pregnancy (42, 43). However, the cause of
the baseline erythropoietin increase during pregnancy is still
uncertain. Nevertheless, erythropoietin production can be mod-
ulated by iron and anemia during pregnancy. In human studies,

TABLE 2

Hematologic changes in normal pregnancy1

Change

Plasma volume Increases 30–50%

RBC mass Increases 20–30%

Hemoglobin concentration Decreases

RBC life span Decreases slightly

Erythropoietin Increases

1Adapted from reference 34 with permission. RBC, red blood cell.
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the erythropoietin increase was greater with ID (41), and con-
versely, iron supplementation was associated with lower eryth-
ropoietin concentrations in the third trimester (44).

Fetal RBC production is independent of its maternal coun-
terpart. Maternal erythropoietin does not cross the placenta (45,
46). The fetus produces its own erythropoietin but mostly in the
liver, which is also its main erythropoietic organ. After 30 wk of
gestation, the fetus also starts producing erythropoietin in the
kidney (47). Fetal erythropoietin production (as measured by the

cord blood concentration) is higher when the mother is anemic or
has other hypoxic complications (e.g., smoking, fetal growth
restriction, and intrauterine fetal hypoxia) (48–50).

Physiologic anemia of pregnancy occurs during a healthy preg-
nancy as a consequence of a greater increase in the plasma volume
relative to the increase in RBC mass. In women who are not taking
iron supplements, the hemoglobin concentration and hematocrit
decrease steadily to reach a nadir at w28–36 wk (on average,
w2 g/dL lower than prepregnancy hemoglobin concentrations)

FIGURE 3 Mean (95% CI) Hb (A), Hct (B), and MCV (C) values during normal, unsupplemented pregnancy in 69 women. Reproduced from reference
51 with permission. Hb, hemoglobin; Hct, hematocrit; MCV, mean corpuscular volume.
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(Figure 3) (51). The mean corpuscular volume mildly decreases
between 26 and 38 wk, which is likely because the placental iron
transfer is most intense during this period, thereby decreasing the iron
availability for maternal erythropoiesis. Iron supplementation has
been reported to result inw1-g/dL higher hemoglobin concentration
at term compared with those in unsupplemented women (52, 53).

Both low and high hemoglobin concentrations during pregnancy
are associated with adverse outcomes (54). IDA in pregnant women
is associated with reduced physical and mental performance,
maternal cardiovascular strain, increased risk of peripartum blood
transfusions, and other complications. In severe and very severe
anemia, maternal mortality is increased as well. Maternal hemo-
globin concentrations ,9 g/dL are associated with increased risk
of premature birth, intrauterine growth retardation, and fetal death
(7). Despite the anemia-defining cutoffs of 10.5–11 g/dL (39), an
analysis of nearly 150,000 pregnancies in the United Kingdom
showed that the lowest rate of perinatal mortality was shown when
maternal hemoglobin concentrations during pregnancy were be-
tween 9 and 11 g/dL (54). The highest birth weight was also re-
corded in mothers whose hemoglobin concentrations fell to
9–11 g/dL during pregnancy (55). These favorable outcomes may
be related to an optimal plasma volume expansion (incidentally
resulting in slightly lower hemoglobin concentrations) rather than
to any beneficial effect of IDA. These reports raise questions of the
appropriateness of anemia cutoffs and which other variables
should be considered in evaluating anemia during pregnancy.

The absence of a decrease in the hemoglobin concentration
during pregnancy is also associated with poor outcomes including
preeclampsia, intrauterine growth retardation, preterm birth, and
stillbirth (56–58). When the lowest recorded maternal hemo-
globin concentrations were .11 g/dL, perinatal mortality in-
creased (54). A higher hemoglobin concentration is thought to
be related to the failure to increase the plasma volume, and
adverse consequences may be caused by increased blood vis-
cosity and decreased placental perfusion (54).

