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Introduction

Inflammatory bowel disease (IBD) is an important illness of unclear pathogenesis associated 

with major defects in mucosal immunoregulation and develops in genetically susceptible 

individuals. These abnormalities often occur in association with microbial dysbiosis and 

result in unfettered inflammation of the intestine and extraintestinal tissues. Such events 

result in long-term morbidity and possibly even death, in otherwise healthy adults and 

children.

Dampening inflammation and re-establishing immune tolerance in IBD remain the major 

therapeutic goal. However, existing IBD therapies albeit providing recent advances, still 

largely rely on broad-based immunosuppression. For example, only around half of the 

patients treated with anti-TNF agents show substantive clinical responses. These 

improvements are often self-limited, while unfortunately increasing the risk of opportunistic 

infections.

The goal of our laboratory has been to investigate the control of mucosal immune responses, 

which are based on fundamental signaling pathways. Our own long-term interests in the 

regulation of purinergic signaling are now being leveraged to develop innovative and 

hopefully non-toxic therapies for IBD. This review and the accompanying articles in this 

special issue address new therapeutic concepts in IBD, as based on recent, linked work in 

hypoxia and purinergic signaling, mucosal barrier functions and microRNA biology.

In several recent, comprehensive reviews (1-4), we have already addressed the biological 

functions of ecto-enzymes, such as CD39, CD73 and CD38, in the regulation of purinergic 

signaling and control of extracellular adenosine levels. Others, and we, have noted the 
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importance of these mechanisms in immunomodulation, as in cancer and inflammation. The 

ectonucleotidases of the CD39 family, in particular, have major impacts on the dynamic 

equilibrium of proinflammatory extracellular ATP, ADP nucleotides vs. the 

immunosuppressive potential of adenosine nucleosides. CD39 plays a dominant role in 

purinergic regulation of vascular inflammation, thrombosis and the immune response in such 

settings. As such, the relevance and importance of these purinergic signaling pathways in 

selected neoplastic states (lymphoma and chronic leukemia) and inflammatory diseases 

(sepsis and autoimmunity) have been already alluded to in recent work.

In this update, we first provide a brief synopsis of the major components of purinergic 

signaling; chiefly for those not familiar to this field. We will focus on very recent work 

detailing the immunomodulation of CD39 on T cells and other immune cells by both genetic 

and environmental factors in the setting of IBD and experimental colitis, inclusive of the 

new roles for natural metabolites such as bilirubin. We will also briefly cover the role of 

CD39 expression on exosomes and microparticles, in control of inflammation in the gut and 

touch on the relevance of the microbiome. Lastly, we cover the emerging importance of 

other NTPDases of the CD39 family and speculate on their role in controlling gut 

inflammation.

Overview of Purinergic Signaling

Extracellular nucleotides (e.g. ATP, UTP, ADP, NAD), and the derivative nucleosides (e.g. 

adenosine from ATP), are released in a regulated manner by most cells to provide the 

initiators and primary components for purinergic responses (5). In such settings, this process 

involves pannexins, which are conserved transmembrane channels that allow the passage of 

ions and small molecules. The pannexin-1 channels, as an example, mediate the release of 

ATP from activated T cells and dendritic cells; or even operate following apoptosis.

Under conditions of inflammatory stress, much higher levels of ATP and other nucleotides 

or nucleosides are released to the extracellular space by pannexins, gap junction 

hemichannels e.g. connexin 43, following exocytosis as from dense platelet granules, and 

with active cell death. These extracellular nucleotide/nucleoside mediators bind specific 

purinergic receptors, which comprise an essential requirement for this signaling network.

Almost all immune and vascular cells express multiple type-2 purinergic/pyrimidinergic (P2) 

receptors for nucleotides and adenosine or type-1 purinergic (P1) receptors (6). There are at 

least seven ionotropic (P2X1-7), eight metabotropic (P2Y1,2,4,6,11-14) and four adenosine 

receptor subtypes (A1, A2A, A2B, A3), which have been identified (more if one tallies in 

heteromers) (7). P2X and P2Y11 receptors are chiefly activated by extracellular ATP; P2Y2 

by ATP and UTP; P2Y1, P2Y12 and P2Y13 by ADP; P2Y4 by UTP; P2Y6 by UDP and 

P2Y14 by UDP-glucose. (Nomenclature: http://www.guidetopharmacology.org/targets.jsp).

