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Abstract

Tumor development is an evolutionary process in which a heterogeneous population of cells with 

different growth capabilities compete for resources in order to gain a proliferative advantage. What 

are the minimal ingredients needed to recreate some of the emergent features of such a developing 

complex ecosystem? What is a tumor doing before we can detect it? We outline a mathematical 

model, driven by a stochastic Moran process, in which cancer cells and healthy cells compete for 

dominance in the population. Each are assigned payoffs according to a Prisoner’s Dilemma 

evolutionary game where the healthy cells are the cooperators and the cancer cells are the 

defectors. With point mutational dynamics, heredity, and a fitness landscape controlling birth and 

death rates, natural selection acts on the cell population and simulated ‘cancer-like’ features 

emerge, such as Gompertzian tumor growth driven by heterogeneity, the log-kill law which 

(linearly) relates therapeutic dose density to the (log) probability of cancer cell survival, and the 

Norton-Simon hypothesis which (linearly) relates tumor regression rates to tumor growth rates. 

We highlight the utility, clarity, and power that such models provide, despite (and because of) their 

simplicity and built-in assumptions.
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1. Introduction

Cancer is an evolutionary process taking place within a genetically and functionally 

heterogeneous population of cells that traffic from one anatomical site to another via 
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hematogenous and lymphatic routes [1, 7, 12, 53, 61]. The population of cells associated 

with the primary and metastatic tumors evolve, adapt, proliferate, and disseminate in an 

environment in which a fitness landscape controls survival and replication [31]. 

Tumorigenesis occurs as the result of inherited and acquired genetic, epigenetic and other 

abnormalities accumulated over a long period of time in otherwise normal cells [28, 49]. 

Before we can typically detect the presence of a tumor, the cells are already competing for 

resources in a Darwinian struggle for existence in tissues that progressively age and evolve. 

It is well established that the regenerative capacity of individual cells within a tumor, and 

their ability to traffic multi-directionally from the primary tumor to metastatic tumors all 

represent significant challenges associated with the efficacy of different cancer treatments 

and our resulting ability to control systemic spread of many soft-tissue cancers [36, 60]. 

Details of the metastatic and evolutionary process are poorly understood, particularly in the 

subclinical stages when tumors are actively developing but not yet clinically visible [52]. It 

could be argued that in order to truly understand cancer progression at the level in which 

quantitative predictions become feasible, it is necessary to understand how genetically and 

epigenetically heterogeneous populations of cells compete and evolve within the tumor 

environment well before the tumor is clinically detectable. Additionally, a better 

understanding of how these populations develop resistance to specific therapies [16, 22] 

might help in developing optimal strategies to attack the tumor, slow disease progression, or 

maintain it at a stable level.

Evolutionary game theory is perhaps the best quantitative framework for modeling evolution 

and natural selection. It is a dynamic version of classical game theory in which a game 

between two (or more) competitors is played repeatedly, giving each participant the ability 

to adjust their strategy based on the outcome of the previous string of games. While this may 

seem like a minor variant of classical (static) game theory, as developed by the 

mathematicians von Neumann and Morgenstern in the 1940’s [57], it is not. Developed 

mostly by the mathematical biologists John Maynard Smith and George Price in the 1970s 

[29, 30] and Martin Nowak and Karl Sigmund [44, 47] more recently, this dynamic 

generalization of classical game theory has proven to be one of the main quantitative tools 

available to evolutionary biologists (if coupled with a fitness landscape) whose goal is to 

understand natural selection in evolving populations. In this biological context, a strategy is 

not necessarily a deliberate course of action, but an inheritable trait [50]. Instead of 

identifying Nash equilibria, as in the static setting [34, 35], one looks for evolutionary stable 

strategies (ESS) and fixation probabilities [19, 44] of a subpopulation. This subpopulation 

might be traced to a specific cell with enhanced replicative capacity (high fitness), for 

example, that has undergone a sequence of mutations and is in the process of clonally 

expanding [48]. A relevant question in that case is what is the probability of fixation of that 

subpopulation? More explicitly, how does one subpopulation invade another in a developing 

colony of cells?

