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ABSTRACT
Metazoan nuclei are equipped with nuclear lamina - a thin layer of intermediate filaments (IFs)
mostly built of nuclear lamins facing the inner nuclear membrane (INM). The nuclear lamina serves
as an interaction hub for INM-proteins, soluble nuclear factors and DNA. It confers structural and
mechanical stability to the nucleus, transduces mechanical forces and biochemical signals across
the nuclear envelope (NE) and regulates the organization of chromatin. By using cryo-electron
tomography (cryo-ET), we recently provided an unprecedented view into the 3D organization of
lamin filaments within the lamina meshwork in mammalian somatic cells. Through implementation
of averaging procedures, we resolved the rod and globular Ig-fold domains of lamin filaments. The
density maps suggested that they assemble into 3.5 nm thick filaments. Our analysis revealed
interesting structural differences between nucleoplasmic and cytoplasmic intermediate filaments,
raising the question of which molecular cues define their assembly modes inside the cell.
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Introduction

Multicellular organisms have adapted for efficient
response to mechanical strain by developing well-
orchestrated molecular mechanisms that sense and
transmit mechanical forces among the cells and their
organelles. As a result, these signals are translated into
biochemical and cellular alterations.1-3 To this effect, it
becomes evident that metazoan cells have adjusted their
overall architecture to resist these physically demanding
conditions. One such mechanical feature is the pres-
ence of the so-called “nuclear lamina," which represents
a dense fibrous protein meshwork at the periphery of
the nucleus.4-6 It underpins the INM, supports the
cross-talk between the cytoplasmic and nucleoplasmic
compartment and attenuates the mechanical load to
protect the genetic material.7-10 Besides its scaffolding
and mechanosensory function, lamins also have essen-
tial roles in chromatin organization, DNA replication
and repair, transcription regulation, resistance to oxida-
tive stress, stem cell maintenance and differentiation,
signaling and cell cycle progression.8,11-15

In mammalian cells, the lamin meshwork is mostly
composed of 4 lamin isoforms: A, C, B1 and B2. Based
on their sequence and structural properties, these type
V intermediate filament (IF) proteins are sub-divided
in 2 different classes, namely A-type and B-type. A-
type lamins are represented by the 2 isoforms lamin A
and C and are derived from a single gene by alterna-
tive splicing, whereas the B-type lamins, B1 and B2,
are derived from 2 independent genes.16-19 While at
least one B-type lamin is expressed at different stages
of development, A-type lamins are mainly expressed
in terminally differentiated cells.20

Like most cytoplasmic IF proteins, lamins are com-
posed of a central a-helical “rod” domain, flanked by a
non-a-helical N-terminal “head” and C-terminal “tail”
domain. The head and tail domains of IF proteins are
variable in size, whereas the »45 nm long central rod
domains are composed of 4 conserved a-helices (1A, 1B,
2A, 2B) and 3 linker regions (L1, L12, L2). However,
some characteristic features distinguish nuclear lamins
from cytoplasmic IF proteins, namely 6 additional hep-
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tads (42 residues) within helix 1A of the rod domain, the
presence of a nuclear localization signal (NLS), a globular
immunoglobulin (Ig)-fold within the C terminus, and a
CaaXmotif at their C-terminal end.21-24

The interest in lamins and the structural organiza-
tion of the nuclear lamina has increased because of
the identification of more than a dozen distinct herita-
ble diseases that are associated with mutations in the
human lamin A gene. These diseases, collectively
termed “laminopathies," affect adipose, bone, nerve
and skin cells and comprise a variety of syndromes,
such as muscular dystrophies (e.g. Emery-Dreifuss
muscular dystrophy, EDMD), lipodystrophies (e.g.,
familial partial lipodystrophy, FPLD), neuropathies
and premature aging (or progeroid) syndromes (e.g.,
Hutchinson Gilford progeria syndrome, HGPS; or
restrictive dermopathy, RD).25-29

Visualization of the nuclear lamina by cryo-ET

The first view into the organization of the lamin mesh-
work was presented 30 y ago by visualizing chroma-
tin-free and detergent-treated nuclear envelopes,
isolated from nuclei of Xenopus laevis oocytes, with
transmission electron microscopy (TEM).30 These
images, represent the organization of lamin LIII,
which is only expressed in the germline of fish,
amphibians, reptiles and birds;31 however, the visuali-
zation of the lamin meshwork in somatic cells has
proven more challenging. The main obstacle to the
electron microscopic analysis of the nuclear lamina in
situ is the thickness of the cellular sample, especially
in nuclear regions. Although it was shown that the
nuclear envelope of U2OS cells can be studied in
toto,32 the crowded environment of the NE, particu-
larly the bulk of chromatin that surrounds the fila-
mentous structure, prohibits a detailed analysis of the
nuclear lamina. Recent developments of imaging tech-
nologies such as focused ion beam scanning electron
microscopy (cryo-FIB-SEM) and cryo-electron
tomography (cryo-ET) have become very attractive
tools to study supramolecular assemblies within the
native environment of biological specimens.33,34 Two
recent studies have implemented these approaches to
investigate the nuclear periphery of nuclei in vitrified
and milled C.elegans embryos and HeLa cells, respec-
tively.33,35 The results suggested the presence of short
filaments at the periphery of nuclei. However, experi-
mental evidence that these filaments are indeed lamins