Extracellular ATP and the related nucleotide derivatives play important roles as signaling 

molecules. These pro inflammatory mediators participate in both autocrine and paracrine 

circuits to regulate cellular metabolism, migration, proliferation and apoptosis through 

signaling pathways triggered by P2Y and P2X receptors. Extracellular nucleotides also serve 
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as substrates for ectonucleotidases, which generate the immunosupressive nucleoside, 

adenosine, after phosphohydrolysis via the ecto-enzymes on the cell membrane with 

catalytic domains located in the extracellular compartment.

CD39 is the prototype of the ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase) 

family (EC 3.6.1.5). These proteins comprise a group of ecto-enzymes that hydrolyze 

extracellular nucleoside tri- and diphosphates. One important ecto-nucleotidase chain or 

cascade, is initiated by these NTPDases, and is then terminated by ecto-5′-nucleotidase 

(CD73; EC 3.1.3.5) (8, 9).

As another example, AMP can be phosphorylated by ecto-adenylate kinase, or 

dephosphorylated by ecto-alkaline phosphatase (1, 9). These and other ecto-enzymes 

hydrolyze extracellular nucleotides to generate nucleotides and nucleosides, which in turn 

differentially activate other P2, and then ultimately adenosine receptors. Whereas 

extracellular ATP generally provides pro-inflammatory signals, the extracellular adenosine 

produced from ATP/ADP/AMP degradation has potent immunosuppressive effects mediated 

by adenosinergic responses and cAMP-mediated effects. Hence, events triggered by 

adenosine generation may often have opposing effects to those seen with the initial P2-

mediated effects (10).

Other cell surface-located nucleotide hydrolyzing and interconverting ectoenzymes have 

been described. These include the ecto-nucleotide pyrophosphatase phosphodiesterases (E-

NPPs; EC 3.1.4.1, EC 3.6.1.9 and the autotaxin group), CD38, NAD-glycohydrolases, 

alkaline and acid phosphatases, diadenosine polyphosphate hydrolases, adenylate kinases, 

nucleoside diphosphate kinase, and potentially ecto-F1-Fo ATP synthases (9). These other 

ectonucleotidases are not covered in detail here, given space constraints.

Recent work has also shown that E-NPP1 appears to catalyze transformation of NAD and 

ADP-ribose to generate AMP (11). Moreover, it is also apparent that ecto-5′-nucleotidase/

CD73 together with adenosine deaminase-1 and 2 (ADA1 and 2 (latter only in man, as no 

orthologous mouse gene exists); EC 3.5.4.4 and 3.5.4.2) generate and then convert 

adenosine to inosine. These pathways closely regulate local, pericellular and extracellular 

concentrations of adenosine; and are also required for intracellular salvage with synthesis of 

nucleotides derived from intermediates produced by these and other degradative pathways 

(9).

In the short-term, P2R ATP-mediated effects and the linked signaling pathways receptors 

trigger sudden patho-physiological processes, impacting acute inflammatory processes. 

Ongoing activation of P2R-signaling pathways impact later immune responses resulting in 

chronic inflammatory disease and exacerbating fibrosis (3, 12). Immunosuppression in the 

short term is mediated by generation of adenosine; whereas the fibrosis seen in chronic 

inflammation may be linked to unfettered adenosine generation. The challenge is to dissect 

out beneficial effects of adenosine, preclude resistance to these vs. preventing the deleterious 

signaling pathways of adenosine that cause chronic disease. Aberrant control of these 

purinergic activities could impact inflammation as well as fibrogenic reactions, as in chronic 

disease processes such as IBD.
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Cellular Immunomodulation and CD39

There is evidence that innate and adaptive immunity can be modulated by extracellular 

adenosine, released in response to tissue disturbing signals and extracellular nucleotides 

such as ATP or nicotinamide adenine nucleotide. Upon binding to multiple type 2 

purinergic/pyrimidinergic (P2Y and P2X) receptors, ATP can have effects on cellular 

metabolism, migration, proliferation and apoptosis. Transcriptional upregulation of CD39 

and CD73 ectonucleotidases with increased immune cell infiltration at sites of injury results 

in conversion of a dominant P2-environment to one associated with decreased levels of 

nucleotides and a shift over to more predominant adenosinergic responses.

CD39 is highly expressed on vascular endothelial cells and T regulatory cells, where this 

ecto-enzyme contributes to suppressive functionality through the generation of adenosine 

(13) (see Fig. 1). CD39 is also expressed by subsets of memory cells with effector function 

(14) and by M2 anti-inflammatory monocytes (15).