One game in particular, the Prisoner’s Dilemma game, has played a central role in cancer 

modeling (as well as other contexts such as political science and economics) [2, 3, 4, 10, 11, 

14, 15, 17, 18, 19, 20, 21, 23, 45, 46, 47, 54, 55, 56, 59]. It was originally developed by 

Flood, Dresher and Tucker in the 1950s as an example of a game which shows how rational 

players might not cooperate, even if it seems to be in their best interest to do so. The 
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evolutionary version of the Prisoner’s Dilemma game has thus become a paradigm for the 

evolution of cooperation among a group of selfish individuals and thus plays a key role in 

understanding and modeling the evolution of altruistic behavior [2, 3]. Perhaps the best 

introductory discussion of these ideas is found in Dawkins’ celebrated book, The Selfish 

Gene [8]. The framework of evolutionary game theory allows the modeler to track the 

relative frequencies of competing subpopulations with different traits within a bigger 

population by defining mutual payoffs among pairs within the group. From this, one can 

then define a fitness landscape over which the subpopulations evolve. The fitness of different 

phenotypes is frequency dependent and is associated with reproductive prowess, while the 

‘players’ in the evolutionary game compete selfishly for the largest share of descendants [19, 

59]. Our goal in this article is provide a brief introduction to how the Prisoner’s Dilemma 

game can be used to model the interaction of competing subpopulations of cells, say healthy, 

and cancerous, in a developing tumor and beyond.

2. The prisoner’s dilemma evolutionary game

An evolutionary game between two players is defined by a 2 × 2 payoff matrix which 

assigns a reward to each player (monetary reward, vacation time, reduced time in jail, etc.) 

on a given interaction. Let us call the two players A and B. In the case of a prisoner’s 

dilemma game between cell types in an evolving population of cells, let there be two 

subpopulations of cell types which we will call ‘healthy’, and ‘cancerous’. We can think of 

the healthy cells as the subpopulation that is cooperating, and the cancer cells as formerly 

cooperating cells that have defected via a sequence of somatic driver mutations. Imagine a 

sequence of ‘games’ played between two cells (A and B) selected at random from the 

population, but chosen in proportion to their prevalence in the population pool. Think of a 

cancer-free organ or tissue as one in which a population of healthy cells are all cooperating, 

and the normal organ functions are able to proceed, with birth and death rates that 

statistically balance, so an equilibrium healthy population is maintained (on average). Now 

imagine a mutated cell introduced into the population with enhanced proliferative capability 

as encoded by its genome as represented as a binary sequence of 0’s and 1’s carrying 

forward its genetic information (which is passed on to daughter cells). A schematic diagram 

associated with this process is shown in Figure 1. We can think of this cancer cell as a 

formerly cooperating cell that has defected and begins to compete against the surrounding 

population of healthy cells for resources and reproductive prowess. From that point forward, 

one can imagine tumor development to be a competition between two distinct competing 

subpopulations of cells, healthy (cooperators) and cancerous (defectors). We are interested 

in the growth rates of a ‘tumor’ made up of a collection of cancer cells within the entire 

population, or equivalently, we are interested in tracking the proportion of cancer cells, i(t), 
vs. the proportion of healthy cells, N − i(t), in a population of N cells comprising the 

simulated tissue region.

To quantify how the interactions proceed, and how birth/death rates are ultimately assigned, 

we introduce the 2 × 2 prisoner’s dilemma payoff matrix:
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(1)

What defines a prisoner’s dilemma matrix are the inequalities c > a > d > b. The chosen 

values in (1) are relatively standard, but not unique‡. The essence of the prisoner’s dilemma 

game is the two players compete against each other, and each has to decide what best 

strategy to adopt in order to maximize their payoff. This 2 × 2 matrix assigns the payoff (e.g. 

reward) to each player on each interaction. My options, as a strategy or, equivalently, as a 

cell type, are listed along the rows, with row 1 associated with my possible choice to 

cooperate, or equivalently my cell type being healthy, and row 2 associated with my possible 

choice to defect, or equivalently my cell type being cancerous. Your options are listed down 

the columns, with column 1 associated with your choice to cooperate (or you being a healthy 

cell), and column 2 associated with your choice to defect (or you being a cancer cell). The 

analysis of a rational player in a prisoner’s dilemma game runs as follows. I do not know 

what strategy you will choose, but suppose you choose to cooperate (column 1). In that case, 

I am better off defecting (row 2) since I receive a payoff of 5 instead of 3 (if I also 

cooperate). Suppose instead you choose to defect (column 2). In that case, I am also better 

off defecting (row 2) since I receive a payoff of 1 instead of 0 (if I were to have cooperated). 

Therefore, no matter what you choose, I am better off (from a pure payoff point of view) if I 
defect. What makes this game such a useful paradigm for strategic interactions ranging from 

economics, political science, biology, and even psychology [2, 29, 59] is the following 

additional observation. You will analyze the game in exactly the same way I did (just switch 
the roles of me and you in the previous rational analysis), so you will also decide to defect 
no matter what I do. The upshot if we both defect is that we will each receive a payoff of 1, 

instead of each receiving a payoff of 3 if we had both chosen to cooperate. The defect-defect 

combination is a Nash equilibrium [34, 35], and yet it is sub-optimal for both players and for 

the system as a whole. Rational thought rules out the cooperate-cooperate combination 

which would be better for each player (3 points each) and for both players combined (6 

points). In fact, the Nash equilibrium strategy of defect-defect is the worst possible system 

wide choice, yielding a total payoff of 2 points, compared to the cooperate-defect or defect-

cooperate combination, which yields a total payoff of 5 points, or the best system-wide 

strategy of cooperate-cooperate yielding a total payoff of 6 points.

