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Nanoscale invaginations of the nuclear envelope: Shedding new light
on wormholes with elusive function
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ABSTRACT
Recent advances in fluorescence microscopy have opened up new possibilities to investigate
chromosomal and nuclear 3D organization on the nanoscale. We here discuss their potential for
elucidating topographical details of the nuclear lamina. Single molecule localization microscopy
(SMLM) in combination with immunostainings of lamina proteins readily reveals tube-like
invaginations with a diameter of 100–500 nm. Although these invaginations have been established
as a frequent and general feature of interphase nuclei across different cell types, their formation
mechanism and function have remained largely elusive. We critically review the current state of
research, propose possible connections to lamina associated domains (LADs), and revisit the
discussion about the potential role of these invaginations for accelerating mRNA nuclear export.
Illustrative studies using 3D super-resolution imaging are shown and will be instrumental to
decipher the physiological role of these nanoscale invaginations.
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The nuclear lamina delineates the inner nuclear mem-
brane (INM) and provides structural integrity to the
nucleus. Moreover, for a long time it has been implicated
in assisting gene regulation. Peripheral regions of the
nucleus close to the nuclear lamina are commonly
enriched in densely packed heterochromatin, which is
often (but not always) transcriptionally inactive. The
interactions mediating these specific associations are a
field of intense study. Lamina-associated domains
(LADs) have been identified and shown to interact
directly with INM components such as the Lamin B
Receptor (LBR) and some LEM family proteins (emerin,
LAP2a/b).1,2 They further associate with repressive his-
tone modifications (H3L27me3, H3K9me2), RNA poly-
merase II and transcription factors (MOK2, c-Fos, BAF)
that can also mediate interactions between the nuclear
lamina and chromatin.3 Loss of the integrity of the
nuclear lamina arising from mutations on lamins or
other lamina proteins (laminopathic cells) leads to disor-
ganized peripheral heterochromatin.4 Moreover, these
interactions are dynamically regulated in the sense that
they can form or disassemble as the methylation and/or
phosphorylation state of the involved interaction

partners changes.5 Importantly, LADs significantly
change during development, in particular upon embry-
onic stem cell differentiation into different lineages.3,6

Together, these and other observations support the view
that the biochemical composition and structural organi-
zation of the nuclear lamina co-regulates gene transcrip-
tion,7 and more recent findings imply that even
mechanical forces add an additional layer of
regulation.8-11

Many of these functional insights into chromatin-
nuclear lamina interactions have been obtained by
biochemical and sequencing technology (i.e. by
DamID and ChIP).3,7,12 Recently developed super-res-
olution microscopy techniques offer new opportuni-
ties to directly visualize the fine-structure of the
nuclear lamina and the precise localization of specific
genomic loci in single nuclei with molecular specificity
and down to the nanometer scale. Three-dimensional
structured illumination microscopy (3D SIM) has
been most widely used to study the nuclear envelope
(NE), and in particular the distribution of lamins,
with an about 2-fold increased axial and lateral resolu-
tion compared with confocal microscopy.13-15 Higher
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resolution can in principle be reached by STimulated
Emission Depletion (STED) microscopy or, even
more, by single molecule localization microscopy
(SMLM) techniques comprising 3D PhotoActivated
Localization Microscopy (PALM), 3D STochastic
Optical Reconstruction Microscopy (3D-STORM) or
3D DNA-PAINT. STED and STORM successfully
have visualized the localization of proteins and subu-
nits within nuclear pore complexes (NPCs).16,17 3D
STORM together with multiplexed FISH has recently
succeeded in revealing the compaction of individual
chromosomes or chromosomal sub-regions based on
the localization of topologically associating domain
(TAD) sequences.18 Despite some studies in which the
distribution of lamins was depicted by 3D PALM,19 its
resolution has not been exploited to systematically
look into nanoscale features of the nuclear lamina
until very recently.20