Further, CD39 induction on prototypic, pathogenic Th17 cells imparts regulatory properties 

to these cells. These transitioned Th17 cells express CD39 and select functional features of 

T-regs, including expression of FOXP3 at high levels and suppression of responder cell 

proliferation and pro-inflammatory cytokine production (16).

Despite acquiring regulatory features, these ‘suppressor-like’ Th17 (supTh17) cells also 

retain certain effector Th17 cell properties, including IL-17 production and low levels of 

A2A adenosine receptor. Because of heightened expression of adenosine deaminase, these 

suppressive Th17 cells effectively hydrolyze the nucleoside adenosine into the somewhat 

more pro-inflammatory inosine derivative and hence appear to exhibit a dualistic phenotype. 

Of note is that inosine can activate A3 receptors to produce mast cell degranulation, which 

further regulates the chemotaxis of neutrophils and macrophages (17, 18).

Previous studies from Esplugues and colleagues have shown that pathogenic Th17 cells 

undergo “regulation” in the small intestine. Indeed, while still expressing IL-17A and 

IL-17F, these cells also become capable of producing IL-10 and of “suppressing” 

responders.

Our own evidence that these cells maintain classical Th17 features while acquiring typical T-

reg properties, inclusive of CD39 expression, indicates that this lymphocyte subset may 

exert dual function depending on the environment within which it operates. However, it 

should also be noted that extracellular nucleotides may serve as negative modulators of 

immunity, or as immunodepressants. Indeed, chronic, repetitive exposure to lower 

extracellular nucleotide levels tends to suppress immunity and inflammation (19).

Lastly, our studies have indicated that altered CD39 expression and changes in the 

nucleotide/nucleoside balance impact insulin-sensitivity, block mTOR activation (ATP-

dependent) while boosting AMPK functions (adenosine-dependent process) (20). Although 

CD39 appears to be associated with enhanced T cell survival, much as rapamycin and 

metformin are known to do so, additional effects of CD39 include protection from P2X7-

mediated apoptosis and the provision of nucleosides that activate A2A receptors, obviating 
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activation induced cell death (AICD), promoting intracellular anabolic as well as purine 

salvage pathways.

CD39 and regulation by the aryl hydrocarbon receptor (AHR) and HIF-1 

alpha

The aryl hydrocarbon receptor (AHR) is ubiquitously expressed cells and specific patterns of 

activation upregulates E-NTPDase-type ectonucleotidases on immunocytes, myeloid cells, 

endothelium and parenchymal cells in vivo and in vitro (21).

The ligation of AHR by dioxins in the presence of TGF-beta induces Foxp3+ inducible T-

regs that can suppress responder T-cell functions via CD39 (22).

Activation of Ahr can promote generation of CD39+ regulatory-type T helper type 17 

(Th17) cells as well as type 1 regulatory T cells or Tr1 cells, which express high levels of 

IL-10. Upregulation of CD39 is dependent upon ligation of the AhR on immune cells. AhR 

is additionally controlled by hypoxia and HIF-1 alpha activity, as in the case of Tr1 cells 

(23). Furthermore, hypoxic conditions per se might activate the purinergic signaling by up-

regulating expression of CD39, as shown in the cardiac ischemia model in which 

transcription of CD39 was controlled by Sp-1 (24), and through HIF-1 alpha induction of 

CD73, which ultimately converts AMP into adenosine (25).

Recent elegant work has shown that adenosinergic A2BR-mediated responses, which are 

anti inflammatory and cytoprotective involve further interactions of HIF-1 alpha and the 

circadian rhythm protein PER2 (26, 27).

Other groups have also shown that the alternative adenosinergic A2AR pathway, together 

with TNF, have the capacity to regulate immune cell intrinsic “clocks” implicating 

involvement of circadian rhythms in clinicopathologic changes in prototypic 

rheumatological disease, as with morning stiffness (28).

Furthermore, there are important seasonal and latitudinal patterns linking IBD exacerbations 

to light exposure and circadian rhythms. There are substantive differences in the expression 

of circadian-type genes between normal and diseased intestinal mucosa in IBD. Such 

deregulated genes e.g. PER1 and PER3 could have pathophysiological relevance and may 

suggest novel therapeutic approaches distinct from the facile use of melatonin in such 

disease settings (29, 30).