The game becomes even more interesting if it is played repeatedly [59], stochastically [55], 

and with spatial structure [27] with each player allowed to decide what strategy to use on 

each interaction so as to accumulate a higher payoff than the competition over a sequence of 

N games. In order to analyze this kind of an evolving set-up, a fitness function must be 

introduced based on the payoff matrix A. Let us now switch our terminology so that the 

relevance to tumor cell kinetics becomes clear. When modeling cell competition, one has to 

be careful about the meaning of the term ‘choosing a strategy’. Cells do not choose a 

strategy, but they do behave in different ways depending on whether they are normal healthy 

‡A general investigation of how the values in the PD payoff matrix affects evolutionary dynamics of the subpopulations is addressed 
in [58].
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cells cooperating as a cohesive group, with birth and death rates that statistically balance, or 

whether they are cancer cells with an overactive cell division mechanism (as triggered by the 

presence of oncogenes) and an underactive ‘break’ mechanism (as triggered by the absence 

of tumor suppressor genes) [61]. In our context, it is not the strategies that evolve, as cells 

cannot change type based on strategy (only based on mutations), but the prevalence of each 

cell type in the population is evolving, with the winner identified as the sub-type that first 

saturates in the population.

3. A tumor growth model

Consider a population of N cells driven by a stochastic birth-death process as depicted in 

Figure 1, with red cells depicting cancer cells (higher fitness) and blue cells depicting 

healthy cells (lower fitness, but cooperative). We model the cell population as a stochastic 

Moran process [62] of N cells, ‘i’ of which are cancerous, ‘N − i’ of which are healthy. If 

each cell had equal fitness, the birth-death rates would all be equal and a statistical balance 

would ensue. At each step, a cell is chosen (randomly but based on the prevalence in the 

population pool) and eliminated (death), while another is chosen to divide (birth). If all cells 

had equal fitness, the birth/death rates of the cancer cells would be i/N, while those of the 

healthy cells would be (N − i)/N. With no mechanism for introducing a cancer cells in the 

population, the birth/death rates of the healthy cells would be equal, and no tumor would 

form.

Now, introduce one cancer cell into the population of healthy cells, as shown in Figure 1a. 

At each step, there would be a certain probability of this cell dividing (Pi,i+1), being 

eliminated (Pi,i−1), or simply not being chosen for either division or death (Pi,i). Based on 

this random process, it might be possible for the cancer cells to saturate the population, as 

shown by one simulation in Figure 2 depicting N = 1000 cells, with initially i = 1 cancer 

cell, and N − i = 999 healthy cells. However, the growth curve would not show any distinct 

shape (Figure 2 (black)), and might well become extinct after any number of cell divisions, 

as opposed to reaching saturation. But we emphasize that without mutational dynamics, 

heritability, and natural selection operating on the cell population, the shape of the growth 

curve would look random, and we know this is not how tumors tend to grow [25, 26]. By 

contrast, Figure 2 (red) shows a Gompertzian growth curve starting with exponential growth 

of the cancer cell subpopulation, followed by linear growth, ending with saturation. The 

growth rate is not constant throughout the full history of tumor development, but after an 

initial period of exponential growth, the rate decelerates until the region saturates with 

cancer cells. The basic ingredients necessary to sustain Gompertzian growth seem to be: an 

underlying stochastic engine of developing cells, mutational dynamics, heritability, and a 

fitness landscape that governs birth and death rates giving rise to some sort of natural 

selection.

3.1. Mutations and heritability

Each of the N cells in our simulated population carries with it a discrete packet of 

information that represents some form of molecular differences among the cells. In our 

model, we code this information in the form of a 4-digit binary string from 0000 up to 1111, 
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giving rise to a population made up of 16 distinct cell types. At each discrete step in the 

birth-death process, one of the digits in the binary string is able to undergo a point mutation 

[13, 28], where a digit spontaneously flips from 0 to 1, or 1 to 0, with probability pm. The 

mutation process is shown in Figure 1, while a mutation diagram is shown in Figure 3 in the 

form of a directed graph. This figure shows the possible mutational transitions that can occur 

in each cell, from step to step in a simulation. A typical simulation begins with a population 

of N healthy cells, all with identical binary strings 0000. The edges on the directed graph 

represent possible mutations that could occur on a given step. The first 11 binary string 

values (0–10) represent healthy cells in our model that are at different stages in their 

evolutionary progression towards becoming a cancer cell (the exact details of this genotype 

to phenotype map do not matter much). Mutations strictly within this subpopulation are 

called passenger mutations as the cells all have the same fitness characteristics. The first 

driver mutation occurs when a binary string reaches value 11–15. The first cell that 

transitions from the healthy state to the cancerous state is the renegade cell in the population 

that then has the potential to clonally expand and take over the population. How does this 

process occur?

