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The heterologous overexpression of integral membrane pro-
teins in Escherichia coli often yields insufficient quantities of
purifiable protein for applications of interest. The current study
leverages a recently demonstrated link between co-translational
membrane integration efficiency and protein expression levels
to predict protein sequence modifications that improve expres-
sion. Membrane integration efficiencies, obtained using a
coarse-grained simulation approach, robustly predicted effects
on expression of the integral membrane protein TatC for a set of
140 sequence modifications, including loop-swap chimeras and
single-residue mutations distributed throughout the protein
sequence. Mutations that improve simulated integration effi-
ciency were 4-fold enriched with respect to improved experi-
mentally observed expression levels. Furthermore, the effects of
double mutations on both simulated integration efficiency and
experimentally observed expression levels were cumulative and
largely independent, suggesting that multiple mutations can be
introduced to yield higher levels of purifiable protein. This work
provides a foundation for a general method for the rational over-
expression of integral membrane proteins based on computa-
tionally simulated membrane integration efficiencies.

Integral membrane proteins (IMPs)4 play crucial roles in the
transport of molecules, energy, and information across the
membrane and are an important focus of structural and bio-
physical studies. However, the production of sufficient levels of
IMPs is a limiting factor in their characterization (1). Even
among homologous IMP sequences, expression levels can vary
widely (1– 6), and the mechanistic basis for this variability is
often unclear. Extensive efforts have been committed to iden-

tify IMP sequences, expression conditions, and host modifica-
tions that yield IMP expression at sufficient levels for further
study (7–10). Despite these efforts, general guidelines for suc-
cessful overexpression for IMPs are lacking.

Biogenesis of IMPs in Escherichia coli involves multiple steps
that are potential bottlenecks for overexpression, including
correct targeting to the inner membrane (11, 12), membrane
integration (2, 13–17), and folding (18 –21). For a given
sequence, understanding how each of these steps affects
observed expression levels may lead to improved strategies for
IMP overexpression.

Previous work indicates that the Sec-facilitated membrane
integration step of biogenesis is a limiting factor in the overex-
pression of the TatC IMP (2). Sequence changes in the C-tail
that alter the efficiency of membrane integration efficiency,
determined either from coarse-grained (CG) simulations or
experimentally, were shown to correlate with experimentally
observed IMP expression levels. Further work is necessary to
explore the generality of this link and its potential for enabling
the rational enhancement of IMP expression.

The current study demonstrates the predictive capacity of
simulated integration efficiency for experimental expression by
examining a wide range of sequence modifications to TatC ho-
mologs across the protein sequence. The studied sequence
modifications include point mutations, loop-swap chimeras,
and double-loop-swap chimeras, and it is shown that the sim-
ulated integration efficiency, as predicted by CG simulations,
broadly correlates with IMP expression. An ampicillin resis-
tance assay is employed to directly validate the simulated
integration efficiencies and to confirm the mechanistic inter-
pretation. We further demonstrate cumulative and largely inde-
pendent effect of multiple mutations on both the simulated
integration efficiency and the experimentally observed expres-
sion levels. Finally, we provide a methodology that can be used
to generally identify sequence regions in other IMPs that may
exhibit correlations like those elucidated here for TatC, yielding
a broadly applicable tool for the computational prediction of
sequence modifications that improve IMP overexpression.

Results

TatC expression levels are changed by loop swaps

TatC is an IMP with six transmembrane domains and a cyto-
plasmic N and C terminus (Fig. 1A) that is a component of the
bacterial twin-arginine translocation pathway (22). A represen-
tative pool of 111 loop-swap chimeras was generated by re-
placing a single loop in one of 10 wild-type TatC homologs
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(Aquifex aeolicus, Bordetella parapertussis, Campylobacter jejuni,
Deinococcus radiodurans, E. coli, Hydrogenivirga species 128-
5-R1, Mycobacterium tuberculosis, Staphylococcus aureus,
Vibrio cholera, and Wolinella succinogenes) with the corre-
sponding loop from one of the other nine homologs (Fig. 1A).
Loop domains were identified by sequence alignment and
membrane topology predictions (23) (sequences listed in sup-
plemental Table 1). Both mutant and wild-type expression lev-
els were determined using a C-terminal GFP tag (24) (see
“Experimental procedures”), and the relative effect of each
mutation on expression was quantified in terms of the ratio,

Experimental expression �
expression(mutant)

expression(wild type)

(Eq. 1)

Values greater than unity (�1.0) indicate improvement in
expression due to the sequence modification.

