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Abstract

Purpose—To determine the relationship between hepatic proton density fat fraction (PDFF) and 

R2* in vivo.

Materials and Methods—In this HIPAA-compliant, IRB-approved, cross-sectional study, we 

conducted a secondary analysis of 3T MR exams performed as part of prospective research studies 

in children in whom conditions associated with iron overload were excluded clinically. Each exam 

included low-flip-angle, multi-echo magnitude (-M) and complex (-C) based chemical-shift-

encoded MRI techniques with spectral modeling of fat to generate hepatic PDFF and R2* 

parametric maps. For each technique and each patient, regions of interest were placed on the maps 

in each of the nine Couinaud segments, and composite whole-liver PDFF and R2* values were 

calculated. Pearson’s correlation coefficients between PDFF and R2* were computed for each 

MRI technique. Correlations were compared using Steiger’s test.

Results—184 children (123 boys, 61 girls) were included in this analysis. PDFF estimated by 

MRI-M and MRI-C ranged from 1.1 to 35.4% (9.44 ± 8.76) and 2.1 to 38.1% (10.1 ± 8.7), 

respectively. R2* estimated by MRI-M and MRI-C ranged from 32.6 to 78.7 s−1 (48.4 ± 9.8) and 
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27.2 to 71.5 s−1 (42.2 ± 8.6), respectively. There were strong and significant correlations between 

hepatic PDFF and R2* values estimated by MRI-M (r=0.874; p<0.0001) and MRI-C (r=0.853; p< 

0.0001). The correlation coefficients (0.874 vs. 0.853) were not significantly different (p=0.15).

Conclusion—Hepatic PDFF and R2* are strongly correlated with each other in vivo. This 

relationship was observed using two different MRI techniques.
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INTRODUCTION

Proton density fat fraction (PDFF) and R2* measurements are increasingly investigated as 

non-invasive quantitative imaging biomarkers of hepatic steatosis (1–6) and hepatic iron 

content (7,8) respectively. To estimate PDFF and R2*, advanced multi-echo chemical-shift-

encoded MRI techniques using either magnitude-based data (MRI-M) or complex-based 

data (MRI-C) have been developed (9–11). To address potential confounders, these 

techniques simultaneously estimate PDFF and R2* by acquiring multiple echoes to correct 

for R2* (1/T2*) signal decay, with a low flip angle to minimize T1 weighting, and applying 

spectral modeling to account for the multi-peak nature of fat (12–16). These techniques have 

been proposed for simultaneous assessment of fat and iron (16–19).

Both MRI-M and MRI-C fit PDFF and R2* simultaneously but independently, as the signal 

model implicitly assumes that PDFF and R2* reflect distinct and unrelated physiological 

processes. Kuhn et al. (14) showed that when multi-peak spectral modeling is applied, liver 

R2* measurements made by MRI-C are independent of the steatosis grade in adults with 

mixed chronic liver disease. However, a recent study by Bashir et al. reported a direct 

correlation between PDFF and R2* measured using MRI-C in human livers in vivo (9). 

Since the only two published studies in the literature provide discordant results and since 

both studies included only adults and measured R2* using MRI-C only, there is a need to 

further investigate the relationship between PDFF and R2*.

The purpose of this study is to determine the relationship between PDFF and R2* estimated 

by MRI-M and MRI-C in prospective cohort studies of pediatric nonalcoholic fatty liver 

disease (NAFLD) (20,21). We selected children because they rarely have excess hepatic iron 

(22,23) and are an ideal population to determine the relationship between PDFF and R2* 

unconfounded by iron content. A secondary purpose of the study was to evaluate the 

agreement between MRI-M and MRI-C for estimating R2* values in human subjects, and to 

validate the high agreement between these techniques reported in prior studies for estimating 

PDFF (24,25).