3.2. The fitness landscape

At the heart of how the Prisoner’s Dilemma evolutionary game dictates birth and death rates 

which in turn control tumor growth, is the definition of cell fitness. Let us start by laying out 

the various probabilities of pairs of cells interacting and clearly defining payoffs when there 

are i cancer cells, and N − i healthy cells in the population. The probability that a healthy 

cell interacts with another healthy cell is given by (N − i − 1)/(N − 1), whereas the 

probability that a healthy cell interacts with a cancer cell is i/(N − 1). The probability that a 

cancer cell interacts with a healthy cell is (N − i)/(N − 1), whereas the probability that a 

cancer cell interacts with another cancer cell is (i − 1)/(N − 1).

In a fixed population of N cells, with i cancer cells, the number of healthy cells is given by N 
− i. The average payoff of a single cell (πH, πC), is dependent on the payoff matrix value 

weighted by the relative frequency of types in the current population:

(2)

(3)

Here, a = 3, b = 0, c = 5, d = 1 are the entries in the Prisoner’s Dilemma payoff matrix (1). 

For the Prisoner’s dilemma game, the average payoff of a single cancer cell is always greater 

than the average payoff for a healthy cell (Figure 4c). With the invasion of the first cancer 

cell, the higher payoff gives a higher probability of survival when in competition with a 

single healthy cell.
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Selection acts on the entire population of cells as it depends not on the payoff, but on the 

effective fitness of the subtype population. The effective fitness of each cell type (fH, fC) is 

given by the relative contribution of the payoff of that cell type, weighted by the selection 

pressure:

(4)

and the fitness of the cancer cells as:

(5)

The probability of birthing a new cancer cell depends on the relative frequency (random 

drift) weighted by the effective fitness, and the death rate is proportional to the relative 

frequency. The transition probabilities can be written:

(6)

(7)

(8)

In the event of the first driver mutation, the first cancer cell is birthed. At the beginning of 

the simulation, the effective fitness of the healthy population is much greater than the fitness 

of the cancer population (Figure 4b). This is because although the single cancer has a higher 

payoff than any of the healthy cells, the number of healthy cells far outnumber the single 

cancer cells. That single cancer cell initiates a regime of explosive high growth and the 

fitness of the cancer population steadily increases. Cancer cells are continually competing 

with healthy cells and receiving a higher payoff in this regime (compare the payoff entries of 

a cancer cell receiving c = 5 vs a healthy cell receiving b = 0). At later times, growth slows 

because cancer cells are competing in a population consisting mostly of other cancer cells. 

The payoff for a cancer cell is dramatically lower when interacting with a cancer cell 

(observe the payoff entry of both cancer cells receiving d = 1 when interacting). As the 

cancer population grows, the payoff attainable decreases and growth slows. In addition, the 

average fitness of the total population steadily declines because each interaction derives less 

total payoff, from c + b = 5 to d + d = 1. It is precisely the payoff structure of the Prisoner’s 

Dilemma matrix that produces this declining average population fitness as the cancer cells 

saturate the population. Although they receive higher payoffs than healthy cells on pairwise 
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interactions, these cancer-healthy interactions mostly take place early on in the evolution of 

the tumor. As the cancer cells take over the population, most of the interactions take place 

between pairs of cancer cells (i.e. they eventually start competing with each other) causing 

the population fitness to decline.

This complex process of competition among cell types and survival of subpopulations, 

where defection is selected over cooperation, produces a Gompertzian growth curve shown 

in Figure 5, and compared with a compilation based on a wide range of data first shown in 

[25, 26]. It is now well established that tumor cell populations (and other competing 

populations, such as bacteria and viral populations) generally follow this growth pattern, 

although the literature is complicated by the fact that different parts of the growth curve have 

vastly different growth rates [25, 26], and it is nearly impossible to follow the growth of a 

population of cancer cells in vivo from the first cancer cell through to an entire tumor made 

up of O(109 – 1012) cells. Growth rates are typically measured for a short clinical time 

period [25, 26], and then extrapolated back to the first renegade cell, and forward to the fully 

developed tumor population.