The set of loop swaps exhibit a wide range of values for this
experimental expression ratio, as shown in Fig. 1B. The effect of
single-loop swaps ranges from 0.02- to 40-fold changes, with
43% of the studied loop swaps yielding improved expression.
Control studies were performed to confirm that the C-terminal
GFP tag does not substantially alter the experimentally mea-
sured expression levels. A set of 11 single-loop-swap chimeras
and their corresponding wild-type sequences were cloned into
an alternative construct containing an N-terminal Strep tag
(WSHPQFEK) with no C-terminal tag (see “Experimental pro-

cedures”). The experimental expression ratio in Equation 1 was
measured for each N-terminal Strep tag construct and com-
pared against quantification via C-terminal GFP fluorescence.
Fig. 1C shows this comparison, revealing agreement for all
studied cases between measured expression levels using either
tag. This result, additionally supported by extensive studies in
which IMP-GFP fluorescence is shown to be a robust quantifier
of expression (24, 25), indicates that the experimental expres-
sion outcomes are robust with respect to the means of quanti-
fying the expression levels.

Simulated integration efficiency is predictive of TatC
expression

Correlation between simulated integration efficiency and
experimentally observed expression levels was previously iden-
tified in TatC based on a limited set of mutations (2); here, we
systematically test the predictive capacity of simulated integra-
tion efficiency for expression in a diverse set of 111 loop-swap
chimeras. CG simulations were performed for each chimera
and wild-type sequence (see “Experimental procedures”), and
the effect of each mutation on simulated integration efficiency
was quantified in terms of the ratio,

Simulated integration �
PCin�mutant�

PCin�wild type�
(Eq. 2)

where PCin corresponds to the fraction of simulated trajectories
for which the C-tail domain is correctly localized with respect

Figure 1. TatC loop-swap chimeras demonstrate a range of expression outcomes. A, a schematic of a wild-type (left) and loop-swap chimera (right)
sequence for the TatC IMP with a C-terminal GFP tag. Corresponding loop domains are swapped between TatC homologs to create loop-swap chimeras, as
illustrated for loop 4. B, distribution of experimental expression values (mutant/wild-type) for the pool of 111 single-loop-swap TatC chimeras. Vertical dashed
lines indicate 2-fold change in experimental expression about the mean of the distribution. C, correlation between experimental expression levels quantified
using a C-terminal GFP tag (Exp. Expression) versus using an N-terminal Strep tag (N-strep). Error bars, S.E.
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to the cell membrane; below, we investigate the use of sequence
features other than the C-tail for quantifying integration effi-
ciency. Receiver operator characteristic (ROC) curves (Fig. 2A)
(26) provide a statistical measure of the predictive capacity of
simulated integration efficiency, with values in excess of 0.5 for
the area under the ROC curve (AUC) indicating predictive
capacity.

ROC curves in Fig. 2A are shown for data sets corresponding
to all 111 loop-swap chimeras (blue) and to the subset of 82
loop-swap chimeras that exclude C-tail swaps (green). This plot
demonstrates the predictive capacity of simulated integration
efficiency for experimental expression, with AUC values
exceeding 0.5 beyond 95% statistical confidence. The similarity
of the two curves indicates that the predictive capacity of
the simulated integration efficiency is relatively insensitive to
whether the loop swap involves the C-tail domain.

Also, indicated in Fig. 2A (blue and green dots) are the points
along the ROC curve that correspond to the cut-off value
(defining positive prediction) for the simulated integration effi-

ciency ratio in Equation 2 that offers the greatest predictive
capacity for experimentally observed expression; for both data
sets, this optimal value is found to be 1.0, indicating that
increases or decreases in the simulated integration efficiency
straightforwardly predict the corresponding changes in exper-
imental expression levels.

Experimental confirmation of simulated integration efficiency
values

To experimentally confirm that the in vivo integration effi-
ciency is correctly described by the CG simulations, we apply
a previously developed ampicillin resistance assay (2) (see
“Experimental procedures”). Upon fusing a C-terminal �-lacta-
mase tag to the TatC sequence, ampicillin resistance is
imparted when the C-tail is mislocalized (i.e. oriented into the
periplasm) during expression. Therefore, an increase in ampi-
cillin resistance is a direct in vivo test of any decrease in correct
C-tail localization predicted from the CG simulations.

