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ABSTRACT
Pregnant women are particularly vulnerable to iron deficiency and
related adverse pregnancy outcomes and, as such, are routinely rec-
ommended for iron supplementation. Emerging evidence from both
animal and population-based studies, however, has raised potential
concerns because significant associations have been observed be-
tween greater iron stores and disturbances in glucose metabolism,
including increased risk of type 2 diabetes among nonpregnant in-
dividuals. Yet, the evidence is uncertain regarding the role of iron
in the development of gestational diabetes mellitus (GDM), a com-
mon pregnancy complication which has short-term and long-term
adverse health ramifications for both women and their children. In
this review, we critically and systematically evaluate available data ex-
amining the risk of GDM associated with dietary iron, iron supplemen-
tation, and iron status as measured by blood concentrations of several
indicators. We also discuss major methodologic concerns regarding
the available epidemiologic studies on iron and GDM. Am J
Clin Nutr 2017;106(Suppl):1672S–80S.

Keywords: gestational diabetes mellitus, dietary iron, iron status,
pregnancy, iron supplementation

INTRODUCTION

Free iron, with its strong pro-oxidant properties and conse-
quent ability to generate reactive oxygen species, can contribute
to increased oxidative stress and cellular damage and, hence, may
be potentially hazardous in excess (1). The pancreatic b cells are
vulnerable to oxidative stress because their antioxidative defense
mechanisms are particularly weak (2). Although adequate iron
is critical to normal b cell function and glucose homeostasis,
studies based on mouse models of hereditary or dietary iron
overload show that excess iron may disrupt glucose homeostasis
by several potential mechanisms involving multiple tissues and
organs. For example, oxidative stress from excess iron accu-
mulation can lead to b cell damage and apoptosis and, conse-
quently, contribute to decreased insulin secretion (3). High iron
stores in the liver may induce insulin resistance by impairing
insulin signaling and by attenuating the liver’s ability to extract
insulin (4, 5). In adipocytes, excess iron can diminish insulin-
induced glucose transport, whereas in the muscles it may lead
to a switch from glucose to fatty acid oxidation (6, 7).

In humans, iron status is primarily regulated by the intestinal
iron absorption of consumed external iron (8, 9), as discussed
elsewhere in these proceedings (10). Dietary iron is present in 2

forms: heme iron (animal flesh products) and nonheme iron
(plants, some animal products, and supplements). The absorption
of nonheme iron is tightly controlled by iron status and the liver-
derived peptide hormone hepcidin (11, 12). Heme iron constitutes
w10% of total dietary iron intake in a typical Western diet but
accounts for nearly two-thirds of absorbed iron because of its
substantially higher absorption (12). Moreover, iron utilization
and bioavailability from heme iron sources are considerably
higher than those observed for nonheme ferrous sulfate in both
pregnant and nonpregnant individuals (12–14). However, neither
the precise mechanisms nor the regulation of heme iron ab-
sorption is fully understood (12). Of note, iron absorption and
homeostasis is also intimately linked to the inflammatory re-
sponse (15). Hepcidin, the central regulator of iron homeostasis,
is upregulated by inflammatory stress response pathways leading
to decreased dietary iron absorption and the sequestering of iron
in hepatocytes and macrophages (15). Circulating concentra-
tions of iron markers, such as ferritin and transferrin receptors,
may also increase in the presence of infection or inflammation,
further complicating the accurate estimation of iron status in
human populations (16, 17).

Iron deficiency is common among pregnant women, and as
such, iron supplementation is often recommended to preg-
nant women (18). Emerging evidence from both animal and
population-based studies, however, has raised potential concerns
because significant associations have been observed between
greater iron status and disturbances in glucose metabolism, in-
cluding increased risk of type 2 diabetes among nonpregnant
individuals (1, 19, 20). A meta-analysis of 12 studies from 2012
(20) concluded that high iron stores [as assessed by elevated
serum ferritin (SF) concentrations] were significantly associated
with an elevated risk of type 2 diabetes among nonpregnant
individuals, with the evidence consistent among prospective
studies (pooled RR: 1.66; 95% CI: 1.15, 2.39). Of note, all of
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these studies accounted for major potential confounders in-
cluding BMI (in kg/m2). Of the 12 studies, 4 studies (21–24)
observed a significant positive association between ferritin
concentrations and type 2 diabetes even after the adjustment for
inflammatory status measured by C-reactive protein (CRP),
adipokines, or cytokines. Accounting for inflammatory status is
important because SF is elevated by inflammation. In animal
models of type 2 diabetes, lowering iron concentrations through
dietary iron restriction, iron chelation, or phlebotomy has been
shown to improve b cell function (1). Yet, the evidence is un-
clear regarding the role of iron in the development of gestational
diabetes mellitus (GDM), a common pregnancy complication
that has short-term and long-term adverse health ramifications
for both women and their children (25, 26). In this review, we
critically evaluate available data on the association of GDM with
different sources of dietary iron from food (i.e., heme compared
with nonheme iron) and iron supplements, as well as iron status
measured by the blood concentration of several indicators.