In the past few decades, bilirubin, a byproduct of heme catalysis, and a pigment also clearly 

altered by light exposure, has been shown to have a major salutary role as a potent 

antioxidant. Most recently, the molecule has been found to possess immunomodulatory 

properties that rival the redox capacity. These possibly explain its ability to suppress 

inflammation as in IBD, where development of jaundice has been shown to suppress colonic 

inflammation. We have recently demonstrated unconjugated bilirubin to serve as a potent 

immunomodulator and have shown that the molecular basis for its immunosuppressive 

effects is dependent upon the upregulation of CD39 by interactions with AHR (31) (Longhi 

et al., 2017, in press and Fig 2).
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Hence, limitations in the levels of CD39 and/or dysfunction of AHR abrogate the protective 

effects of unconjugated bilirubin in experimental colitis and in IBD patients. Therefore, in 

DSS-induced colitis, the administration of unconjugated bilirubin systemically resulted in 

amelioration of disease activity particularly during recovery, improved histology scores, and 

increased IL-10 production by colonic intra-epithelial CD4 cells. These salutary effects were 

abrogated in Entpd1-/- and AhRd mice, in which AhR is dysfunctional (32). Notably, 

unconjugated bilirubin fails to boost CD39, FOXP3 and immunosuppressive function in IBD 

derived Th17 cells, which additionally display defective AhR bioactivity (Longhi et al., 

2017, in press). The concept that beneficial effects of AhR ligation are mediated via CD39 

induction has been also supported by recent work by Goettel et al in the context of 

experimental colitis (33). Administration of ITE, another AhR endogenous ligand, prevents 

T-cell mediated tissue damage in humanized mice. This effect is associated with an 

increased proportion of CD39+ CD4 lymphocytes sequestrated in the colonic wall 

compartment.

Overall, these findings suggest that boosting AhR signaling upon exposure to natural/

endogenous ligands or otherwise enhancing CD39 ectoenzymatic properties might represent 

attractive strategies to correct effector Th17 dysfunction in IBD.

Purinergic/Adenosinergic Responses in IBD and Experimental Colitis

Given the immunosuppressive properties of adenosine, modulation of purinergic signaling 

has been evaluated in the context of IBD and experimental models of colitis, to curb 

inflammation. The suggestion that adenosine might be a key immune mediator controlling 

inflammation in IBD, was indicated first by mechanistic studies of sulfasalazine, and 

methotrexate. Both drugs have been shown to be operational, at least in part, through 

adenosine-dependent mechanisms.

Furthermore, administration of ATL313, and other direct agonists of the A2A adenosine 

receptor can attenuate colitis in mice with adoptive transfer of CD45RBhigh cells, and also 

suppress the production of pro-inflammatory cytokines (IL-2, IFNγ, and TNFα) but not the 

anti-inflammatory (IL-10 and TGFβ) cytokines (34).

Also, albeit controversial, direct activation of the A2B adenosine receptor can also boost 

IL-10 release by intestinal epithelial cells, which is linked to amelioration of DSS colitis 

(35).

Alterations in the generation of adenosine, such as those associated with genetic deletions of 

CD39 or CD73, result in more severe course of experimental colitis in mutant mice. CD39 

deletion in mice results in exacerbation of DSS-induced and other experimental colitis, 

whereas transgenic over expression appears to ameliorate disease (unpublished observations 

Maria Serena Longhi and Simon C. Robson; 2017) (36).

Expression of CD39 on endothelial or immune cells allows for homeostatic integration of 

immunity resulting in control of hemostatic and immunobiological reactions, which appear 

to be disrupted in IBD. Single nucleotide polymorphisms adjacent to the CD39 promoter 

region have been associated with low levels of CD39 mRNA that confer susceptibility to 
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Crohn's disease (37). The associated decreases in CD39 expression levels and consequently 

lower adenosine generation are likely to be linked to the impairment of CD4+CD25high 

regulatory T cells in this disease process.

Since this publication in 2009, it has been increasingly recognized that highly heritable traits 

that dictate adaptive immune responsiveness include the different levels of expression of 

CD39 on Treg, as noted in large population analyses and twin studies (38, 39). In contrast, 

CD73 expression by Treg, in humans seems to be at least in part a consequence of the 

environmental exposure to e.g. pathogens, diet or microbiome elements, shared in a 

household during maturation (40). This recent work is suggestive of adaptive immune traits 

being more impacted by genetics, while in contrast innate immune traits are dictated more 

by environmental factors. Irrespectively, intrinsic or acquired defects resulting in lower 

levels of CD39 might lead to T cell autoreactivity because of the lack of immune-

modulatory adenosine.