Figure 2. C-tail localization is predictive of experimental expression. A, the predictive capacity of simulated integration efficiency for experimental
expression is assessed using an ROC curve for all single-loop-swap chimeras (blue; 111 sequence modifications) and all single-loop-swap chimeras excluding
those in which the C-tail was swapped (green; 82 sequence modifications). Significant predictive capacity is observed for both sets, as indicated by the AUC
values (bottom right, in colors matching the corresponding ROC curves). B, comparison of simulated integration efficiency and ampicillin resistance for TatC
loop-swap chimeras. A negative correlation between survival and simulated integration efficiency indicates that the C-tail topology predicted by the CG
simulations occurs in vivo. One sequence had a survival level below the plotted range. The reported measure of accuracy corresponds to the fraction of
sequences for which the simulation predicts changes in topology that are consistent with the direction of changes in the experimental expression. C,
comparison of experimental expression with relative ampicillin resistance for TatC loop-swap chimeras. A negative correlation between survival and experi-
mental expression indicates that the C-tail mislocalizes in poorly expressing chimeras, consistent with the mechanism predicted by the CG simulations. One
sequence had a survival level below the plotted range. D, the predictive capacity of simulated integration efficiency for experimental expression assessed using
a ROC curve for TatC point mutants (29 sequence modifications). Simulated integration efficiency from the CG model (blue) has greater predictive capacity for
experimental expression than the positive inside rule (purple). Error bars, S.E.
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The survival metric reported in Fig. 2B is the ratio of colonies
observed following ampicillin treatment between a loop-swap
chimera and the corresponding wild-type TatC sequence. For a
subset of 14 loop-swap chimeras, Fig. 2B compares the relative
survival to simulated integration efficiency; this subset was
selected randomly from the full set of single-loop swap chime-
ras and includes five C-tail-swap chimeras (sequences listed in
supplemental Table 1). For 11 of these 14 cases, the corre-
sponding data points in Fig. 2B fall into the diagonal quadrants
of the plot, indicating good agreement between the experimen-
tal and simulated measures of integration efficiency (accu-
racy � 0.8 � 0.2, 95% confidence interval).

Fig. 2C plots the correlation between ampicillin resistance
and experimental expression for the same set of loop-swap chi-
meras. As expected (given the positive correlation between
simulated integration efficiency and experimental expression
in Fig. 2A and the negative correlation between the simulated
integration efficiency and the survival assay in Fig. 2B), Fig. 2C
indicates strong negative correlation between ampicillin resis-
tance and experimental expression, with 11 of the 14 data
points falling in the diagonal quadrants (accuracy � 0.8 � 0.2,
95% confidence interval). Taken together, Fig. 2, B and C, dem-
onstrates that simulated integration is a reliable predictor of the
C-tail orientation, which is in turn a reliable predictor of exper-
imental expression.

The effect of point mutations on integration efficiency is
predictive for expression

Rather than loop-swap mutations, we now consider the effect
of single-point mutations on both experimental expression and
simulated integration efficiency. Point mutants introduce min-
imal changes to the wild-type sequence and are often used for
protein sequence design (27–29). The blue curve in Fig. 2D
shows the ROC curve for a set of 29 point mutants; each exhib-
its a single mutation at a position in the wild-type sequence that
is not universally conserved across homologs, with the muta-
tion either increasing or decreasing the charge at that position
(sequences listed in supplemental Table 1). The blue curve in
Fig. 2D indicates that the simulated integration efficiencies
from the CG method have predictive capacity (AUC � 0.89)
that is even higher than was found in Fig. 2A for loop-swap
mutations (AUC � 0.65).

For comparison, the purple curve in Fig. 2D explores the pre-
dictive capacity of a simpler measure of integration efficiency
based only on the positive inside rule, which observes that pos-
itively charged residues are more likely to be localized to the
cytosolic side of the cell membrane (30) and that modification
of the positively charged residues can change IMP topology
(19 –21, 31). As employed here, the positive inside rule simply
predicts that a mutation will have increased integration effi-
ciency (and thus a positive effect on expression) if it increases
the net charge of the cytosolic loops minus the net charge of the
periplasmic loops, and vice versa. It is clear from the Fig. 2D that
in contrast to the prediction of the CG model (blue), the posi-
tive inside rule has little predictive capacity for expression when
employed in this way. These results emphasize that the molec-
ular processes and interactions that govern IMP integration are

more complex, and they are more completely described using
the CG simulations than by simple analysis of charged residues.