IRON INTAKE AND GDM

Dietary iron intake and the risk of GDM

The association of dietary iron intake from food with GDM
risk has been examined in several studies (27–31), with the
majority (27–29) being conducted among US populations
(Table 1).

Among the 3 prospective studies, the 2 earliest studies (27, 28)
found that only dietary heme iron intake was significantly as-
sociated with an increased risk of GDM. In the large prospective
study conducted in the Nurses’ Health Study cohort (n = 13,475),
long-term consumption of dietary heme iron, but not total or
nonheme iron intake, was significantly associated with the risk
of GDM (27). The association with dietary heme iron was sig-
nificant after adjusting for several risk factors of GDM including
BMI, as well as dietary factors such as total calories, glycemic
load, polyunsaturated fat intake, cereal fiber, saturated fat, and
dietary cholesterol (27). The second study (28), which examined
dietary iron intake in a cohort in Seattle, Washington (n = 3158),
reported that women in the highest quartile of heme iron intake
during the preconceptional and/or early pregnancy period had
more than a 2-fold risk of GDM compared with those who were
in the lowest quartile, even after adjusting for BMI and other
major established GDM risk factors, as well as dietary intakes of
saturated fat, cholesterol, and red and processed meat. In a re-
cent meta-analysis (37) of these 2 prospective studies (27, 28),
the adjusted RR for the risk of GDM associated with the highest
compared with the lowest amount of dietary heme iron intake
was 1.53 (95% CI: 1.17, 2.00). In contrast, a small prospective
study from Iran (31) reported no significant differences in nu-
tritional intakes of iron during early pregnancy by subsequent
GDM status in midpregnancy. Notably, heme and nonheme iron
intakes were not examined separately in this study. Inference
from the study was also hindered because of the small number
of GDM cases (n = 72) and failure to control for other dietary
risk factors of GDM that could confound the association
(e.g., dietary fat, cholesterol, fiber). Interestingly, data from a
recent retrospective study (29) showed a lower risk of GDM
associated with higher nonheme iron intakes before pregnancy.
Because diets high in vegetables, fruits, legumes, and nuts areT
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rich in nonheme iron, nonheme iron intake could reflect a
healthy dietary pattern that is protective of GDM (38, 39). Al-
though dietary fiber intake was adjusted in this study (29), the
investigators did not account for an overall dietary pattern or a
healthy lifestyle, either of which is likely to relate to the sug-
gestive protective effect of nonheme iron. Inference of findings
from the study was further limited by its retrospective design.
Overall, emerging yet limited data to date suggest that dietary
heme iron is positively and significantly associated with GDM
risk, whereas findings with nonheme iron are inconclusive in
general.

