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Complex interplays between phytosterols and plastid development

Paola Andradea,b, Daniel Caudep�ona,b, Teresa Altabellaa,c, Montserrat Arr�oa,b, Albert Ferrera,b, and David Manzanoa,b

aPlant Metabolism and Metabolic Engineering Program Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB), Campus UAB,
Bellaterra (Cerdanyola del Vall�es), Barcelona, Spain; bDepartment of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of
Barcelona, Barcelona, Spain; cDepartment of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona,
Barcelona, Spain

ARTICLE HISTORY
Received 17 September 2017
Accepted 29 September 2017

ABSTRACT
Isoprenoids comprise the largest class of natural compounds and are found in all kinds of organisms. In
plants, they participate in both primary and specialized metabolism, playing essential roles in nearly all
aspects of growth and development. The enormous diversity of this family of compounds is extensively
exploited for biotechnological and biomedical applications as biomaterials, biofuels or drugs. Despite their
variety of structures, all isoprenoids derive from the common C5 precursor isopentenyl diphosphate (IPP).
Plants synthesize IPP through two different metabolic pathways, the mevalonic acid (MVA) and the
2-C-methyl-D-erythritol 4-phosphate (MEP) pathways that operate in the cytosol-RE and plastids,
respectively. MEP-derived isoprenoids include important compounds for chloroplast function and as such,
knock-out mutant plants affected in different steps of this pathway display important alterations in plastid
structure. These alterations often lead to albino phenotypes and lethality at seedling stage. MVA knock-
out mutant plants show, on the contrary, lethal phenotypes already exhibited at the gametophyte or
embryo developmental stage. However, the recent characterization of conditional knock-down mutant
plants of farnesyl diphosphate synthase (FPS), a central enzyme in cytosolic and mitochondrial isoprenoid
biosynthesis, revealed an unexpected role of this pathway in chloroplast development and plastidial
isoprenoid metabolism in post-embryonic stages. Upon FPS silencing, chloroplast structure is severely
altered, together with a strong reduction in the levels of MEP pathway-derived major end products. This
phenotype is associated to misregulation of genes involved in stress responses predominantly belonging
to JA and Fe homeostasis pathways. Transcriptomic experiments and analysis of recent literature indicate
that sterols are the cause of the observed alterations through an as yet undiscovered mechanism.
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Isoprenoids are the most diverse class of natural compounds
with more than 55000 members identified.1 Some isoprenoids
act as primary metabolites playing fundamental roles in basic
cell processes such as photosynthesis, respiration, signaling
and maintenance of membrane architecture. Others are spe-
cialized metabolites serving essential functions in important
biological processes such as reproduction or defense. The
huge variety of this family of compounds is, moreover, exten-
sively exploited in many biotechnological and biomedical
applications as biofuels, biomaterials and drugs. Despite this
enormous variety of structures and functions, they are all
derived from a common C5 building block, isopentenyl
diphosphate (IPP) and its isomer dimethylallyl diphosphate
(DMAPP). Plants synthesize IPP through two different path-
ways, the classical mevalonic acid (MVA) pathway that oper-
ates in the cytosol-RE and the 2-C-methyl-D-erythritol
4-phosphate (MEP) pathway that is localized in the plastids.2

The sequential condensation of IPP with DMAPP and the
resulting allylic diphosphate substrates through the action of
prenyltransferases, generate isoprenoid linear chains of
increasing length. These can be further cyclized, decorated

and/or conjugated to produce the thousands of different
isoprenoids compounds found in the plant kingdom.3

MEP pathway-derived isoprenoids include essential com-
pounds for the proper function of chloroplast biogenesis and
physiology. For example, some plastidial isoprenoids are crucial
in the photosynthetic process (chlorophylls and carotenoids),
in electron chain transport (plastoquinone and phylloquinone),
and have functions as antioxidants (tocopherols and plasto-
chromanol-8). In addition, some important plant hormones
(ABA, GAs, and strigolactones) are synthesized through the
MEP pathway as well as many specialized metabolites (mono-
terpenes and diterpenes). Not surprisingly, mutant plants
affected in enzymes of the MEP biosynthetic pathway display
important alterations in plastid structure and development that
lead to albino phenotypes and eventually to lethality at seedling
stage.2,4,5 In addition, MEP-derived metabolites have been
proposed as signaling molecules in the retrograde signaling
pathway that regulate nuclear gene expression according to
the physiological status of the chloroplast. Some examples
include the methylerythritol cyclodiphosphate (MEcPP), cleav-
age product(s) of phytofluene and/or d-carotene, and
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b-cyclocitral (b-CC), which are involved both in biogenic and
operational control networks.6