The effects of sequence mutations on simulated integration
efficiency and experimental expression are largely
independent

To determine whether multiple sequence modifications have
a combinatory effect on expression and simulated integration
efficiency, a set of 12 double-loop-swap chimeras was gener-
ated (sequences listed in supplemental Table 1) and tested
against the corresponding effect of the constituent single-loop-
swap mutations. Fig. 3 shows that for both simulated integra-
tion efficiency (A) and experimental expression (B), compari-
son of the -fold change (Equations 1 and 2) observed for the
double-loop-swap chimera is strongly correlated with the prod-
uct of -fold changes for the corresponding single-loop-swap
chimeras (Pearson’s correlation coefficient, r � 0.9). Linear fits
of the data are plotted as solid lines. The slope of the linear fits
for both simulated integration efficiency (Fig. 3A, slope � 0.8)
and experimental expression (Fig. 3B, slope � 0.7) deviate only

Figure 3. Effect of multiple sequence modifications on simulated inte-
gration efficiency and experimental expression is cumulative and nearly
independent. A, the simulated integration efficiency of double-loop-swap
chimeras (vertical axis) versus the product of the simulated integration effi-
ciencies of the constituent single-loop-swap chimeras (horizontal axis). The
guideline with a slope of 0.8 indicates that the effect of loop-swap mutations
on simulated integration efficiency is cumulative and largely independent. B,
the experimental expression of double-loop-swap chimeras (vertical axis) ver-
sus the product of the experimental expression values of the constituent sin-
gle-loop-swap chimeras (horizontal axis). The guideline with a slope of 0.7
indicates that the effect of loop-swap mutations on experimental expression
is also cumulative and largely independent. Error bars, S.E.
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slightly from unity, indicating that the effect of each mutation is
largely independent. The results in Fig. 3 suggest that the intro-
duction of multiple mutations is a viable strategy for enhancing
expression and that simulated integration efficiency largely
captures the effect of these multiple mutations.

TatC topology features, other than C-tail localization, are not
predictive for expression

Using the fraction of CG trajectories for which the TatC
C-tail reaches correct localization with respect to the mem-
brane as the measure of successful IMP integration, the results
in Fig. 2, along with previous work (2), support the conclusion
that simulated integration efficiency reliably predicts experi-
mental expression in TatC. However, other features of the TatC
topology (such as the localization of other soluble loops) could
have been employed to quantify IMP integration from the CG
simulations. We now investigate the predictive capacity of the
CG simulations for experimental expression, using alterative
measures of IMP integration.

The alternative measures of IMP integration that are consid-
ered include 1) p(i), the fraction of CG trajectories for which
soluble loop i reaches correct localization with the respect to
the membrane, 2) p(All), the fraction of CG trajectories for
which all soluble loops reach correct localization, and 3) p(N),
the fraction of CG trajectories for which correct localization is
achieved for the soluble loop that includes the mutation. In this
notation, the previously discussed measure of IMP integration
based on the C-tail is given by p(7).

Using each of these measures of IMP integration, we
obtained ROC curves that compare the simulated integration
efficiency with observed experimental expression, and the cor-
responding AUC values are presented in Fig. 4A. In all cases, the
ROC curves were determined using the data set with all 140
TatC loop-swap and point mutations discussed above. The
AUC for the C-tail measure (p(7)) is 0.73, indicating the strong
predictive capacity of this measure. However, it is clear that all
other measures of integration efficiency fail to offer predictive
capacity (yielding AUC values that are within 95% confidence of
0.5). Even when the measure of integration efficiency is based
on the localization of the loop in which the mutation occurs (i.e.
p(N)), the predictive capacity is significantly worse than using
the C-tail (i.e. p(7)).