3.3. Heterogeneity drives growth

Insights into the process by which growth rates vary and conspire to produce a Gompertzian 

shape can be achieved by positing that growth is related to molecular and cellular 

heterogeneity of the developing population [5, 24, 53]. Indeed, an outcome of the model is 

that molecular heterogeneity (i.e. the dynamical distribution of the 4-digit binary string 0000

—1111 making up the population of cells) drives growth. Consider entropy [6, 39] of the 

cell population as a measure of heterogeneity:

(9)

(here, log is defined as base 2). The probability pi measures the proportion of cells of type i, 
with i = 1, …, 16 representing the distribution of binary strings ranging from 0000 to 1111. 

We typically course-grain this distribution further so that cells having strings ranging from 

0000 up to 1010 are called ‘healthy’, while those ranging from 1011 to 1111 are 

‘cancerous’. Then growth is determined by:

(10)

It follows from (10) that the cancer cell proportion nE(t) can be written in terms of entropy 

as:

(11)
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This relationship between growth of the cancer cell population and entropy is pinned down 

and detailed in [62]. We consider it to be one of the key emergent features of our simple 

model.

A typical example of the emergence of genetic heterogeneity in our model system is shown 

in the form of a phylogenetic tree in Figure 6. This particular tree is obtained via a 

simulation of only 30 healthy phenotypic cells (0000), which during the course of a 

simulation expand out (radially in time) to form a much more heterogeneous population of 

cells at the end of the simulation. In our model, the genetic time-history of each cell is 

tracked and the population can be statistically analyzed after the simulation finishes.

4. Simulated drug dosing strategies and therapeutic response

Figure 7 shows the clear advantage of early stage therapy in our model system. We compare 

the effect of therapy given at an early stage, mid-stage, and late stages of the Gompertzian 

growth of the tumor. The dashed black Gompertzian curve is the freely growing cancer cell 

population. In each of the figures, we depict the effect of a range of drug dose densities, D, 

where

(12)

The dose density is the product of the drug concentration, c, and the time over which the 

therapy is administered, t, (12). Here, the drug concentration value is a weighting (0 ≤ c ≤ 1) 

which determines the intensity of the drug treatment. A higher value of c will alter the 

selection pressure in favor of healthy cells (and to the disadvantage of cancer cells) more 

dramatically.

Figure 7 varies the drug dose density by varying the drug concentrations (c = 0.2, 0.4, 0.6, 

0.8, 1.0) administered for a constant time (t = 5000 cell divisions, black arrow). The colored 

curves show the subsequent decline of the cancer cell population under therapeutic pressure. 

Clearly, to obtain the desired effect of driving the cancer cell population down to 

manageable levels, one needs to (i) use a sufficient dose density, and (ii) initiate therapy 

early enough in the growth history. These figures are meant to paint a broad brush with 

respect to the simulated advantages of early therapy and to show the capability of the model 

with respect to addressing questions of this type in a quantitative way. A detailed 

investigation is left for a separate publication.

An established empirical law which relates drug dose density to its effectiveness in killing 

off cancer cells is known as the ‘log-kill’ law [51]. The log kill law states that a given dose 

of chemotherapy kills the same fraction of tumor cells (as opposed to the same number of 

tumor cells), regardless of the size of the tumor at the time the therapy is administered [51], 

a consequence of exponential growth with a constant growth rate. This effect is best 

illustrated on a dose-response curve, plotting the dose density, D, with respect to the 

probability of tumor cell survival, PS. Thus, the log-kill law states the following:
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(13)

As an example, if there are 1000 cancer cells in a tumor population, and the first therapy 

dose kills off 90% of them (i.e. β = 0.9), then after the first round of therapy there will be 

100 cancer cells remaining. If a second round of therapy is administered, exactly as the first 

round, starting soon enough so that no new cancer cells have formed, then this next round 

will also kill off 90% of the cells, leaving 10 cells, and so on for each future round of 

therapy. In a sense, since the first round killed 900 cells, while the second identical round 

killed only 90 cells, the population gets increasingly more difficult to kill off using the same 

treatment on each cycle. The log-kill law, a fundamentally static law (it does not say 

anything about the relationship of the fraction of cells killed vs. the growth rate of the 

tumor), is verified in our model system, as shown in the dose response curve in Figure 8d. 

On the x-axis, we increase the dose density D, and we plot the number of surviving cancer 

cells. The slope of this straight line (verifying the log-kill law) is the rate of regression of the 

tumor, β. Alternatively, β can be estimated using an exponential fit of i(t) during therapy (i.e. 

i(t) = i0 exp(−β(t − t0)), where i0 is the initial tumor size and t0 is the time therapy is 

initiated).