Cytosolic and mitochondrial isoprenoids are synthesized
through the MVA pathway and include essential compounds
such as sterols (membrane architecture and signaling), ubiqui-
none and heme groups (electron transfer), dolichols and poly-
prenols (protein glycosylation), sesquiterpenes (defense) and
isoprenyl diphosphates involved in post-translational protein
modification (farnesyl diphosphate and geranylgeranyl diphos-
phate). Cytosolic isoprenoids are also involved in the biosyn-
thesis of important plant hormones such as cytokinins and
sterol-derived brassinosteroids. In agreement with such essen-
tial functions, knock-out mutant plants affected in the biosyn-
thesis of the precursors of these important compounds have a
lethal phenotype often displayed at the embryo or gametophyte
development stage.2 For example, while no major developmen-
tal and metabolic defects are observed in farnesyl diphosphate
synthase (FPS) fps1 and fps2 single knockout mutants, fps1/fps2
double knock-out mutant embryos show arrested development
at the pre-globular stage.7

MVA-derived isoprenoids are involved in plastid
development

Intriguingly, in addition to the embryo lethal phenotypes,
mutant plants carrying weak alleles of MVA pathway genes dis-
play specific defects in plastidial physiology and/or structure
(Table 1). For example, characterization of flaky pollen1-1
(fkp1-1), a knock-down mutation in HMG-CoA synthase
(HMGS), revealed a requirement of the MVA pathway for the
development of tapetum-specific elaioplasts (a type of plastid
rich in plastoglobuli containing sterol-esters).8 Similarly,
HMG-CoA reductase (HMGR) mutant plants (hmg1-1) display
pollen defects associated to abnormal sterol distribution in
tapetum cells, as well as dwarf and chlorotic phenotypes attrib-
uted to sterol depletion.9 Moreover, a phosphoproteome char-
acterization of hmg1-1 mutant plants revealed 31 proteins in a
differential phosphorylation state when compared to wild type
plants. Interestingly, these include important proteins for plas-
tid function such as TOC159 (chloroplast protein importer

necessary for chloroplast biogenesis), AtOEP7-like (outer chlo-
roplast envelope protein) and PSIID2 (Photosystem II D2
protein, a chlorophyll binding protein important for the
homeostasis of photosystem II), as well as different factors
associated with light signaling and photomorphogenesis.10

These data suggest a close link between MVA pathway and
chloroplast function. Furthermore, exogenous addition of lova-
statin, a specific inhibitor of HMGR, induces further depigmen-
tation and inhibition of plastid development in Arabidopsis
cla1-1 (affected in the first-step of the MEP pathway) mutant
seedlings.11 Likewise, IPP1/IPP2 double mutant plants (idi1- 2/
ippi2) show a pale green phenotype due to reduced pigmenta-
tion when grown under continuous light.12 More recently,
characterization of FPS conditional knock-down mutant plants
has revealed a strong effect of cytosolic isoprenoids on plastid
development.13 FPS belongs to the family of prenyltransferases
and catalyzes the synthesis of farnesyl diphosphate (FPP) from
IPP and DMAPP. FPP is a central metabolite in isoprenoid
metabolism as precursor of a wide range of essential com-
pounds including sterols and brassinosteroids, ubiquinones,
dolichols and polyprenols, sesquiterpenes and the prenyl moi-
ety of farnesylated proteins and heme groups. Upon FPS silenc-
ing, plants show a dramatic reduction in size and display a
chlorotic phenotype that correlates with a strong decrease in
the levels of chlorophylls, carotenoids and other plastidial iso-
prenoids, together with important alterations of chloroplast
ultrastructure. These alterations include formation of irregular
outer membranes, dismantled thylakoid system, increased plas-
toglobuli number and massive accumulation of starch granules.
In addition, transcriptomic analysis of FPS silenced plants
show altered expression of genes related to stress pathways,
most notably the induction of Jasmonic acid (JA) pathway and
misregulation of genes related to Fe deficiency.13 Collectively,
these data show a requirement of MVA-derived compounds
for the proper development and physiology of chloroplasts.