CD39 and Exosomes in IBD

Microparticles (exosomes or extracellular vesicles; MPs) are released from cells into the 

blood or at sites of inflammation in the intestinal tract. These MPs can be isolated from 

blood, tissue fluids or fecal samples. Depending on the cellular origin, intestinal MP express 

cell surface markers and contain protein / RNA with pro- or anti-inflammatory properties. In 

addition, these MP constitute a mode of communication through which intestinal cells may 

influence the luminal microbiome. We have recently reported that extracellular vesicles, 

derived from the colonic luminal fluid of IBD patients, display pro-inflammatory properties 

as these MP contain high mRNA and protein levels of IL-6, IL-8, IL-10 and TNF-α, and 

promote macrophage migration (41). We have also shown that CD39 associates with 

circulating plasma-derived MP and may directly or indirectly confer functional properties on 

cells.

Indeed, surrounding cells can absorb MPs shed from sites of inflammation. We have 

demonstrated the presence of E-NTPDase activity in circulating MP isolated in human 

plasma (42). Most importantly, the mRNA within MPs can be taken up by these cells and 

further translated. We have recently shown that properties of MPs obtained from patients 

with IBD provide a mechanism for some of the regional variations in inflammation, as noted 

within the diseased intestinal tract. We have also shown modulatory roles for CD39 within 

MPs in the exchange of regulatory signals between leucocytes and vascular cells (43).

Particular interest exists in programming cell lines to produce MPs with phenotypic 

characteristics, such as IL-10 induced anti-inflammatory CD39 expressing MPs from 

dendritic cells. Our own work proposes that intrinsic properties of MPs suggest a role as 

novel biomarkers of inflammatory pathways, or even as therapeutic vehicles for local 

delivery of anti-inflammatory compounds and purinergic modulators in IBD, as we have 

previously determined in liposomal reconstitution of CD39 (44).
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Microbiome elements - fecal transplants to correct dysbiosis and aberrant 

purinergic signaling

The commensal flora is recognized to play an important role in the control of the immune 

response in the context of IBD and experimental colitis (45). Different molecules mediate 

effects of the microbiome on the immune response, including long-chain fatty acids and 

tryptophan derivatives that also trigger AHR. Extracellular ATP released by commensal 

bacteria has been shown to activate purinergic inflammatory signaling to promote the 

differentiation of intestinal Th17 cells (45, 46).

The NLRP3 inflammasome catalyzes the production of active IL-1 and IL-18 in response to 

diverse endogenous or exogenous danger signals. One such signal is ATP, which activates 

the NLRP3 inflammasome in DCs through a mechanism mediated by P2X7R (47).

Curiously, the derivative adenosine alone can also activate the A2AR/CREB/HIF-1 alpha 

pathway, which is also required for sustained production of IL-1 after the initial 

inflammasome activation (48).

The importance of the NLRP3 inflammasome in the T-cell response can be highlighted by 

the decrease in Th1 and Th17 responses observed in NLPR3-deficient mice. CD39 also 

appears to impact the NLRP3-associated control of T-cell immunity, as recently shown by 

collaborative studies of tolerogenic DCs induced with IL-27 (23).

Conversely, several pathogen bacteria express ectonucleotidases that may modulate the 

immune response through the effects on purinergic signaling. Several bacteria also release 

factors that induce CD39 expression on immune cells (49). Taken together, these findings 

suggest that extracellular ATP and derivatives produced by microorganisms and by host cells 

in response to microbial molecules, such as TLR agonists, might play an important role in 

dictating the relationship between the host and the commensal flora.

This topic addressing the role of ectonucleotidases on host-pathogen interactions has been 

previously reviewed in Samson et al (50).

It is generally accepted that the microbiome in IBD, in particular in Crohn's disease, is 

characterized by reduced diversity, particularly of Firmicutes and Bacteroidetes. We recently 

conducted an open label study transferring the intestinal microbiota from healthy individuals 

into patients with IBD in order to see if this could correct dysbiosis and reverse mucosal 

inflammation. Those patients who had clinical responses demonstrated significant shifts in 

fecal microbial composition toward the respective donor's profile and we also noted an 

increase in Treg in this subset (51). Further work is ongoing to dissect out the nucleotide and 

purine metabolome in these patients post fecal transplant and microbiome transfer.