So how is the rate of regression, β, related to the growth rate of the tumor, γ? This is 

relevant, since we know from the shape of the Gompertzian curve, the growth rate is highest 

(exponential) at the beginning stage of tumor development and lowest at the late saturation 

stage. Figure 8a shows therapy is more effective (i.e. a higher rate of regression, β) for 

earlier stage therapy. These early stage therapies correspond to a higher growth rate, shown 

in 8b. The Norton-Simon hypothesis [41, 42, 43] states that the rate of regression is 

proportional to the instantaneous growth rate for an untreated tumor of that size at the time 

therapy is first administered. A faster growing tumor (early stage) should show a higher rate 

of regression than a more slowly growing tumor (late stage). This hypothesis is also verified 

in our model system, and shown clearly in Figure 8c. The reality of this growth-dependent 

tumor regression rate effect (where early stage faster growing tumors are more vulnerable to 

therapy than later stage, slowly growing tumors) dramatically reinforces the need to 

administer drug treatment early in tumor progression when growth rates are high and there 

are fewer cancer cells to kill off.

5. Markov dissemination and progression patterns

So how do these molecular and cellular growth details manifest themselves on the larger 

scales associated with metastatic progression patterns in patients? Despite the fact that 

disease progression patterns can vary from patient to patient, if a sufficiently large cohort of 

patients with similar characteristics is tracked over the course of the disease, statistical 

patterns emerge and can be exploited to build dynamical models of large scale progression. 

This lies at the heart of the models described in [37, 38, 39] for lung cancer progression, and 

[39, 40] for breast cancer progression.
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As an example of the kinds of whole-body scale models that can be built, consider first the 

tree-ring diagram shown in Figure 9a. The diagram encapsulates the entire progression 

history of a cohort of 289 primary breast cancer patients tracked at the Memorial Sloan 

Kettering Cancer Center for a 20 year period. All of the patients entered the cohort with a 

primary breast tumor, but no metastatic tumors. The inner ring, shown in pink, represents 

this cohort when they entered the study. As time progresses, the rings grow out, surrounding 

the inner breast ring. The first ring out shows the metastatic tumor distribution associated 

with first recurrence. The sector sizes represent the percentage of patients in this group. 

Likewise, the second ring out represents the distribution of tumors on second recurrence, and 

so forth for the further rings out. Hence, subsequent rings outward represent the tumor 

distributions as time progresses, with each patient history depicted on a ray going out from 

the center of the ring diagram. We caution that despite our usage of the term ‘tree-ring’ 

diagrams for these representations, the thickness of the rings are all equal, hence do not 

reflect the time between subsequent recurrences (timescales of progression are documented 

and modeled in [40]). The power of the diagrams is that in one quick glance, one gains an 

appreciation for the statistical complexity of the disease [39, 40]. From them, one can also 

calculate the probability of the disease ‘transitioning’ from one site to another as the disease 

progresses (called transition probabilities). These can then be used to create a single Markov 

transition matrix for each cancer type [39], which quantitatively encodes much of the 

information associated with the disease. Figure 9b shows the Markov transition graph from 

the last metastatic site to the deceased state for the cohort from Figure 9a. The sites are 

ordered clockwise from the most probably last metastatic site, to the least probable.

Figures 9c and 9d show reduced Markov diagrams [39, 40] for two specific important sub-

groups of breast cancer patients, Her2+ patients, and ER−/Her2− patients. Generally 

speaking, Her2+ patients have the poorest prognosis. The red sites in these reduced diagrams 

(bone, lung/pleura, chest wall, LN (mam)) in Figure 9c, and bone, LN (mam), chest wall in 

Figure 9d are the spreaders associated with these groups. The blue sites (liver, LN (dist), 

brain for Fig. 9c; LN (dist), lung/pleura, liver, brain for Fig. 9d) are the sponges [37, 38, 39]. 

It is interesting to note that lung/pleura switches from a spreader in the Her2+ sub-group to a 

sponge in the ER−/Her2− sub-group, suggesting a possible biological difference of the site 

in the different groups that correlates with different survival probabilities.

6. Mathematical modeling and tumor analytics

It is important to keep in mind that no mathematical model captures all aspects of reality, so 

choices must be made which involve prioritizing the features that are most essential in 

capturing the essence of a complex process and which are not. Most experts now agree that 

the evolutionary processes in a tumor played out among subpopulations of competing cells 

are key to understanding aspects of growth and resistance to chemotherapy, which will 

ultimately lead the way toward a quantitative understanding of tumor growth and cancer 

progression [31, 60, 61]. The paradigm of the cancer cell subpopulation and the healthy cell 

subpopulation competing as the defectors and cooperators in a Prisoner’s Dilemma 

evolutionary game has been useful in obtaining a quantitative handle on many of these 

processes and frames the problem in an intuitive yet predictive way.
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Nonetheless, the mathematical ‘taste’ of the modeler plays a role in what techniques are 

selected and ultimately where the spotlight shines. This fact makes clinicians uncomfortable 

and can lead to deep suspicion of the mathematical modeling enterprise as a whole. Aren’t 

the outcomes and predictions of mathematical models a straightforward consequence of the 

model assumptions? Once those choices are made, isn’t the cake already baked? So why 

should we be surprised if you tell us it tastes good? Why not simply use tried and true 

statistical tools like regression methods to curve-fit the data directly, with no built in 

assumptions, and be satisfied with uncovering correlations and trends? Clinicians (and 

experimentalists, in general) feel that they are dealing directly with reality, so why mess 

around with ‘toy’ systems based on possibly ‘ad hoc’ or incorrect assumptions that create 

artificial realities that may or may not be relevant? To a theoretician, calling their 

assumptions ad hoc, as opposed to natural, is as insulting as calling a clinician sloppy and 

uncaring (try this for yourself at the next conference you go to! But please use the term 