The results in Fig. 4A raise the question of the underlying
mechanism for the predictive capacity of the C-tail localization
for TatC. One hypothesis is that the C-tail acts as “aggregator”
of all preceding errors in the IMP integration, providing a
cumulative report on the TatC topology. A second hypothesis is
that the C-tail is akin to a “canary in the coal mine,” particularly
sensitive to mutations, regardless of where in the sequence the
mutation occurs. Finally, a third hypothesis is that the unique
features of the C-tail could make it more amenable to accurate
description by the CG method than the other TatC loops.

We directly tested the aggregator hypothesis by investigating
the degree to which the C-tail measure of integration efficiency
is predictive of the alternative measures. Fig. 4B presents the
resulting AUC values, obtained from ROC curves for p(7) versus
the alternative measures, using the full data set of 140 TatC
loop-swap and point mutations. It is clear from the figure that

there is no significant correlation between p(7) and the other
measures, a finding that is inconsistent with the aggregator
hypothesis. Fig. 4 (both A and B) emphasizes that the C-tail is a
unique reporter of TatC integration efficiency, at least among
the diverse set of measures considered here.

The second hypothesis reasons that the C-tail of TatC is par-
ticularly sensitive to sequence modification and is thus a useful
reporter of integration efficiency, regardless of where in the
sequence the mutation occurs. Although this hypothesis is dif-
ficult to test directly, it is consistent with the results from the
ampicillin resistance assay, which found that C-tail localization
was substantially impacted by mutations in other parts of the
TatC sequence, even for mutations in other loops. Possibly con-
tributing to the conformational sensitivity of the C-tail is that
the preceding TM domains (TM5 and TM6) are relatively short
and do not fully span the cell membrane in the A. aeolicus TatC
(AaTatC) structure (32, 33).

With regard to the third hypothesis, we note that the CG
model does not explicitly describe sequence-specific interac-
tions and packing effects among the TM domains; the model is
thus expected to be most reliable for describing the topology of
TM domains with weak tertiary interactions, such as the C-tail

Figure 4. Simulated integration efficiency using the C-tail (p(7)) measure
of integration is predictive of experimental expression of TatC, whereas
other measures are not. A, AUC obtained by using various measures of inte-
gration efficiency (p(1), p(2), p(3), p(4), p(5), p(7), p(N), and p(All); defined under
“Results”) to predict experimental expression. p(7) (i.e. C-tail localization) is the
only measure with statistically significant predictive capacity. B, AUC
obtained by using C-tail localization (p(7)) to predict other measures of inte-
gration efficiency. Error bars, 95% confidence intervals.
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of TatC (32, 33). This explanation leaves open the possibility
that improvements to the CG model in terms of its description
of tertiary IMP interactions could lead to more robust measures
of simulated integration efficiency (34).

The analysis in this section is central to the question of how
generally the CG simulations will be able to predict membrane
protein expression for IMPs other than TatC. It is very possible
that for other IMPs, the C-tail localization will not be the most
useful measure of IMP integration for predicting expression
levels (35). Below, we thus describe a simple strategy for iden-
tifying a useful measure of IMP integration on the basis of lim-
ited experimental expression data.

Predictors for expression can be identified from limited
training data

Utilization of simulated integration efficiency to predict IMP
expression in IMPs other than TatC requires a useful measure
of IMP integration to compute from the CG simulations. The
results in Figs. 2 and 3 use C-tail localization for this purpose,
but as is illustrated in Fig. 4, other reasonable measures of sim-
ulated integration efficiency are not predictive for expression.
For the study of an arbitrary IMP, we are thus faced with deter-
mining, as efficiently as possible, a measure of simulated inte-
gration efficiency to compute from the CG method.

Here, we present a simple strategy for identifying a useful
measure of IMP integration, based on comparison of the CG
simulations with limited experimental expression data. For the
case of TatC, Fig. 5 presents the results of an analysis in which
the predictive capacity of various candidate measures of IMP
integration is evaluated using a limited number of comparisons
between experimental expression measurements and CG sim-
ulations. We consider randomly selected subsets of the full data
set of 140 TatC loop-swap and point mutations, and for each
subset, we employ the various measures of integration effi-
ciency to evaluate the AUC that reflects the predictive capacity
of simulated integration efficiency in comparison with experi-
mental expression data. As a function of the subset size, the
figure plots the fraction (M(i)) of random subsets for which each

measure of integration efficiency (indexed by i) yields the high-
est AUC value. These results show that with expression data
for only a small training set, the most predictive measure of IMP
integration can be identified. In the case of TatC, �20
sequences are needed to determine p(7) as most predictive.