Intakes of iron supplements and the risk of GDM

Besides food, iron-containing dietary supplements are another
common source of iron intake among pregnant women. The
majority of iron supplements contain nonheme iron in the form of
ferrous and ferric iron salts, such as ferrous sulfate, ferric sulfate,
and ferrous fumarate (18, 40). The effects of iron supplemen-
tation on the risk of GDM have been examined in 2 large ran-
domized control trials (34, 36) (Table 1). In the trial conducted in
Hong Kong (34), either an iron supplement (300 mg ferrous
sulfate tablet containing 60 mg elemental Fe) or a placebo tablet
was prescribed to women with hemoglobin concentrations within
the usual range [i.e., those who had either low (,8 g/dL) or high
(.14 g/dL) hemoglobin concentrations at a baseline of ,16 wk
of gestation were excluded]. No effect of iron supplementation
was observed on the risk of GDM (RR: 1.04; 95% CI: 0.70,
1.53), yet inference from these findings was limited by low
compliance (54.4%) and the exclusion of women with an ele-
vated iron status at baseline. In a more recent trial in Finland
(36), no significant difference was observed in the combined
incidence of metabolic outcomes (e.g., glycosuria or GDM) or
related adverse pregnancy outcomes (large-for-gestational-age)
between women who were advised to take routine iron sup-
plementation (100 mg elemental Fe) and women who were not
advised to take iron supplements unless they were anemic.
However, the effect of iron supplementation specifically on
GDM was not reported in this trial (36). In addition, in a study
based on a secondary analysis of a randomized controlled trial
(35) that examined the impact of iron supplementation on
multiple pregnancy outcomes, no significant differences in the
GDM incidence were observed between the iron supplemen-
tation and the placebo groups (Table 1). However, the study
had only a few GDM cases (n = 5) and, hence, may not have
been adequately powered to detect a significant effect. Taken
together, data from existing clinical trials on iron supple-
ment do not provide conclusive findings on their impact on the
GDM occurrence because of their inherent limitations in study
design.

Findings from observational studies (27, 29, 32) on iron
supplementation and GDM are also generally inconclusive
(Table 1). In a large study including 500 GDM cases (33), iron
supplementation lasting $2 wk during pregnancy was related
to a .3-fold increased risk of GDM (RR: 3.36; 95% CI: 1.50,
7.53). However, inference from this study was limited in that
iron supplementation was assessed in midpregnancy at the
same time as GDM diagnosis. Furthermore, iron intake from
diet other than the supplement was not assessed and accounted
for in this study (33).T
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Indicators of body iron status and GDM risk

SF concentration and GDM risk

A number of indicators have been used to characterize ma-
ternal iron status during pregnancy. SF concentration, an in-
dicator of iron stores, has been most often examined in relation to
the risk of GDM. A significant and positive association between
SF concentration and GDMhas been observed in several (41–55),
although not in all, previous studies (56–59). The majority of
these studies were cross-sectional in design, with SF concen-
tration measured either during or close to the time of GDM
diagnosis (41, 44, 45, 47, 50–53, 56). It should be noted, how-
ever, that SF is also an acute-phase reactant that may increase
as a result of the subclinical inflammation associated with GDM
(60). Prospective studies that measure SF concentration well
before GDM diagnosis are, hence, critical to preclude the pos-
sibility of reverse causation. Only a few prospective studies (42,
43, 48, 49, 54, 55, 57) to date have investigated associations of
SF concentration with the subsequent risk of GDM (Table 2).
Overall, findings from prospective studies consistently support
that high SF concentrations in pregnancy are associated with an
elevated risk of GDM. Of note, a recent prospective study (55),
which measured SF concentrations by using blood samples
collected longitudinally through pregnancy, demonstrated that
SF concentrations in both the first and second trimesters were
significantly and positively associated with a subsequent risk of
GDM, even after accounting for inflammation measured via
CRP levels. Findings from 2 recent meta-analyses (37, 48) also
demonstrated a significant and positive association between SF
concentrations and the risk of GDM. For instance, in one of the
meta-analyses (37) that included 4 prospective studies (42, 43,
46, 57), women with the highest SF concentrations had a .3-
fold greater risk of GDM compared with those with the lowest
concentrations (pooled RR: 3.22; 95% CI: 1.73, 6.00).

Soluble transferrin receptor and GDM risk

The concentration of soluble transferrin receptor (sTfR), an
indicator of tissue iron deficiency, is not influenced materially by
the acute-phase response and, hence, may serve as a useful in-
dicator of iron status in the presence of inflammation (60, 63, 64).
In particular, examining both SF and sTfR concentrations and
assessing iron status as a ratio of sTfR to SF (sTfR:SF ratio) may
capture the full spectrum of iron homeostasis in terms of cellular
iron need as well as the availability of iron stores (60, 63, 65). The
association of sTfR concentrations with subsequent GDM risk
was examined in 4 prospective studies (48, 49, 54, 55). sTfR
concentrations were not significantly associated with GDM risk
in these studies (Table 2). We are aware of only one study (55)
that has examined the sTfR:SF ratio in association with GDM
risk. In this prospective and longitudinal study among women in a
multiracial US cohort (55), the risk of GDMwas not significantly
associated with sTfR concentrations but was significantly and
inversely associated with the sTfR:SF ratio in both the first and
second trimesters, even after the adjustment of BMI, CRP
concentrations, and other major risk factors of GDM (Table 2).