CHANGES IN IRON VARIABLES DURING PREGNANCY

The SF concentration is the most frequently used marker of iron
stores. Ferritin is secreted mostly by macrophages and, to a lesser
extent, by hepatocytes, in proportion to their intracellular iron con-
tents; thus, SF is proportional to body iron stores. However, because
ferritin production is also regulated by inflammatory cytokines, SF
may not accurately reflect iron stores in the presence of inflammation.

In pregnancy, SF concentrations gradually decrease to reach the
lowest concentrations in the third trimester (52, 59, 60) (Figure 4). In
addition to hemodilution, this decrease likely reflects efficient iron
mobilization from stores in agreement with the progressive hepcidin
decrease during pregnancy. Iron supplementation results in a lesser
SF decrease in the third trimester (Figure 4). Higher SF concen-
trations in the second or third trimester (61–64) are associated with
less favorable pregnancy outcomes including increased risk of
preterm delivery. However, apart from reflecting higher iron stores
in the mother, higher SF could also reflect the presence of in-
flammation in complicated pregnancies or the failure of the
plasma volume to expand. Whether maternal iron excess, itself,
contributes to adverse outcomes is less clear (64) and is an im-
portant research question.

Similar to other iron variables, serum iron and TSAT both
decrease during pregnancy but less so in iron-supplemented

pregnancies (52, 53). The plasma iron compartment is very small
compared with iron stores (several milligrams compared with
several hundred milligrams), is subject to diurnal variation, and can
change rapidly, e.g., after iron ingestion. Because of these effects,
serum iron and TSAT are inferior to SF in diagnosing ID (53, 65).

sTfR is generated by cleavage and by vesicular shedding of
transferrin receptor 1 (TfR1) from the plasma membrane during
erythroidmaturation. The amount of sTfR reflects both the number of
young erythrocytes and the degree of their ID because cellular TfR1
concentrations are regulated by intracellular iron via the iron-
responsive element-binding proteins (IRPs) IRP1 and IRP2. In
pregnancy, sTfR concentrations do not seem to change compared
with nonpregnant concentrations unless maternal erythropoiesis is
iron deficient (66). Thus, sTfR concentration mays only mildly in-
crease by the third trimester in the iron-replete population but increase
substantially in women with IDA. Furthermore, because sTfR is not
regulated by inflammation, sTfR is a better indicator of iron-deficient
erythropoiesis than SF is in the presence of inflammation.

PLACENTAL IRON TRANSPORT

During pregnancy, the placenta retainsw90 mg Fe for its own
function, and transports, on average, 270 mg Fe to the fetus.
Most of the iron transfer to the fetus occurs during the third
trimester (67), and this transfer coincides with the lowest ma-
ternal hepcidin expression, which allows for a maximal rate of
iron supply into the maternal circulation. Maternal transferrin
production steadily increases during pregnancy (34), which may
function to increase iron delivery to the placenta.

The transport of nonheme iron across the placenta to the fetus is
unidirectional; iron is not transferred from the fetus to the mother
(67). Despite its importance in fetal development, themechanism of
placental iron transport is incompletely understood. The uptake of
iron transferrin from the maternal circulation is mediated by TfR1
on the placental syncytiotrophoblast (Figure 5) (68). TfR1 is lo-
cated on the apical membrane of the syncytiotrophoblast (69, 70),
and the TfR1-transferrin complex is internalized via clathrin-
coated vesicles, similar to iron-transferrin endocytosis that oc-
curs in other epithelia (71). In the acidic environment of the
vesicle, iron dissociates from transferrin, and ferric iron is reduced
to ferrous iron by ferrireductases, possibly 6-transmembrane

FIGURE 4 Geometric mean 6 SEM serum ferritin concentrations dur-
ing pregnancy in 63 women with iron supplementation and 57 women with-
out iron supplementation. Reproduced from reference 52 with permission.
SF, serum ferritin.
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epithelial antigen of prostate 3 and 4 (STEAP 3 and 4) (72). After
iron is released from transferrin, the TfR1–apotransferrin complex
recycles back to the membrane, apotransferrin is released, and the
cycle repeats. Maternal ID has been associated with increased
placental TfR1 expression in humans and in animal models (73,
74). The likely mechanism is the development of placental ID
when the mother is iron deficient whereby a low intracellular iron
concentration in trophoblast cells may increase TfR1 expression
via the IRP1 and IRP2 regulators.