‘somewhat ad hoc’ to lessen the blow.) And if you want to deliver an even harsher insult, 

you could comment that the model seems like an exercise in curve fitting.

But the usefulness of mathematical models built on simplified assumptions is well 

established in the history of the physical sciences, as detailed beautifully in Peter Dear’s 

book, The Intelligibility of Nature: How Science Makes Sense of the World [9]. Bohr’s 

simple model of the structure of the atom was crucial in moving the community forward 

towards a deeper understanding of cause and effect, and ultimately pushing others to develop 

more realistic atomic models. The same could be said for many other important, but 

ultimately discarded models of reality (e.g. the notion of aether used as a vehicle to 

understand the mysterious notion of action-at-a-distance [9]) now relegated to footnotes in 

the history of the physical sciences.

Lessons from this history highlight the importance of using the principle of Occam’s razor 

(law of parsimony) as a heuristic guide in developing models: (1) keep things simple, but not 

too simple; (2) see what can be explained by using a given set of assumptions, and try to 

identify what is either wrong or cannot be explained; (3) add complexity to the model, but 

do this carefully. Since ultimately, the model will always be wrong (with respect to some 

well chosen and specific new question being posed about a system), it is important that it be 

useful as a vehicle of intelligibility [9] associated with the set of questions surrounding the 

phenomena it was built to explain. Answers to some new questions will be found using the 

model as a temporary crutch, and new questions will emerge in the process that had not yet 

been asked, as their relevance had never previously been realized. A new quantitative 

language will emerge in which aspects of the model will be associated with the underlying 

reality it is attempting to describe, predictions will be easier to frame and test, and 

shortcomings will be exposed. In his famous article [63], Eugene Wigner writes 

compellingly that ‘the miracle of the appropriateness of the language of mathematics for the 

formulation of the laws of physics is a wonderful gift which we neither understand nor 

deserve. We should be grateful for it and hope that it will remain valid in future research and 

that it will extend, for better or for worse, to our pleasure, even though perhaps also to our 

bafflement, to wide branches of learning.’

West et al. Page 12

Converg Sci Phys Oncol. Author manuscript; available in PMC 2017 November 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In general, the more complex the model (as measured, for example, by the number of 

independent parameters associated with it), the less useful it will be, and the less likely it is 

to be adopted by the community at large. After all, if the model is as complex as the 

phenomena it was built to understand, why not stick with reality? Effective models can be 

thought of as low-dimensional approximations of reality, surrogates that help us bootstrap 

our way forward. They arise as the outcome of a complex balancing act between simplicity 

of the ingredients, and complexity of the reality the model is meant to describe. They 

generally do not arise in a vacuum, but are built in the context of informed and sustained 

discussions among people with different expertise. In the context of medical oncology, this 

means physical scientists developing ongoing interactions with clinical oncologists, 

radiologists, pathologists, molecular and cell biologists and other relevant medical 

specialists.

Appropriate data is a necessary ingredient in developing and testing any successful model, 

and treasure troves of medical data sit unexamined in patient files and government databases 

across the country waiting to be put to good use. There is no doubt that they are telling an 

interesting and important story that we have yet to fully understand. It is not currently 

possible for the computer to simulate all of the complex, relevant, and systemic ingredients 

at play to faithfully recreate all aspects of cancer progression and treatment response in 

patients. It is hard to imagine that a deep and actionable understanding can ever be obtained 

without the combined use of data, models, and computer simulations to help guide us and 

highlight some of the underlying causal mechanisms of this complex and deadly disease.
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Figure 1. 
Schematic of the Moran Process — (a) The number of cancer cells, i, is defined on the state 

space i = 0, 1, …, N where N is the total number of cells. The cancer population can change 

at most by one each time step, so a transition exists only between state i and i − 1, i, and i 
+ 1. (b) During each time step, a single cell is chosen for reproduction, where an exact 

replica is produced. With probability m (0 ≤ m ≤ 1), a mutation may occur.
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Figure 2. 
Emergence of Gompertzian growth via selection — Random drift (black) plotted for a single 