Hepcidin and GDM risk

Hepcidin, a hepatic hormone that plays a key role in iron
homoeostasis, has been gaining interest as a novel indicator for

iron status. Emerging evidence supports the idea that hepcidin is the
master regulator of iron homeostasis, regulating iron absorption
from dietary sources in the gut, recycled iron from macrophages,
and iron stores in the liver (66). Despite this, only 2 published
studies (47, 55) to date have examined the association between
hepcidin concentrations and GDM risk, both of which observed
positive associations (Table 2). For instance, in a cross-sectional
study including 30 GDM cases (47), hepcidin concentrations
at the time of GDM screening were significantly elevated inwomen
with GDM compared with women with normal glucose tolerance.
Most recently, in a relatively large prospective longitudinal study
including 107 GDM cases (55) from women of multiple races/
ethnicities in the United States, hepcidin concentrations during 16–
24 wk of gestation were significantly and positively associated
with the subsequent risk of GDM. Because the hepcidin con-
centration could be influenced by inflammation (11), this longi-
tudinal study additionally adjusted for CRP concentrations in their
analyses and observed that the significant and positive association
between hepcidin and GDM persisted.

Other indicators of iron status and GDM risk

Studies on other indicators of iron status, such as transferrin
concentration, hemoglobin, or serum iron concentration, have not
been well-studied in the context of GDM risk, particularly in a
prospective setting. Overall, findings provide some suggestive
evidence of a potential link between higher iron load or stores and
greater risk of GDM although the findings were not consistent
across all studies (Table 2). For instance, hemoglobin concen-
trations in pregnancy were positively associated with the risk of
GDM in some (42, 45, 61, 62, 67) although not all studies (41, 43,
47, 50, 56, 57, 59). Studies examining serum iron concentration in
relation to GDM risk have also been conflicting with mixed
reports of positive (31, 41, 45, 47), negative (68), or no asso-
ciation (59, 69, 70) with GDM status. However, the majority of
these studies were of small sample size, and inferences from these
studies were further limited by insufficient control for poten-
tial confounders, such as prepregnancy BMI. Despite these
limitations, a meta-analysis (48) pooling data from 7 studies
(31, 41, 45, 47, 59, 70, 71) including 337 GDM cases showed
that women with GDM had higher concentrations of serum iron
than those without (pooled mean difference: 200 mg/L; 95% CI:
147, 253). Future prospective studies of large sample sizes and
with a comprehensive adjustment of potential confounders are
warranted to further investigate the roles of these iron in-
dicators in the development of GDM.

DISCUSSION

Well-designed prospective studies examining dietary iron, iron
supplements, or indicators of iron status with respect to sub-
sequent GDM risk are just emerging and as of yet limited.
Accumulating data suggest that dietary iron, in particular heme-
iron intake during or before pregnancy, is significantly and
positively associated with GDM even after the adjustment for
major dietary factors and other major well-documented risk
factors of GDM. Yet the possibility of unmeasured residual
confounding cannot be ruled out as data on heme iron were
mostly based on observational studies. For example, nitrites and
other preservatives in processed meat, as well as advanced
glycation end products formed during the high-temperature
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cooking of animal-derived foods, have been shown to contribute
to insulin resistance (72–74). Findings on dietary nonheme iron
intakes and iron supplement are inconclusive in general.

Molecular mechanisms underlying the observed associations
of GDM with heme iron remain to be elucidated. Iron utilization
and bioavailability from the heme iron source was substantially
higher than that observed for ferrous sulfate (nonheme iron) in
both the pregnant and nonpregnant individuals (12–14). Fur-
thermore, data from animal studies showed considerable dif-
ferences in tissue deposition of the absorbed heme and nonheme
iron tracers, suggesting that some heme may be exported into
the circulation in a form different from that of nonheme iron (9).
Data also support that there may be differential use of iron from
heme and nonheme sources during pregnancy (65). As such,
given the same amount of heme and nonheme iron consumption,
it is plausible that the effect size and magnitude of their asso-
ciations with GDM may differ.