MATERIALS AND METHODS

Research design and subjects

This was a single-site, cross-sectional, secondary analysis of data collected in pediatric 

participants enrolled in prospective cohort studies at our institution, who underwent a 
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research liver MRI exam including both MRI-M and MRI-C at our imaging center between 

August 2008 and December 2015. We included children who were at risk for NAFLD due to 

an elevated body mass index; defined as having a BMI percentile ≥ 85th percentile for age 

and sex (26). We also included children with a history of NAFLD. The diagnosis of NAFLD 

was not made as part of this study, but was based upon a combination of clinical history, 

laboratory studies, and if available liver histology as previously described (27). Two children 

(a 17 year old boy and a 10 year old girl) with prior blood transfusions were excluded, as the 

transfusions could cause iron overload. No child had any liver disease(s) other than NAFLD. 

The final study population comprised 184 children with characteristics summarized in Table 

1.

The study was approved by an Institutional Review Board and was compliant with the 

Health Insurance Portability and Accountability Act. Children under 18 years signed 

informed assent, with written informed consent provided by their parent(s)/guardian(s); 18- 

to 19-year olds signed informed consent. Demographic and anthropometric information was 

collected for enrolled children.

MR Imaging

Children were asked to fast for 4 hours before the MRI exam and were scanned at 3T (Signa 

EXCITE HDxt scanner, GE Medical Systems, Waukesha WI) in a supine position with an 

eight-channel torso phased-array coil centered over the liver. A dielectric pad was placed 

between the coil and the abdomen. Each MR exam included chemical-shift-encoded MRI-M 

and MRI-C techniques as illustrated in Figure 1 and described below. Acquisition 

parameters are summarized in Table 2. Both techniques assumed exponential R2* signal 

decay and applied the same multi-peak fat spectral model derived from human liver 

triglyceride composition (28).

MRI-M Acquisition and Reconstruction

A two-dimensional multi-echo spoiled gradient-recalled echo (SPGR) sequence was 

acquired (4) with full-liver coverage in one or two 20- to 40-second breath-holds. To 

minimize T1 weighting, a low flip angle (10°) was used (29) with ≥150 ms repetition time 

(TR) (30,31). Six echoes were obtained per TR at serial, nominally out-of-phase and in-

phase echo times (TEs). Parallel imaging was applied with an acceleration factor of 1.25 

(Parallel imaging type-ASSET) for exams performed after 2011. A fitting algorithm was 

applied to the source images pixel by pixel by the scanner computer to create parametric 

PDFF and R2* maps, as explained by Bydder et al and Tang et al (31,32). Due to the fat-

water signal dominance ambiguity intrinsic to magnitude fitting, water was assumed to be 

the dominant signal and the PDFF dynamic range was 0–50%. No correction was made for 

phase errors, as these are considered negligible with magnitude fitting.

MRI-C Acquisition and Reconstruction

A three-dimensional multi-echo SPGR sequence was acquired with full liver coverage in a 

single 20-second breath-hold with two-dimensional parallel imaging and an effective net 

acceleration factor of 2.2 using Auto-calibrating Reconstruction for Cartesian imaging. To 

minimize T1 weighting, a low flip angle (3°) was used with 6.9 ms TR (33,34). Six echoes 
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were obtained per TR at TEs, as these are appropriate for fat-water separation using complex 

fitting. Images were reconstructed by the scanner computer using an investigational version 

of a complex-data based water-fat separation technique known as Iterative Decomposition of 

water and fat with Echo Asymmetry and Least-squares estimation (IDEAL) (35). As 

described in Yu et al (16), this algorithm combines the strengths of both complex and 

magnitude reconstruction techniques in a hybrid approach (16) that corrects for the phase 

errors (36) that may confound pure complex fitting. The algorithm generates water and fat 

images, as well as PDFF and R2* maps. Since this technique is capable of distinguishing 

signals from fat and water, the PDFF dynamic range is 0–100%.