We here investigated the suitability of 3D SMLM to
study the topography of the nuclear lamina, focusing
on features that are below the optical diffraction limit
and are thus not fully resolved by the most commonly
performed confocal microscopy. Immunofluorescence
stainings for lamins in nuclei of fixed fibroblasts show
a predominantly homogenous sheet-like distribution,
with notable exceptions of thin invaginations that
penetrate into the nucleus (Fig. 1). These invagina-
tions are lined by both A- and B-type lamins (Fig. 1a)
and form hollow tubes, which emanate perpendicular
to the basal (Fig. 1b,c) or apical (Fig. 1d) NE. Their
diameters range from 0.1–0.5 mm (Fig. 1e), they occur
relatively frequently (Fig. 1f), and they contain NPCs
(Fig. 1g). These invaginations are well-known to many
researchers who have imaged the nuclear lamina, and
have been termed type II nucleoplasmic reticulum
(NR).21 Already in 1979, transmission electron
microscopy (TEM) of different cell types revealed hol-
low finger-like intrusions that seemingly ended at
nucleoli and contained NPCs.22 In an extensive paper
on this subject, Fricker and coworkers found that 0.2–
0.5 mm diameter thick invaginations occurred with an
average frequency of 1–2 per interphase nucleus and
ended at nucleoli or sometimes transversed the
nucleus in the basal-apical direction.23 These invagi-
nations contained inner and outer nuclear membrane,
as well as NPCs and were surrounded by lamins.23 By
combining ultrastructural methods with confocal
microscopy and also STORM, Auer and coworkers
recently showed that tunnel-like invaginations

occurred in 30–50% of nuclei of human mammary
epithelial cells in 3D culture (similar to the frequency
in fibroblasts, see Fig. 1f), that these invaginations
contained lamin B1 and NPCs, were rich in SUN-1,
associated with heterochromatin, and engulfed cyto-
skeletal actin and keratin filaments.20 Thus, SMLM
readily yields structural biology information that pre-
viously could only be obtained by a combination of
fluorescence and electron microscopy techniques, and
typically achieves a much higher throughput than EM,
such that statistics about structural characteristics
(Fig. 1e, f) can be obtained more easily.

To study the nucleus as a whole, 3D SMLM variants
with increased axial range are needed beyond imaging
of a single plane. To this end, illumination by a (lattice)
light sheet19 can be used but requires sophisticated
instrumentation. Fig. 1h demonstrates that DNA-
PAINT24 can be used as an alternative to STORM. The
higher brightness of dyes in DNA-PAINT (no blink-
ing) and the unlimited measurement duration (steady
renewal of imager strands) are ideally suited to image
multiple planes sequentially, even on commercial spin-
ning disk microscopes (R. Jungmann, personal com-
munication), and thus enable 3D whole cell imaging.
Another potential advantage is that contextual infor-
mation might be obtained in sequential imaging
rounds by exchange-PAINT24 or PAINT with DNA-
binding dyes,19,25 thus opening up multiplexing
beyond the limited 2 channels in STORM. In this way,
the localization of NPCs (Fig. 1g) or functional DNA
binders26 relative to interchromatin compartments27

could be studied. Tomaximize labeling density without
introducing labeling artifacts, either careful design of
CRISPR-Cas gene knock-in28 or small affinity binders
such as nanobodies29 could be implemented. Such
improvements would allow to study the distribution of
lamins, NPCs, INM proteins, and methylated histones
along tube-like invaginations.While SMLM techniques
offer compelling advantages i.e., in resolution (in our
experiments it was between 20–25 nm according to an
established measure30 and thus about fourfold higher
than in 3D-SIM) they are not well suited to study live
cell dynamics. They thus should be primarily regarded
as a tool for structural biology. To obtain dynamic
information about the NE, 3D-SIM and its variants31,32

currently are the best choice.
Despite substantial evidence that type II NR invagi-