Maternal response to dietary or supplemental iron, as well as
their impact on glucose metabolism may be contingent on dif-
ferences in women’s underlying iron status and metabolism. For
instance, in a study conducted in a primary health care setting in
Finland, an increased total iron intake (including supplemental
iron) during pregnancy was associated with a greater GDM risk,
but the association was only significant among women who were
not anemic at the beginning of the pregnancy (30). Furthermore,
in a recent large prospective study among women with a history of
GDM who were generally replete in iron, a higher long-term in-
take of iron supplements after GDM-complicated pregnancy was
significantly associated with an increased risk of subsequent type 2
diabetes (75). In the general population, however, iron supple-
ments were not significantly related to type 2 diabetes risk (76).
Future studies that use a more systematic and comprehensive
approach in characterizing underlying iron status as well changes
in iron status in response to dietary and supplementary iron intake
are needed to elucidate the role of iron in the development of
GDM. In addition, because the majority of studies in this regard
were conducted among Caucasian populations, future studies in
more racially or ethnically diverse populations are warranted.

Compared with reported iron intakes from diet, serum or
plasma measures are more likely to better reflect iron status
and may provide important insights into the role of iron in the
pathogenesis of GDM. Accumulating data from recent well-
designed prospective studies, in combination with findings
from meta-analyses, have demonstrated a significant and positive
association between SF concentrations in pregnancy and GDM
risk, even after accounting for major risk factors of GDM, as well
as inflammatory status measured by plasma CRP concentrations.
Moreover, emerging prospective and longitudinal data support
that higher hepcidin concentrations are associated with an in-
creased GDM risk, independent of inflammatory status. Although
hepcidin has been gaining attention as the master regulator of iron
homeostasis, the question of which indicators are the most op-
timal for measuring iron status remains subject to debate. sTfR
was previously considered more useful for measuring iron status
in the presence of inflammation, yet emerging evidence suggests
that its concentrations also increase with infection or high a(1)-
acid glycoprotein or CRP concentrations (16, 17, 49). Additional
work is, therefore, needed to identify the most appropriate in-
dicators to assess iron status and homeostasis, as well as to
characterize high iron status during pregnancy.

Given the close link between iron status and inflammation, it is
remarkable how few studies have accounted for inflammation in
examining the association between iron status and GDM.
Moreover, in the limited number of studies (48, 49, 54, 55, 57)
that assessed inflammatory status concurrently with iron status,
CRP was the only inflammatory marker measured. Emerging
evidence, however, suggests that CRP alone is insufficient to fully
characterize inflammation, particularly in the context of assessing
nutritional status (77). The use of both CRP and a(1)-acid
glycoprotein measures has been suggested to be more accurate
at estimating the inflammatory profile and interpreting SF con-
centrations (77, 78). Hepcidin is known to be regulated by in-
flammatory cytokines such as IL-1, IL-6, and IL-22 (79), and as
such, these markers may be of interest in future studies. Im-
portant data gaps need to be addressed to reach a consensus
regarding what and how to best use inflammatory markers in
analyzing and interpreting iron status indicators.

Collectively, accumulating evidence to date suggests a potential
link between greater iron stores or status during pregnancy and an
elevated risk of GDM. This is particularly relevant given the short-
and long-term adverse health outcomes associated with GDM
among pregnant women and their offspring. However, currently it
remains inconclusive whether routine iron supplementation among
iron-replete pregnant women poses any risk of GDM. Substantive
data gaps need to be addressed to clarify the association between
iron status and risk of GDM and inform the relative risk and
benefit assessment of iron supplementation to iron-replete pregnant
women. Recently, in their updated recommendations, the US Pre-
ventive Services Task Force (USPSTF) concluded that the evidence
is insufficient to recommend for or against routine iron supple-
mentation for nonanemic pregnant women (80). The USPSTF
review included only one study (34) examining GDM as a
potential adverse outcome, further highlighting the paucity of
data in this regard. Well-designed, systematic studies utilizing
comprehensive measures of iron status, inflammation, and oxidative
stress, as well as dietary and supplementary iron intake before and
during pregnancy, are needed to elucidate and establish the link
between iron status and GDM. Additional studies should also in-
vestigate the utility of individually tailored use of iron supplements,
as well as the optimal timing and dose of iron supplementation
needed to optimize pregnancy outcomes among women.
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