MRI analysis

MRI-M and MRI-C estimation of PDFF and R2*—Source images and the PDFF and 

R2* parametric maps were transferred offline for analysis (Osirix Foundation, Geneva, 

Switzerland) by image analysts (each with more than 6 months of training) blinded to 

clinical data. One circular region of interest (ROI) with a 1-cm radius was manually placed 

in each of the nine Couinaud liver segments on the fifth-echo image of the MRI-M source 

images, avoiding major vessels, bile ducts, liver edges and artifacts. The fifth-echo image 

was used to guide ROI placement because it consistently provided adequate anatomic 

delineation for this purpose. The nine ROIs from these images were then copied onto the 

MRI-C water images, with adjustment if needed to avoid major vessels, bile ducts, liver 

edges and artifacts. The nine ROIs were then copied to the corresponding locations in the 

PDFF and R2* maps for both techniques (see Figure 1) without additional adjustment. For 

each subject, composite PDFF and R2* values for each technique were calculated by 

averaging the individual mean values from the nine ROIs.

STATISTICAL ANALYSIS

All statistical analyses were performed by a staff biostatistician under the supervision of a 

faculty statistician, both with over 20 years of experience, using R statistical computing 

software (R version 3.1.2 (2014-10-31) R: A language and environment for statistical 

computing. R Foundation for Statistical Computing, Vienna, Austria). Cohort characteristics 

were summarized descriptively (see Table 2). Pearson’s correlation between PDFF and R2* 

was calculated for MRI-M and MRI-C and compared using Steiger’s test for dependent 

correlations. Agreement between MRI-M and MRI-C for estimating PDFF and R2* was 

assessed by Bland-Altman analysis. Bias (the mean difference between MRI-M and MRI-C) 

and its p-value, standard deviation (SD) of the MRI-M and MRI-C differences, and limits of 

agreement (LOA) were computed as part of the analysis. All statistical hypothesis testing 

was performed using a significance level of 0.05.

RESULTS

Cohort characteristics

One hundred and eighty four children (123 boys, 61 girls) met inclusion criteria for the 

study. PDFF estimated by MRI-M and MRI-C ranged from 1.1 to 35.4% (9.44 ± 8.76) and 
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2.1 to 38.1% (10.1 ± 8.7), respectively. R2* estimated by MRI-M and MRI-C ranged from 

32.6 to 78.7 s−1 (48.4 ± 9.8) and 27.2 to 71.5 s−1 (42.2 ± 8.6), respectively.

Correlation between PDFF and R2*

Figure 2 illustrates parametric maps in three representative pediatric participants spanning a 

spectrum of PDFF and R2* values (low, medium and high). As illustrated in Figure 2 and 

shown graphically in Figure 3, PDFF correlated with R2* for both techniques (r = 0.874, p < 

0.0001 for MRI-M; r = 0.853, p < 0.0001 for MRI-C). The correlation coefficients (0.874 vs. 

0.853) were not significantly different (p=0.15).

Agreement between MRI-M and MRI-C

Figure 4 shows Bland-Altman plots of inter-technique agreement for estimating PDFF 

(Figure 4a) and R2* (Figure 4b). MRI-M estimated PDFF was significantly (p < 0.0001) 

lower than MRI-C estimated PDFF with a mean bias of −0.6 percentage points (SD = 0.7% 

and LOA = (−2.1%, 0.8%)). MRI-M estimated R2* was significantly (p < 0.0001) higher 

than MRI-C estimated R2* with a mean bias of 6.2 s−1 (SD = 4.5 s−1 and LOA = (−2.6 s−1, 

15.0 s−1)).

DISCUSSION

We demonstrated a direct correlation between PDFF and R2*, as measured by both MRI-M 

and MRI-C, in children spanning a wide range of hepatic PDFF and who were unlikely to 

have excess hepatic iron accumulation. The PDFF-R2* relationship was observed using two 

different PDFF-R2* quantification approaches (MRI-M and MRI-C), indicating it is not a 

technique-dependent spurious finding. We also demonstrated close inter-technique 

agreement in PDFF and R2*, although MRI-M compared to MRI-C slightly underestimated 

the PDFF and overestimated the R2*.