The strategy in Fig. 5 illustrates that for cases in which lim-
ited IMP expression data are available, a useful measure of IMP
integration from the CG simulations can be identified without
other prior knowledge, thus yielding a general strategy for
enhancing IMP expression in systems other than TatC. How-
ever, there will be cases in which even limited IMP expression
data are not available. For these cases, a reasonable strategy is to
use a measure of IMP integration that involves a sequence
domain that is expected to be prone to mislocalization with
respect to the cell membrane. Analyses of sequence conserva-
tion (36) and residue co-evolution (37–39) provide reasonable
strategies for identifying such sequence domains. For the case
of TatC, this approach would again be consistent with the use of
the C-tail for measuring of integration efficiency, because this
sequence domain is not conserved across homologs and was
not resolved in the reported TatC crystal structures (32, 33).

Discussion

We address the problem of heterologous IMP expression in
E. coli by utilizing the link between simulated integration effi-
ciency and experimental expression outcomes (2) to predict
sequence modifications that improve expression for the TatC.
Simulated integration efficiency is determined using CG
molecular dynamics of the co-translational integration of the
IMP via the Sec translocon (17) and is compared against exper-
imental expression measurements for a set of 140 TatC
sequence modifications. For both loop-swap modification (Fig.
2A) and point mutations (Fig. 2D), the simulated integration
efficiency is shown to provide clear predictive capacity of
experimental expression, and the effect of multiple sequence
modifications (Fig. 3) is shown to be cumulative and likewise
captured by the simulated integration efficiency. For the com-
bined set of 140 sequence modifications, the diagnostic odds
ratio (40) obtained from comparison of simulated integration
efficiency with experimental expression yields a value of 3.9
(1.9 –9.1, 95% confidence interval), indicating that sequence
modifications that improve simulated integration efficiency are
4-fold enriched in terms of improved experimental expression.

Although successful strategies for improving IMP overex-
pression have been demonstrated previously (7–9), these
approaches leave unclear the mechanism by which expression
is improved, requiring a case-by-case implementation that can
be costly in terms of both time and material resources. The
strategy employed in the current work aims to optimize IMP
expression on the basis of a particular step in IMP biogenesis:
successful integration into the membrane and adoption of the
correct multispanning topology. Additional work is needed to
demonstrate the degree to which improving membrane inte-
gration efficiency will lead to improved expression levels in
other IMPs, but the central role of membrane integration in
IMP biogenesis suggests that the approach may prove success-
ful for other IMPs.

Figure 5. Determination of useful measures of integration efficiency
based on limited data. Shown is the probability that each measure of inte-
gration is the most predictive for expression (M(i), described under “Results”),
based on training data sets of increasing size. The p(7) measure (based on
C-tail localization) is identified as the most predictive based on data sets with
�20 sequences. For clarity, only features with values of M(i) � 0.1 are shown in
the plot; not shown but included in the analysis are p(3), p(4), p(N), and p(All).
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Finally, we note that the current work is unique in that CG
simulations form the basis for the prediction of enhanced IMP
expression. Although molecular simulations have been suc-
cessfully employed in the context of other biomolecular design
problems, such as the de novo protein structure design (41– 43)
or enzyme design (44 – 46), the current work suggests that
rational enhancement of IMP expression is a new application
domain in which molecular simulations may prove useful.

Experimental procedures

Cloning

All TatC coding sequences were either created using primer
extension or synthesized by Twist Bioscience (San Francisco,
CA). Loop-swap chimeras involved modification of loops 1–5
and 7, avoiding the short loop 6. The pool of 111 loop-swap
chimera sequences was selected from all 540 possible combina-
tions. Each wild-type homolog was used between 6 and 15 times
as a parent and between 7 and 19 times as a source for the
mutant loop, and each loop was mutated between 8 and 29
times. Point mutants were chosen to affect a change in charge
through mutation of neutral residues to charged residues or
through mutation of charged residues to the opposite charge.
All sequences used are provided in supplemental Table 1. Each
loop-swap chimera coding sequence was cloned into the
pET28(a�)-GFP-ccdB vector (2, 47) using the Gibson cloning
protocol (48), resulting in each IMP possessing a C-terminal
GFP tag. For constructs containing the �-lactamase tag, the
GFP sequence was replaced with a �-lactamase sequence using
Gibson cloning. For constructs containing the N-terminal
Strep tag, the GFP and poly-His sequence were removed during
PCR, and the Strep tag was added using primer extension; the
final vectors were constructed using Gibson cloning.