was missing. The detection of only short filaments
(most are � 55 nm in HeLa cells, which is about the
length of a lamin dimer) contradicts the presence of a
fully assembled lamin meshwork. This might be
explained by the dense environment within which the
lamin filaments are embedded and the intimate inter-
action with heterochromatin, all of which reduce the
contrast of lamins and make it challenging to track
them carefully throughout their entire length.

By applying cryo-ET to purified ghost nuclei, i.e.
nuclei devoid of chromatin, from vimentin knockout
mouse embryonic fibroblasts (MEF), we acquired a
first view into the molecular architecture of the mam-
malian nuclear lamina.36 For this, we subjected MEFs
to a short exposure in mild detergent conditions and
treatment with nuclease (Fig. 1a). Our cryo-ET analy-
sis revealed that the nuclear lamina is composed of
»3.5 nm thick globular-decorated filaments (Fig. 1b),
assembled into a »14 nm thick meshwork that is
localized adjacent to the INM, underneath nuclear
pore complexes.37 Co-immunogold-labeling experi-
ments showed that these filaments are composed of
A- and B-type lamins. Interestingly, efforts in design-
ing lamin A knockout cells in vimentin null back-
ground were unsuccessful, emphasizing the
importance of IFs in single cells.

Earlier studies on the organization of A- and B-type
lamins within the nuclear lamina of MEF nuclei used
3D structured illumination microscopy (3D-SIM) and
direct stochastic optical reconstruction microscopy
(dSTORM) to visualize immuno-labeled lamins. The
results of this super-resolution fluorescent microscopy
approach showed a clear separation of the differently
labeled antibodies that were used in the co-immuno-
labeling experiments. This suggested that the different
lamin isoforms assemble into separate meshworks,
together forming a functional lamina.38,39 To deduce
lamin filaments from the related label, it was supposed
that the more closely the individual lamin labels are
adjoined, the higher would be the probability that they
are attached to the same filament. Based on this
assumption they applied nearest-neighbor algorithms
to connect the individual label and to create filaments.
The modeled lamin A and lamin B1 filaments showed
no obvious overlap and the composite meshworks dis-
played variations in the number, geometry and size of
spaces that are surrounded by filaments. To compare
the co-immuno-labeling results of our cryo-ET analy-
sis with previously published super-resolution
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fluorescent microscopy images, we assembled a collage
of images from our cryo-tomograms, containing the
different sized lamin A and lamin B specific gold
labels. Next, the coordinates of the 2 different sized
gold labels were extracted and displayed in 2 different

colors at a resolution of 120 nm, which is comparable
to the resolution achieved with 3D-SIM. The resulting
image showed similar numbers and distributions of
the lamin A and lamin B1 label as compared with the
results from the 3D-SIM analysis. This confirms that
our sample preparation procedure did not induce
major changes in the general organization of A- and
B-type lamins within the nuclear lamina (Fig. 1c).
However, visual inspection of our cryo-tomograms
also revealed that the large amount of lamin filaments
and the frequency of potential epitopes is much higher
compared with the number of labeled antibodies that
is detected in our and the reported co-immuno-label-
ing studies. This may reflect an insufficient decoration
of lamin filaments with labeled antibody within the
nuclear lamina, based on the compact organization of
the lamin filaments and the presence of lamin binding
proteins that may mask some of the epitopes.

Structural analysis of lamin assemblies

Structural analysis of in vitro assembled IFs by X-ray
crystallography and electron microscopy suggested
that assembly of cytoplasmic IFs and lamin filaments
follows hierarchical ordered polymerization pathways.
Both assemblies are initiated by parallel and in-regis-
ter association of 2 monomers through their a-helical
domains to form coiled-coil dimers.17,40,41 Next, lamin
dimers interact longitudinally to form polar head-to-
tail polymers that assemble laterally in an anti-parallel
and half staggered fashion to build an apolar protofila-
ment.30,42-45 Higher order assembly of lamins is based
on the lateral interaction of protofilaments to form
10 nm filaments, ultimately leading to the formation
of paracrystalline arrays. In comparison to lamin fila-
ment assembly, cytoplasmic IF formation starts with
the lateral association of 2 dimers into anti-parallel
and half-staggered tetramers. The tetramers subse-
quently associate in a lateral fashion to form full width
unit-length type filaments (ULFs), which is followed
by their longitudinal interaction to form »10 nm
thick fibers.46 Whether in vivo intermediate filament
assembly uses similar pathways and results in the for-
mation of comparable structures is subject of current
debate. Although it has been demonstrated that
endogenous cytoplasmic IFs form »10 nm thick fila-
ments in vitro and in vivo, little is known about the
assembly state of lamin filaments in their native envi-
ronment. Cryo-ET analysis of ectopically expressed