The direct correlation between PDFF and R2* in children is consistent with a recent study in 

adults by Bashir et al (9) which reported moderate correlation using three different analytical 

algorithms for MRI-C data at 3T Our results and those of Bashir et al (9) differ from those of 

Kuhn et al (14), who reported a nonsignificant correlation between R2* estimated by 

confounder-corrected MRI-C and histologic steatosis grade. Since histologic steatosis grade 

is a 4-point ordinal score with broad brackets of fat content (<5%, 5–33%, 34–66%, >67%) 

while R2* is a continuous measurement, the reliance on histologic steatosis grade as the 

measure of liver fat in the Kuhn et al study may have reduced statistical power for detecting 

a significant correlation. Also, Kuhn et al included adult patients with mixed liver diseases 

including liver tumors and other conditions in which iron overload may be present, which 

would substantially alter R2* and dominate any smaller but real relationship between fat 

content and R2*.

The mechanism underlying the relationship between PDFF and R2* is not known. One 

plausible explanation is that fat droplets induce local susceptibility effects that accelerate the 

R2* decay of neighboring water molecules. It is known that fat and water have different 

magnetic dipole moments and therefore fat droplets (37) may act as small bar magnets and 

introduce focal magnetic field heterogeneities that accelerate R2* decay. The alternative 
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explanation that fat has shorter R2* than water is unlikely to be true; recent studies by Horng 

et al and Hamilton et al (18,38) have shown that the R2* of fat and water are essentially 

identical in human liver. Iron accumulation is unlikely to explain the relationship between 

PDFF and R2*, as it is rarely found histologically in children with NAFLD, especially those 

in which conditions associated with iron overload were excluded clinically. Moreover, the 

observed ranges of R2* at 3T are not suggestive of meaningful iron overload (7,39). Our 

study cannot exclude the possibility that the relationship is mediated by histological factors 

other than iron, as histology was not available. Further study is needed to examine the 

postulated role of fat-droplet-induced susceptibility as well as explore other possible 

mechanisms.

The reason for slight overestimation in R2* by MRI-M relative to MRI-C is unclear. 

Hernando et al (17) showed in simulations that, due to noise-floor effects, magnitude-based 

reconstructions underestimate R2* compared to complex-based reconstructions, particularly 

at high R2* values. Since our patients tended to have low R2* values, noise-floor effects 

should be negligible. Further research is needed to confirm and explain the discrepancy in 

R2* estimation by MRI-M and MRI-C in the low R2* range. The slight underestimation of 

PDFF by MRI-M is consistent with previous studies (24,25).

Although the PDFF signal model implicitly assumes that PDFF and R2* reflect distinct and 

unrelated physiological processes, our study suggests that the two measurements may not be 

completely distinct and may be interdependent. Regardless of the mechanism underlying the 

relationship, our study suggests that PDFF be considered in the interpretation of mild 

elevations in R2*. We speculate, for example, that in the setting of low PDFF, mild R2* 

elevation indicates iron overload; in the setting of high PDFF, however, mild R2* elevation 

is nonspecific and could reflect iron overload or the effects of fat accumulation on R2* or 

both. Further research is needed to understand whether and how to modify the interpretation 

of hepatic R2* based on contemporaneous hepatic PDFF.

The close agreement in PDFF and R2* estimated by the two techniques suggests that either 

technique is likely to be suitable for clinical care and for clinical trials. Both techniques were 

used in this study because the close agreement for R2* estimation had not been verified 

previously and so it was previously unknown whether the PDFF-R2* relationship was 

technique dependent. Despite the close agreement in PDFF and R2* estimations, there were 

small but statistically significant differences. Thus, caution is suggested in applying these 

techniques interchangeably for estimation of PDFF and R2* clinically.