Heterologous expression in E. coli

Heterologous expression of IMPs in E. coli was performed as
described previously (2). In short, IMPs were expressed in BL21
Gold (DE3) (Agilent Technologies, Santa Clara, CA) cells at
16 °C for 	16 h before either flow cytometry, Western blot, or
ampicillin resistance analysis.

Flow cytometry

Flow cytometry was performed as described previously (2).
In short, cultures of cells expressing TatC IMPs with a C-ter-
minal GFP tag were resuspended in PBS and subjected to flow
cytometry. Whole-cell fluorescence from the B1/FITC channel
was measured using a MACSQuant10 Analyzer (Miltenyi Bio-
tec, Bergisch Galbach, Germany). Mean fluorescence values
were calculated using FlowJo (Ashland, OR).

Western blotting

All samples of cells expressing IMPs with an N-terminal
Strep tag were subjected to the following protocol for Western
blot analysis. Samples were normalized to an A600 of 3.0 in PBS
and subjected to three freeze-thaw cycles using liquid nitrogen
and applied to 10% SDS-PAGE followed by Western blotting.
Relative protein levels were determined by incubation of the
Western blot membrane with an anti-Strep tag primary rabbit

antibody (NWSHPQFEK antibody, GenScript, Piscataway, NJ)
followed by incubation with an IRDye� 800CW donkey anti-
rabbit secondary antibody (LI-COR, Lincoln, NE) and visual-
ization using a LI-COR IR Western blot scanner (LI-COR, Lin-
coln, NE). Relative band intensities were quantified using
ImageJ (49).

Description of the CG simulations

We applied a previously developed CG approach (2, 17, 50) to
simulate the minute-time scale dynamics of co-translational
membrane integration via the Sec translocon. The CG model
was applied and implemented as described in detail (2), with
key features of the CG model summarized here.

The CG simulations explicitly describe the configurational
dynamics of the IMP, conformational gating of the Sec translo-
con lateral gate, and ribosomal translation (at 24 residues/s).
The IMP is represented as a freely jointed chain of CG beads,
where each CG bead represents three amino acids and has a
diameter of 8 Å, equal to the Kuhn length of a polypeptide chain
(51, 52). To avoid a frameshift in the mapping of amino acids to
CG beads upon a loop-swap sequence modification, dummy
atoms were introduced, as described previously (2). Bonding
interactions between neighboring CG beads are described
using the finite extension nonlinear elastic potential (53), short-
range non-bonding interactions are modeled using a Lennard–
Jones potential, and electrostatic interactions are modeled
using the Debye-Hückel potential. Factors that prevent back-
sliding of large translocated hydrophilic loops are included, as
described (17), for consistency with previous work but have
only a modest effect in TatC. Solvent interactions are described
using a position-dependent potential based on the water–
membrane transfer free energy for each CG bead (2).

The configuration of the IMP is time-evolved using over-
damped Langevin dynamics, with the CG beads confined to a
two-dimensional subspace that runs along the axis of the
translocon channel and between the two helices of the LG.
Conformational gating of the LG corresponds to the LG helices
moving out of the place of confinement for the IMP, allowing
the IMP to pass into the membrane bilayer. The rate of stochas-
tic LG opening and closing is dependent on the sequence of the
CG beads that occupy the translocon channel (17, 54). Ribo-
somal translation is directly simulated via growth of the IMP at
the ribosomal exit channel; throughout translation, the C ter-
minus of the IMP is held fixed, and new beads are sequentially
added at a rate of 24 residues/second. Upon completion of
translation, the C terminus is released from the ribosome.

Trajectories use a step size of 100 ns for time integration and
are terminated 31 s after the end of translation. For each protein
sequence, at least 400 independent trajectories are calculated.