simulation of 103 cells for 4 · 104 generations shows no particular shape. A single simulation 

of the Moran process (red) with selection (w = 0.5) and mutations (m = 0.1) gives rise to the 

characteristic S-shaped curve associated with Gompertzian growth.
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Figure 3. 
Markov Point Mutation Diagram — Diagram shows 16 genetic cell types based on 4-digit 

binary string and the effect of a point mutation on each cell type. Blue indicates healthy cell 

type (0000 — 1010), red indicates cancerous cell type (1011 — 1111). Black arrows 

indicate passenger mutations (healthy to healthy or cancer to cancer), red arrows indicate 

driver mutations (healthy to cancer).
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Figure 4. 
Tumor fitness drives tumor growth — (a) The average of 25 stochastic simulations (N = 

1000 cells, w = 0.5, m = 0.1) is plotted for 20,000 cell divisions to show the cancer cell 

population (defectors) saturating. The pink lines delineate the regions of tumor growth 

(defined by the maximum and minimum points of the second-derivative of i(t)). (b) Fitness 

of the healthy population, cancer population, and total population plotted for the range 

cancer cell proportion. (c) Average payoff of a single healthy cell, cancer cell, and all cells 

plotted for the range cancer cell proportion.

West et al. Page 19

Converg Sci Phys Oncol. Author manuscript; available in PMC 2017 November 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Moran Process fit to Gompertzian Growth Data — The mean and deviation of 25 stochastic 

simulations (N = 103 cells, w = 0.7, m = 0.3) is overlaid on data from a “normalized” 

Gompertzian [25, 26]. Values for m and w were chosen by implementing a least-squares fit 

to the data over a range of m (0 ≤ m ≤ 1), and w (0 ≤ w ≤ 1). Pink lines delineate regions of 

growth (defined by the maximum and minimum points of the second-derivative of i(t)).
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Figure 6. 
Phylogenetic Tree — Sample dendritic phylogenetic tree tracking point mutations as time 

extends radially, depicting the emergence of molecular heterogeneity. The tree shows a 

simulation of 30 cells (all with genetic string 0000 at the beginning of the simulation) with 

strong selection (w = 1, m = 0.2). Pathways are color coded to indicate genetic cell type.
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Figure 7. 
Effects of varied dose density for early-stage, mid-stage, and late-stage therapies — An 

average of 25 stochastic simulations of unperturbed tumor growth (N = 103 cells, w = 0.5, m 
= 0.1, no therapy) is plotted (black dashed line). The effect of varied drug dose density (eqn. 

12), is shown by administering a range of drug concentration values (c = 0.2, 0.4, 0.6, 0.8, 

1.0) for constant length of time (t = 5000 cell divisions, black solid arrows). This process is 

repeated for (a) high growth, early-stage, (b) linear growth, mid-stage, and (c) slowed 

growth, late-stage. The kill effect is highest for high drug concentration values (i.e. high 

dose density) and early therapy.
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Figure 8. 
Growth-dependent tumor regression — (a) An average of 25 stochastic simulations of 

unperturbed tumor growth (N = 103 cells, w = 0.5, m = 0.1, no therapy) is plotted (black 

dashed line) with (b) corresponding instantaneous growth rate, γ(t), of the unperturbed 

tumor (red). Tumor regression, β, (estimated using an exponential fit of i(t) during therapy, 

shown in legend) during therapy (constant dose density: c = 1.0, t = 2000) is calculated for a 

high growth, early-stage therapy (purple), linear-growth, mid-stage therapy (green), and late-

stage, slowed growth (light blue); (c) This process is repeated for a full range of growth rates 

(between vertical blue dashed lines). Average values of β are plotted with standard 
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deviations. Regression is proportional to growth rate (linear fit in red), with higher 

regression rates associated with high growth rates of early stage tumors. (d) Tumor 

regression, β, can also be calculated as the slope of a dose response curve (red), where 

therapy is administered for a range of dose densities (0.7 ≤ c ≤ 1.0) for a single timepoint, 

8000 cell divisions (i.e. single growth rate).
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Figure 9. 
Spatiotemporal patterns of breast cancer metastasis — (a) Tree-ring diagram depicting all 

the paths in the clinical cohort over a 20-year period. (b) Markov chain network depicting 

transition probabilities from patients last metastatic tumor to deceased. (c) Reduced Markov 

chain diagram for sub-population of Her2+ patients. Red sites are spreader sites, blue sites 

are sponge sites. Note that bone is the main spreader. (d) Reduced Markov chain diagram for 

sub-population of ER−/Her2− patients. Red sites are spreader sites, blue sites are sponge 

sites. Note that bone is the main spreader, but Lung/pleura switches from being a spreader 

for Her2+ patients, to being a sponge for ER−/Her2− patient.
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