Recent work has shown potential relevance of the mycobiome in colitis (52). Saccharomyces 
cerevisiae has been recently shown to both exacerbate experimental colitis and increase gut 

barrier permeability in mice. Yeast colonization was found to enhance host purine 

metabolism in germ free animals, leading to an increase in uric acid production. Importantly, 

treatment with uric acid alone worsened disease and increased gut permeability. This 
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interesting area of research is somewhat controversial given that Saccharomyces cerevisiae 
can be also considered as a probiotic as it may limit adherent-invasive Escherichia coli 

(AIEC) in CEACAM6-expressing mice (53).

Other NTPDases expressed in the gastrointestinal tract and putative roles 

in IBD

The ecto-ATPase activity in the gut predominantly resides in blood vessels, immune cells, 

visceral smooth muscle, and the enteric nervous system (54). While CD39 is the major E-

NTPDase expressed by the endothelium and immune cells, we have noted that NTPDase2 

and NTPDase3 are responsible, in large part, for the ATPase activity in the muscle layers 

and the nervous system. In addition, Kusu and coworkers have reported the expression of 

NTPDase7 by the epithelial cells of the murine small intestine (55).

NTPDase2 and -3 are two cell membrane located ecto-enzymes in the E-NTPDases family 

that share significant structural homology and functional similarity to CD39 (56, 57). The 

enzymatic activity of NTPDase3 is similar to that of CD39, whereas NTPDase2 has 

significantly weaker ADPase activity (58). NTPDase7 is also known as LALP1, and is 

conventionally thought to be an endo-apyrase. Whether it is also expressed on the plasma 

membrane in humans is yet to be fully confirmed (59).

Both NTPDase2 and -3 are known be expressed in nerve tissues (60, 61). In the gut, the 

expression of NTPDase2 has been further noted on glial cells, while NTPDase3 localizes to 

both glia and neurons (54, 62, 63). In both humans and mice, NTPDase3 antibodies 

positively stain nerve fibers penetrating the smooth muscle layers, whereas the expression of 

NTPDase2 in these areas is less prominent (Feldbrügge et al., 2017, in press and see Fig. 3).

We have further shown that the genetic deletion of Entpd2 results in exacerbated DSS-

induced experimental colitis in these mutant mice that do not express NTPDase2. This 

outcome is associated with an increase the proportion of proinflammatory macrophages in 

the lamina propria. Similarly, mice globally null for Entpd3, which lack all NTPDase3 

expression, have more pronounced anemia compared to wild type in this same DSS-induced 

colitis model. We have also compared the ADPase activity in the plasma of patients with 

Crohn's disease and controls, and found that Crohn's patients have lower circulating ADPase 

activity. This ADPase activity is in part contributed by non-CD39 NTPDases, as suggested 

by sensitivity to non-CD39 NTPDase inhibitors.

The emerging roles of NTPDase2 and -3 in IBD further support the innovative concept of 

neuro-immune interaction (64), (65). This interaction may function at multiple levels. 

Hence, eATP transmits signals both amongst neurons in myenteric and submucosal ganglia 

via P2X2 and P2Y1 receptors and between nerve and smooth muscle cells via P2Y1 

receptors, exerting an inhibitory effect on the muscularis (66-68). eATP can also activate 

ionotropic P2X7 receptors in macrophages, dendritic cells and neutrophils, which in turn 

induces NLRP3 inflammasome assembly and the release of interleukin 1β and 18 (69). 

Furthermore, extracellular ATP has been shown to mediate the communication between 

neurons, glia, and contribute to the maintenance of intestinal homeostasis and mucosal 
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barrier (70) (71). Glial cells can perpetuate the release of pro-inflammatory ATP in the 

setting of intestinal inflammation via the activation of P2Y1 receptors, which in turn 

mediates neuronal cell death via P2X7 receptors (72). A recent study by Gabanyi and 

coworkers also suggested that enteric neurons in the muscularis externa can mediate the 

polarization of tissue resident macrophages toward a tissue-protective phenotype (65). 

Purinergic signaling may be a crucial mechanism modulating this interaction.