Determination of measures of integration from CG
simulations

The simulated integration efficiency for a protein sequence
was calculated from the CG model as described previously (2).
The topology of a protein was analyzed over the last 6 s of the
CG simulation trajectories, starting 25 s after the end of protein
translation by the ribosome. For each loop, i, the location of the
loop during this time-window is described by a variable �i,
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where �i � 1 if the loop is in the cytosol, �i � 
1 if the loop is in
the periplasm, and �i � 0 otherwise. For each trajectory, we
assessed whether a given measure of integration is visited dur-
ing the analysis time window. The various measures of integra-
tion efficiency used in this work are described throughout.

Ampicillin resistance assay

The ampicillin resistance assay was performed as described
previously (2). In short, cells that had expressed IMPs with a
C-terminal �-lactamase tag overnight at 16 °C were resus-
pended to an A600 of 0.1 and grown to an A600 of 0.5, after which
ampicillin was added; cells were then incubated for an addi-
tional 1.5 h, followed by plating on kanamycin LB agar plates.
The relative number of observed colonies between loop-swap
chimera and wild-type was used to determine the change in
C-tail translocation, with a ratio � 1 indicating an increase in
translocation of the C-tail to the periplasm due to the sequence
modification.

Statistical significance calculations

Reported experimental measurements, including values for
experimental expression, survival, and protein levels quantified
using Western blotting, correspond to averages over at least
three independent trials, with error bars representing S.E.
unless otherwise noted. Simulated integration efficiencies rep-
resent the average outcome of at least 400 independent CG
simulation trajectories, with error bars indicating S.E. Confi-
dence intervals on AUC values were determined by bootstrap-
ping. Specifically, 1,000,000 samples of simulated integration
and expression pairs, with size equal to the set of sequence
modification, were drawn with replacement from the set of
sequence modifications; the AUC was calculated for each sam-
ple, and the relevant percentile of the resulting AUC value dis-
tribution determined the confidence intervals.

A similar procedure was used to generate the randomly
selected subsets of the full data set of 140 TatC loop-swap and
point mutations used in Fig. 5. For each subset size, 1,000,000
independent samples of that size were chosen with replacement
from the full data set of 140 TatC loop-swap and point
mutations.
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son, S., Krehenbrink, M., Liu, S. M., Lukey, M. J., Marcoux, J., McDowell,
M. A., Rodriguez, F., Roversi, P., Stansfeld, P. J., Robinson, C. V., et al.
(2012) Structure of the TatC core of the twin-arginine protein transport
system. Nature 492, 210 –214

34. Niesen, M. J., Wang, C. Y., Van Lehn, R. C., and Miller, T. F., 3rd (2017)
Structurally detailed coarse-grained model for Sec-facilitated co-transla-
tional protein translocation and membrane integration. PLoS Comput.
Biol. 13, e1005427

35. Saladi, S. M., Müller, A., Javed, N., and Clemons, W. M. (2017) Decoding
sequence-level information to predict membrane protein expression.
bioRxiv 10.1101/098673

36. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990)
Basic local alignment search tool. J. Mol. Biol. 215, 403– 410

37. Marks, D. S., Hopf, T. A., and Sander, C. (2012) Protein structure predic-
tion from sequence variation. Nat. Biotechnol. 30, 1072–1080

38. Kamisetty, H., Ovchinnikov, S., and Baker, D. (2013) Assessing the utility
of coevolution-based residue-residue contact predictions in a sequence-
and structure-rich era. Proc. Natl. Acad. Sci. U.S.A. 110, 15674 –15679

39. Tress, M. L., and Valencia, A. (2010) Predicted residue-residue contacts
can help the scoring of 3D models. Proteins 78, 1980 –1991

40. Glas, A. S., Lijmer, J. G., Prins, M. H., Bonsel, G. J., and Bossuyt, P. M.
(2003) The diagnostic odds ratio: a single indicator of test performance.
J. Clin. Epidemiol. 56, 1129 –1135

41. DeGrado, W. F., Summa, C. M., Pavone, V., Nastri, F., and Lombardi, A.
(1999) De novo design and structural characterization of proteins and
metalloproteins. Annu. Rev. Biochem. 68, 779 – 819

42. Huang, P. S., Boyken, S. E., and Baker, D. (2016) The coming of age of de
novo protein design. Nature 537, 320 –327

43. Dahiyat, B. I., and Mayo, S. L. (1997) De novo protein design: fully auto-
mated sequence selection. Science 278, 82– 87

44. Jiang, L., Althoff, E. A., Clemente, F. R., Doyle, L., Röthlisberger, D., Zang-
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