Figure 1. Sample preparation procedure and microscopic analysis
of vimentin deficient MEFs by Cryo-ET and 3D-SIM. (a) Schematic
illustration of the sample preparation procedure used to analyze
lamins and the lamina by cryo-ET. This procedure does not alter
the lamina organization as judged by 3D-SIM (see ref. 36). (b) A
4 nm thick xy-slice through a representative tomogram of the
mammalian nuclear lamina. Scale bar, 100 nm. (c) A 3D-SIM
image of pre-permeabilised, nuclease-treated and immuno-
labeled MEFs shows localization and expression of lamin A (red)
and lamin B1 (green). Scale bar, 1 mm.
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C. elegans lamin in Xenopus oocytes showed 4–6 nm
thick filaments at the nuclear periphery, suggesting
that lamins may assemble into thinner filaments than
cytoplasmic IFs.47 Indeed, this is further supported by
our cryo-ET analysis of the mammalian nuclear lam-
ina that revealed a composition of even thinner (»3.5
nm) lamin filaments, raising the question of which
cellular cues prevent higher order assembly. The most
obvious reason that could explain this phenomenon
might be the interaction of lamins with nucleoplasmic
proteins, chromatin and membrane-proteins at the
INM. Another important factor might be the specific
concentration of each lamin isoform, based on the
observation that overexpression of lamin A in Spodop-
tera frugiperda (Sf9) insect cells yields paracrystalline
fiber formation.48

Structural classification and averaging of the lamin fil-
aments from our cryo-tomograms revealed a globular-
decorated fiber appearance, which resembles the fila-
ments as observed at early stages in in vitro assembly

experiments using purified lamins. The averaged struc-
tures displayed a uniform filament thickness of 3.5 nm.
The dense globular domains (putative Ig-fold domains)
appeared pairwise and in 20 nm steps alongside the rod
of the filament and served as fiduciary marks, suggesting
the assembly into tetrameric lamin filaments (Fig. 2, top
filament). However, some of the structural classes
showed that the position of the Ig-fold domains can vary,
indicating a lateral displacement of up to 10 nm (Fig. 2,
bottom filament), which may be attributable to the flexi-
ble stretch of amino acids between the end of the rod and
the beginning of the Ig-fold in lamin proteins (»50 aa in
lamin A, C, B1 and»70 aa in lamin B249).

Conclusion

In Turgay et al., 2017,36 we report the molecular orga-
nization of lamin filaments at the NE in mammalian
somatic cells. Our structural characterization of single
lamin filaments revealed important insights into the
lamina organization and lamin assembly in vivo. Fur-
ther data acquisition and analysis may help improve
the resolution of the lamin structures to <1nm, which
is essential to delineate the precise organization of the
nuclear lamins, both A- and B-type, and to pinpoint
specific alterations on the single filament level. More-
over, this will help elucidate the molecular mecha-
nisms that underlie laminopathies.

Two generalmodelsmay explain these scenarios. First,
the “structural hypothesis” proposes that mutations in
lamin A/C render structural alterations of lamins, which
produce more fragile nuclei, therefore causing cell death
and eventually disease in mechanically stressed tissues.
Second, the “gene regulation hypothesis” proposes that
specific lamin mutations lead to distinct alterations in
gene regulation, and this may be the underlying cause for
the development of different disease phenotypes.50 Other
models hint on defective nucleo-cytoskeletal coupling or
imbalanced stem-cell and differentiation homeostasis.51-
54 However, so far none of these models can convincingly
explain the variety of diseases caused by laminmutations.
Hence, identifying the alterations of lamina structures
and the mechanical properties due to specific mutations
will be an instrumental step in our understanding of the
disease mechanisms underlying laminopathies.
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Figure 2. Lamin filaments exhibit a tetrameric structure in cross-
section. The suggested models of lamin filaments illustrate the
3.5 nm uniform thickness of the rod domain (gray) and the posi-
tions of the Ig-fold domains (red) alongside the lamin filament,
built from 2 head-to-tail polymers to form a tetrameric assembly,
previously termed a protofilament. The Ig-fold domains repeat
pairwise every 20 nm (top filament) and exhibit a high degree of
spatial flexibility, most likely due to the linkers between the rod
and the Ig-fold domain. In some cases, the Ig-fold domains along
a filament are spaced as close as 10 nm.
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