Interesting work from Kusu et al. with respect to NTPDase7, suggested that there is yet 

another mechanism that gut purinergic signaling can modulate host immunity (55). The team 

at Osaka University observed that NTPDase7 expressed on the intestinal epithelial cells 

modulates the ATP content in the intestinal lumen per se. Mice null for Entpd7 and deficient 

in NTPDase7 cannot scavenge luminal ATP produced by commensal microbiota. As a 

consequence, this enhances the development of proinflammatory Th17 cells, leading to a 

more severe phenotype in models of experimental autoimmune encephalomyelitis. Whether 

such immune dysregulation is relevant to human IBD remains to be determined.

Conclusions

This manuscript has summarized the role of aberrant purinergic signaling in IBD and 

gastrointestinal autoimmunity and has suggested how pharmacological modulation of 

purinergic responses, adenosine generation, AhR and HIF-1 alpha signaling (amongst 

others) could be exploited to treat these important conditions. The purinergic signaling 

pathways could be targeted for IBD treatment by the use of soluble ectonucleotidases, 

adenosine receptor agonists, or HIF activators, inter alia; as previously addressed in two 

important reviews (73, 74):

In this review, we have highlighted how targeting CD39 (and related ectonucleotidases) to 

modulate the purinergic-adenosinergic axis could have major impacts on extent of the 

inflammatory infiltrate in IBD (via adenosine receptor agonists and/or boosting CD39 or 

related ectonucleotidases). We propose that augmentation of CD39 and related 

ectonucleotidase bioactivity, possibly in MPs, might also control aberrant autoimmune 

reactions (via pharmacological use of adenosine receptor agonists and/or regulated CD39 

expression).

These purinergic mechanisms involved in both the generation of adenosine and scavenging 

of extracellular nucleotides have major impacts on the downstream signaling pathways 

critical to both thromboregulation and most importantly to the progression of inflammation 

and are hence of considerable and increasing therapeutic interest.
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Nomenclature/abbreviations: List and define any unusual symbols used in 

your article

ACR apyrase conserved regions

AhR aryl hydrocarbon receptor

DC dendritic cell

EC endothelial cell

E-NTPDases ecto-nucleoside triphosphate diphosphohydrolases

IBD inflammatory bowel disease

IL interleukin

NPP nucleotide pyrophosphatase/phosphodiesterase

Treg T regulatory cells

Tr1 type 1 regulatory T cells
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Fig. 1. Purinergic cytoprotection
This illustrates the role of the purinergic ecto-enzyme network in gastrointestinal 

inflammation. T regulatory cells (Treg) express the entire ecto-enzymatic machinery 

necessary to convert ATP/ADP into adenosine. Increased extracellular adenosine levels 

contribute to creating a favorable, homeostatic microenvironment by switching off T cell 

responses, producing anergy, inducing cytoprotection in an autocrine fashion, and promoting 

resolution of inflammation in the gut. Note also that hypoxia/HIF-1 alpha may modulate 

FOXP3; as well as CD39 and CD73 expression via Sp1. See text for details.
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Fig. 2. Bilirubin metabolism and mechanism of action
(A) Unconjugated bilirubin (UCB) is an end product of heme catalysis and has known 

immunosuppressant properties Heme-oxygenase-1 (HO-1) catalyzes heme degradation to 

biliverdin (BV), which is then converted to UCB by biliverdin reductase (BVR). As it is 

insoluble in water, UCB binds to albumin in the circulation. In the hepatocytes, UCB is 

conjugated with glucuronic acid by UDP glucuronosyltransferase 1 (UGT1A1) and is then 

excreted into the bile. Then, after being metabolized to urobilinogen and de-conjugated by 
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the bacterial flora, it is excreted in the urine and feces. Proportions of bilirubin are, however, 

re-absorbed and undergo enterohepatic circulation.

(B) UCB serves as an endogenous ligand for the aryl hydrocarbon receptor (AhR), a 

mediator of toxin responses and adaptive immunity. AhR engagement by UCB results in 

upregulation of CD39, the ectoenzyme initiating an ATP/ADP hydrolysis cascade that 

culminates with the generation of adenosine. Release of adenosine in the extracellular milieu 

leads to a decrease in cell proliferation, reduction in Th1 and Th2 development, attenuation 

of Th17 pathogenic potential and Treg induction.
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Fig. 3. Expression of select E-NTPDases in the digestive tract
A. A cross-sectional diagram of the digestive tract highlighting the three key layers. The 

expression of E-NTPDases in the digestive tract in relation to other cellular structures are 

shown in the mucosa (B), lamina propria and submucosa (C), and the muscularis (D). See 

text for details.
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