The lack of histology was a meaningful limitation of our study, as it precluded an analysis of 

possible histologic determinants that may explain the PDFF-R2* relationship. Future studies 

should include histology to explore possible underlying mechanisms. This was a single-site 

study performed on a single scanner at one field strength, and further validation is required.

In conclusion, our study suggests that in children with a wide range of hepatic PDFF and 

who were unlikely to have iron overload, there is a direct correlation between PDFF and 

R2*, and this relationship is observed in estimations using two independent MRI techniques. 

Our findings suggest that the PDFF value should be considered when interpreting the R2* 
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value in human liver. Further research in children and adults is needed to independently 

verify our results and to understand the underlying mechanism.
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Figure 1. 
6-echo 2D-SPGR MRI-M (right) and 6-echo 3D SPGR MRI-C (left) acquisitions in a 17yo 

male adolescent. Hepatic PDFF and R2* were estimated using real and imaginary data in 

MRI-C and magnitude data in MRI-M. Co-localized PDFF and R2* values estimated with 

both MRI-M and MRI-C are overlain; dynamic scale for parametric PDFF map is 0–50% for 

MRI-M and 0–100% for MRI-C; dynamic scale for parametric R2* map is 0–200 s−1 for 

both MRI-M and MRI-C.
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Figure 2. 
Hepatic PDFF and R2* maps of three representative pediatric research participants with low, 

medium, and high PDFF and R2* values (values overlain) on MRI-M and MRI-C. PDFF 

and R2* were estimated in co-localized regions of interest. These images illustrate the 

relationship between hepatic PDFF and R2*. Dynamic scale for parametric PDFF map is 0–

50% for MRI-M and 0–100% for MRI-C; dynamic scale for parametric R2* map is 0–200 

s−1 for both MRI-M and MRI-C.
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Figure 3. 
Linear regression between hepatic proton density fat fraction (PDFF) and R2* estimated by 

magnitude-based MRI (MRI-M) and complex-based MRI (MRI-C). Regression parameters 

are overlain.
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Figure 4. 
Figure 4a: Bland-Altman plot illustrating the difference between hepatic PDFF estimated by 

MRI-M and MRI-C as a function of average PDFF. Bias (the middle blue line which is the 

mean of MRI-M and MRI-C differences) and its p-value, standard deviation (SD) of the 

MRI-M and MRI-C differences, and limits of agreement (LOA) are overlain. This plot 

demonstrates close agreement between the two MRI techniques across a wide range of 

PDFF.

Figure 4b: Bland-Altman plot illustrating the difference between hepatic R2* estimated by 

MRI-M and MRI-C as a function of average R2*. Bias (the middle blue line which is the 

mean of MRI-M and MRI-C differences) and its p-value, standard deviation (SD) of the 

MRI-M and MRI-C differences, and limits of agreement (LOA) are overlain. This plot 

demonstrates close agreement between the two MRI techniques across a wide range of R2*.
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Table 2

Parameters for MRI Techniques

Parameter Values for MRI-M Values for MRI-C

Pulse sequence 2D SPGR 3D SPGR

Slice thickness (mm) 8 8

Flip angle (degrees) 10 3

Interslice gap (mm) 0 Not applicable

TE (msec) 1.1, 2.3, 3.5, 4.6, 5.8, 6.9 0.9, 1.7, 2.5, 3.2, 4.0, 4.7

TR (msec) ≥150 6.9

Base image matrix 224 × 128 192 × 160

FOV (cm) 44 × 44 44 × 44

NEX 1 1

R 1.25 2 × 2

Bandwidth (± kHz) ± 142 ± 125

Acquisition time (sec) 2 × 20 a 20

MRI-M and MRI-C, magnitude-based and complex-based magnetic resonance imaging; PGR, spoiled gradient recalled echo; TE, time to echo; TR, 
repetition time; FOV, field of view; NEX, number of excitations; R, acceleration factor.

a
Two 20-second breatholds required to cover whole liver.
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