A simple mechanism to explain the involvement of cytosolic
isoprenoids on plastid development and physiology is the pos-
sibility that MVA precursors are directly used on the biosyn-
thesis of one or more plastidial isoprenoid end products.
However, although there is a certain exchange of metabolites

Table 1. MVA and sterol-related biosynthetic mutant plants affected in plastid development or physiology. HMGS: HMG-CoA synthase. HMGR: 3-hydroxy-3-methylglutaryl
coenzyme A reductase. IPPI: IPP isomerase. FPS: farnesyl diphosphate synthase. SQE1: squalene epoxidase 1. CAS1: cycloartenol synthase 1. CYP51A2: obtusifoliol 14a-
demethylase. PSAT: phospholipid sterol acyltransferase.

Gene AGI Mutagen Allele Phenotype Reference

HMGS At4g11820 T-DNA fkp1-1 Deffective elaioplast development Ishiguro et al., 2010
HMGR At1g76490 T-DNA hmg1-1 Chlorosis/altered phosphorylation of chloroplast proteins Suzuki et al., 2004;

Heintz et al., 2012
IPPI1/IPPI2 At3g02780/

At5g16440
T-DNA idi1- 2/ippi2 Pale Green, reduced chlorophyll and carotenoid levels under

continuous light
Okada et al., 2008

FPS1/FPS2 At5g47770/
At4g17190

amiRNA inducible amiFPSa/amiFPSb Chlorosis/altered chloroplast development/reduced
plastidial isoprenoid levels

Manzano et al., 2016

SQE1 At1G58440 EMS dry2/sqe1-5 Chlorosis/reduced chlorophyll levels Pos�e et al., 2009
CAS1 At2g07050 T-DNA cas1-1 Albino stems and flowers/altered chloroplast development/

reduced chlorophyll and carotenoid levels
Babiychuk et al., 2008

CRE/loxP inducible cas1-2 Albino leaves
CYP51A2 T-DNA cyp51A2-3 Altered chloroplast development/Transcriptional and

translational repression of photosynthesis-related genes
Kim et al., 2010

PSAT1 At1g04010 T-DNA psat1-1 Chlorosis Bouvier-Nav�e et al.,
2010

GAME1 Solyc07g043490 RNAi GAME1i Altered chloroplast development Itkin et al., 2011

GAME1: tomatidine galactosyltransferase.
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derived from MEP and MVA pathway, this seems to be limited
to certain compounds, species and/or specific tissues and stages
of development. Indeed, lethal mutations in the MEP pathway
cannot be rescued by the MVA pathway and vice versa, indicat-
ing that this exchange is highly restricted.4 Therefore, consider-
ing the strong compartmentalization of isoprenoid biosynthesis
in plants, it is unlikely that the observed defects in plastid devel-
opment displayed by some MVA pathway mutants are caused
by a direct effect of cytosolic precursors into the biosynthesis of
plastidial isoprenoids. Rather, the observed phenotypes must
be a consequence of the depletion of MVA pathway end
products.

Complex interplays between phytosterol homeostasis
and chloroplast development

In this regard, several lines of evidence point towards sterol
depletion and/or sterol profile misbalance as the cause of the
observed plastidial phenotypes. Indeed, changes in the sterol
profile of tobacco plants expressing an Actinomyces 3-hydroxis-
teroid oxidase gene results in altered rates of chloroplast photo-
synthetic whole chain electron transport.14 Furthermore, the
analysis of some biosynthetic mutant plants reveals a require-
ment of sterols in proper chloroplast development or physiol-
ogy (Table 1). For example mutations in squalene epoxidase
(dry-2/sqe1-5) lead to a pale green phenotype and a reduction
of chlorophyll levels.15 Similarly, mutations in cycloartenol syn-
thase (cas1-1 and conditional cas1-2 mutant plants) cause an
albino phenotype with important alterations in chloroplast
development and a strong reduction in chlorophyll and carot-
enoid levels.16 Likewise, mutations in obtusifoliol 14a-deme-
thylase (cyp51A2-3) provoke severe alterations in chloroplast
development together with the transcriptional and translational
repression of photosynthesis-related genes.17 Moreover, muta-
tions in phospholipid sterol acyltransferase1 (psat1-1) affected
in sterol esters formation also display a chlorotic phenotype.18