nations are a common feature of many cell types21

and that they are present and dynamic in living
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Figure 1. Investigating nanoscale nuclear envelope topography and invaginations by 3D SMLM. (a) A- and B-type lamins share the same
topography. Lamin A and lamin B1 of fixed human foreskin fibroblasts were immunostained and imaged by dual-color 3D STORM at the
basal side of the nucleus. Shown are (i) an overlay and (iiCiii) z-color coded images of individual lamins with line profiles underneath.
Arrowheads indicate tube-like invaginations. Scale bars: 1 mm. (b) Tube-like invaginations at the basal side of a lamin A stained nucleus.
Arrowhead: tip of an invagination. Scale bars: 1 mm (overview) or 0.2 mm (magnified insets i-iii). (c) 3D reconstruction of 2 nearby tubes.
(d) Invagination at the apical side of a lamin A stained nucleus. Scale bars: 1 mm (overview) or 0.2 mm (inset i). (e) Pooled statistics of
tube diameters (n D 57, from 30 cells). (f) Occurrence frequency of the number of tubes per imaged side of the nucleus (60 basal, 20
apical). As only one side could be imaged per nucleus, this represents a lower estimate. (g) Dual-color 3D STORM of A-type lamins
(LaAc; cyan) and wheat germ agglutinin (WGA; magenta) as an NPC stain. Arrowheads: NPCs. Scale bars: 1 mm (overview) or 0.2 mm
(insets).(h) 3D DNA-PAINT measurement of lamin B1. Scale bars: 1 mm.
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cells,20,23 their formation has remained largely elusive.
From a conceptual point of view, tubular membrane
structures in cells often arise as a consequence of
mechanical force. One possibility are pushing forces
exerted by the polymerization of cytoskeletal fila-
ments, e.g., during the formation of filopodia by actin
polymerization. Another possibility are pulling forces,
e.g., exerted by (cytoplasmic or nuclear33,34) molecular
motors35 that give rise to the tube-like appearance of
the endoplasmic reticulum.31 Both mechanisms yield
tubes with diameters in the range of few hundred
nanometers,31 very similar to the dimensions of type
II NR (Fig. 1e). Upon isolation of nuclei, tube-like
invaginations disappeared36 which supports that they
are stabilized mechanically. This finding also speaks
against a third potential formation mechanism involv-
ing dedicated engulfment machinery37 (which might
play a role for type I NR; see also review38). So what
roles could pushing or pulling forces play for the for-
mation of type II NR invaginations?

The ‘pushing’ hypothesis is supported by the pres-
ence of cytoskeletal filaments such as microtubules,39

actin40 or keratin20 in the interior of NE invaginations

which is continuous with the cytoplasm.41 Their
rather loose organization without apparent bundling20

(as opposed to filopodia or cilia), however, implies
weak mechanical strength and questions whether
pushing forces were sufficiently high to penetrate the
nucleus, notwithstanding they might contribute to the
deepening of pre-formed invaginations by their poly-
merization. In contrast, these filaments have been sug-
gested to transmit contractile forces to the nucleus by
a physical linkage through SUN proteins20 and thus
could play a role in nuclear tensional homeostasis.

The ‘pulling’ hypothesis requires a handle for tear-
ing at the NE and a pulling force, for instance chroma-
tin-lamin interactions and large-scale rearrangements
of chromatin. In this respect, several studies confirmed
that invaginations were associated tightly with chroma-
tin.20,42 Invaginations contained lamin A,43 emerin,44

and the latent binding protein LAP2a (but not
LAP2b),45 and their occurrence positively correlated
with overexpression of LBR46 or lamin B itself.47 These
pieces of information suggest that tube-like NE invagi-
nations rely on interactions between NE proteins with
chromatin (Fig. 2). Natural candidates for genomic loci

Figure 2. Proposed formation mechanism of tube-shaped NE invaginations. (a) Chromatin regions (i.e., LADs) build physical con-
nections with the NE. These interactions are dynamically regulated by proteins of the nuclear lamina and chromatin binding
partners. ONM: outer nuclear membrane; INM: inner nuclear membrane; NPCs: nuclear pore complexes. (b) During genomic
translocations, LADs detach from the NE, move into the nucleus, and eventually bind to the nucleolar periphery. (c) Alterna-
tively, if the connection between LADs and the NE is strong enough to withstand detachment, the NE might be pulled inward
along with the LAD and form a tube-like invagination.
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involved in such interactions are LADs. The often
reported association of NE tubes with nucleoli22,23 sup-
ports this idea because LADs share sequence similari-
ties with nucleolus-associated domains (NADs).3,48

Hence, the same chromosomal regions can either
attach to the lamina or to nucleoli, and some ‘faculta-
tive’ LADs have indeed been found at either location.49