How iron is transported from the vesicle into cytoplasm is not
fully understood, but iron transporters DMT1, Zrt/Irt-like protein
(ZIP) 8, and ZIP14 have been identified as potential candidates.
DMT1, which plays a critical role for endosomal iron release in
erythroid cells (75), strongly localizes to the human placental
syncytium (70, 76). However, the discovery that neonatal DMT1-
null mice have normal iron contents (76) suggests that DMT1 is not
the sole endosomal iron transporter in the placenta. ZIP8 is also
abundantly expressed in the placenta (77). ZIP8 hypomorphic
embryos are severely anemic in utero and do not survive .48 h
after birth (78); however, whether this outcome is related to ZIP8
function in placental iron transport or also in fetal RBCs needs to
be clarified. ZIP14 is also highly expressed in the mouse placenta.
ZIP14 mutant mice have no abnormal birth phenotype other than
low birth weight (79), which suggests that ZIP14 plays a non-
essential or redundant role in placenta.

Iron is transported out of the syncytiotrophoblast by ferroportin
(69, 80) (Figure 5). The complete knockout of ferroportin is em-
bryonic lethal, whereas the conditional knockout of ferroportin that
preserves its expression in the placenta results in normal embryonic
development and birth (15), thus confirming the essential role of
ferroportin in placental iron export. Ferroportin likely exports iron
into the fetal stroma. Once there, iron still needs to cross the en-
dothelium to reach the fetal circulation. With consideration that
non–transferrin-bound iron is present in the fetal circulation (81),
it is possible that some form of non–transferrin-bound iron is

transported across fetal endothelial cells. Alternatively, after being
exported from the syncytiotrophoblast by ferroportin, iron may be
oxidized to the Fe+3 form before loading onto fetal transferrin.
There are 3 known mammalian multicopper ferroxidases: ceru-
loplasmin, hephaestin, and zyklopen. Although all of them have
been detected in the placenta (82–84), knockout mouse models
have indicated that none of them are essential or that they have
redundant roles (85–87). Once iron is loaded onto fetal transferrin,
it may be transported to the fetal circulation through endothelial
cells although this mechanism is unclear (68). Fundamental
questions remain regarding the physiology of iron transport from
the mother to the fetus.

Whether heme is transported across the placenta and what role
heme transporters play in the placenta are much less understood.
Feline leukemia virus subgroup C receptor–related protein
(FLVCR1) is a heme exporter that is highly expressed in the
placenta (88). It has the following 2 isoforms: FLVCR1a is
expressed on the cell surface, and FLVCR1b is expressed on
mitochondria, but the role of each isoform and their localization
and regulation remain to be determined. Maternal anemia is
associated with lower placental FLVCR1 expression (89), but
the biological implication of this observation is not yet un-
derstood. More research is needed to determine the specific roles
of placental iron transporters and regulators, their interactions,
and the control of the placental iron transport by maternal iron
status and fetal iron status.

CONCLUSION AND FUTURE DIRECTIONS

Although the importance of iron for maternal health and fetal
development during pregnancy iswell appreciated,major gaps exist
in our understanding of iron regulation during pregnancy. Future
directions include defining the role and regulation of maternal and
fetal hepcidin, elucidating the mechanism and regulation of pla-
cental iron transport, and understanding how iron supplementation
interacts with these processes in healthy and complicated preg-
nancies. Correlating descriptive studies in human pregnancies with
detailed mechanistic and molecular studies in animal models will
be necessary to make progress on these important questions.
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