Interestingly, similar effects on chloroplast ultrastructure have
been observed in tomato, where downregulation of the GLY-
COALKALOID METABOLISM1 (GAME1) gene involved in
the glycosylation of steroidal alkaloids leads to misbalanced ste-
rol levels and major ultrastructural chloroplast alterations,
despite no bleaching is observed,19 and in the microalga Nan-
nochloropsis oceanica where the specific inhibition of the sterol
biosynthetic pathway cause a strong alteration of chloroplasts
structure and depressed photosynthetic efficiency.20 In agree-
ment with these observations, specific inhibition of sterol bio-
synthetic pathway (either by genetic or chemical blockage)
mimics the transcriptomic responses observed in FPS silenced
plants, suggesting that at least at the molecular level, sterols are
the primary cause of the observed phenotypes upon FPS sup-
pression.13 Conversely, mutant plants affected in the biosynthe-
sis of other FPP-derived metabolites different from sterols
(such as those affecting dolichol, ubiquinone and brassinoste-
roids biosynthesis as well as protein farnesylation) are not
affected in plastid development nor show chlorotic pheno-
types.21–26

The molecular mechanism behind the sterol requirement for
chloroplast development remains to be established. One possi-
bility is the existence of a direct mechanism involving a

structural role of sterols in chloroplast architecture. Although
still controversial, several works report the presence of sterols
in plastidial outer membrane in different plant species.27–29 In
addition, some reports suggest the possibility of an exchange of
sterols across plastidial envelope. For example, the expression
of an sterol oxidase in tobacco chloroplasts lead to a metaboli-
zation of sterol major end products in the cytosol, reducing the
total pool of free sterols within the cell. The authors proposed
the existence of two distinct sterol biosynthetic pathways in
cytosol and chloroplasts or the existence of a highly regulated
exchange of sterols between these two compartments and that
a substantial portion of the cellular sterol must at some point
be exposed to the interior of the chloroplast.30

A second possibility is that the sterols found in plastidial
membrane are not structural but rather temporarily allocated
by interaction with RE-derived membranes. Indeed, specific
contact sites between RE and plastid membranes have been
described31,32 and more recently transorganellar complementa-
tion experiments lead to a model where hemifusion of plastid-
RE membranes facilitates interorganellar exchange of some
non-polar compounds including different metabolites of
tocopherol and carotenoid pathways.33 These contact sites
also allow for an exchange of other metabolites, including
lipids 34–36 and in fact, lipid metabolism plays a relevant role in
plastid biogenesis and thylakoid development.36,37 Collectively,
a plausible explanation is that disturbing sterol biosynthesis or
homeostasis may alter RE function ultimately affecting chloro-
plast-RE contact sites and or lipid exchange between these two
compartments. This would ultimately lead to alterations in
chloroplast biogenesis and physiology. The fact that only some
sterol biosynthetic mutants display specific alterations of plas-
tid development may reflect differences in the homeostasis
and/or the ratio of particular sterol intermediates and final end
products. Certainly, many sterol knock-out mutant plants dis-
play a lethal phenotype but plants carrying weak alleles of the
sterol pathway display altered ratios between particular types of
sterols and are predominately affected in one specific physio-
logical or developmental process, but not in others.38 Alto-
gether, these data reflects the importance of MVA pathway in
the proper development of plastids, likely through the particu-
lar effect of sterol biosynthesis and/or homeostasis. However,
the specific mechanisms (and the putative sterol-derived sig-
nals) regulating chloroplast development and physiology are
still to be identified.
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