The topographical rearrangement of LADs is thought
to happen during mitosis before NE re-assembly or
before the chromatin-NE connection has been re-
established50 (Fig. 2b). Interestingly, many NE invagi-
nations appear during telophase46 or early G1 phase50

when chromosomal organization is being re-estab-
lished51 and large movements of chromatin (up to
4 mm) are still common.52 If chromosomal reorganiza-
tions occurred in an NE-attached state, the NE could
be pulled into the nucleus together with the LAD and
thus form an invagination (Fig. 2c). Chromosomal sites
that had made contact with the lamina have indeed
been observed »1 mm away from the nuclear border50

and thus in principle fulfill the requirements for the
formation of NE tubes. On the other hand, NE invagi-
nations also arise during interphase.23,38,46 Transloca-
tions of genomic loci within the interphase nucleus are
typically limited to submicron scales.51 Larger move-
ments were occasionally observed in cultured cells,53 as
well as systematically upon chromosome condensa-
tion,54 transcriptional activation of peripherally located
chromosome sites,53 or in response to environmental
stimuli or double strand breaks.55 Of note, NE invagi-
nations have been found near sites of DNA repair after
gamma-irradiation,56 which suggests that they might
have formed in conjunction with a potential rearrange-
ment triggered by the damage response. Chromosomal
movements may be driven by different forces, with
physical contributions from a shrinkage by chromatin
condensation, nucleosome remodeling,52 or nuclear
motor proteins. While the existence of nuclear motors
has become an accepted fact,33,34 and it has been shown
that interphase translocations of genomic loci were
sensitive to perturbations of actomyosin activity,57 the
linkage between motor activity and these motions
remains controversial. In summary, the ‘pulling’
hypothesis could explain the observation that the num-
ber of NE tubes increases with the ‘stickiness’ of the
lamina for LADs (by increased LBR or lamin B lev-
els46,47). It further predicts that their number should
correlate with the frequency of chromosomal rear-
rangements in the nucleus – irrespective of the

mechanical origin of these movements – which could
offer a way to test it.

With the advent of these novel super-resolution
light imaging modalities to study nanoscale NE inva-
ginations, the old question about the function of NE
tubes can be revived. Several authors have suggested a
functional role for nuclear import/export.22,23,38,46 As
many tubular membrane structures are involved in
intracellular transport, it has been speculated that NE
invaginations shorten diffusional transport of tran-
scribed mRNA to the nuclear boundary. Following a
simplified argumentation, the presence of invagina-
tions shortens the distance from a nucleolus to the
nearest boundary, resulting in diffusion time shorten-
ing. However, as diffusion is not one-dimensional and
the dimensions of a tube are rather small such that the
chance to hit it is smaller than hitting the outer mem-
brane, this simplified argument needs more careful
consideration. To this end, we performed Monte Carlo
simulations using typical nuclear dimensions and
intra-nuclear diffusion coefficients for mRNA (see
Supplementary Information) and found that the pres-
ence of a tubular invagination shortens intra-nuclear
diffusional transport to the NE (Fig. 3a,b). This effect
is strongly dependent on the relative location within
the nucleus (Fig. 3c). A significant reduction of diffu-
sion times is observed locally around the invagination
whereas the global average was decreased by only
-10 % (Fig. 3d). This result suggests that a potential
advantage of NE tubes – if there is any – would
require a controlled positioning of NPCs (cf Fig. 1g),
interchromatin compartments26,27,58,59 that facilitate
diffusion, and of active gene transcription sites along
them. Especially the complex and heterogeneous
structure of chromatin around NE tubes with respect
to compacted regions, interchromatin channels, and
potentially transcriptionally active loops, as it has
been studied in the Barr body,26 is expected to dis-
tinctly affect the local transport of mRNA.59 Existing
labeling schemes for LADs50 and methodologies that
are currently being developed, e.g., within the 4D
Nucleome program (http://www.4dnucleome.org),
will be important tools to specifically look into chro-
matin architecture, its relation to LADs, and dynam-
ical changes of both. Combining these new tools with
multiplexed imaging of NE invaginations could fur-
ther help to test whether invaginations are positioned
close to actively transcribed chromosomes. Ultimately,
super-resolved live cell imaging31 could allow to study
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the dynamic formation of NE invaginations and the
driving forces, i.e., LAD rearrangements50 or cytoskel-
etal dynamics in detail. Efforts on several fronts will
be needed to elucidate the relation between NE invagi-
nations and the physiological60,61 or pathological21,62

regulation of cellular phenotype.
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