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Accurate and precise ages of large silicic eruptions are critical to
calibrating the geologic timescale and gauging the tempo of
changes in climate, biologic evolution, and magmatic processes
throughout Earth history. The conventional approach to dating
these eruptive products using the 40Ar/39Ar method is to fuse doz-
ens of individual feldspar crystals. However, dispersion of fusion
dates is common and interpretation is complicated by increasingly
precise data obtained via multicollector mass spectrometry. Incre-
mental heating of 49 individual Bishop Tuff (BT) sanidine crystals
produces 40Ar/39Ar dates with reduced dispersion, yet we find a 16-
ky range of plateau dates that is not attributable to excess Ar. We
interpret this dispersion to reflect cooling of the magma reservoir
margins below ∼475 °C, accumulation of radiogenic Ar, and rapid
preeruption remobilization. Accordingly, these data elucidate the
recycling of subsolidus material into voluminous rhyolite magma
reservoirs and the effect of preeruptive magmatic processes on
the 40Ar/39Ar system. The youngest sanidine dates, likely the most
representative of the BT eruption age, yield a weighted mean of
764.8± 0.3/0.6 ka (2σ analytical/full uncertainty) indicating eruption
only ∼7 ky following the Matuyama−Brunhes magnetic polarity
reversal. Single-crystal incremental heating provides leverage with
which to interpret complex populations of 40Ar/39Ar sanidine and
U-Pb zircon dates and a substantially improved capability to resolve
the timing and causal relationship of events in the geologic record.
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Accurate, high-precision geochronology of volcanic ash de-
posits is essential to determine the timing of magnetic,

tectonic, biologic, and climate events and the rates of surficial and
deep Earth processes. It is indispensable for establishing causal re-
lationships between physical and biologic processes that occur over
only centuries to millennia (1). Moreover, the crystallization histo-
ries revealed by high-precision zircon and sanidine dates establish a
tempo for the dynamics of crustal magmatism and triggering of
large, caldera-forming eruptions (2, 3). Voluminous ash fall deposits
from explosive silicic eruptions are also important chronostrati-
graphic markers. Their wide dispersal allows for intercalibration
among radioisotopic, geomagnetic, and astrochronologic timescales
and correlation of the marine and terrestrial records (1, 4, 5).
The 40Ar/39Ar method is among the most commonly employed

techniques to determine the eruption ages of these deposits, typi-
cally by fusing dozens of individual sanidine crystals. We use the
term “date” when referring to time calculated using the radiogenic
parent–daughter ratios measured in a single crystal. An “age” refers
to the geologic significance of a date, or group of dates, and as in
this study may require interpretation of large sets of dates from a
common rock or deposit (6). Owing to rapid diffusion of Ar at
magmatic temperatures, 40Ar/39Ar dates are commonly interpreted
as eruption ages without the ambiguity of protracted crystallization
intervals recorded by U-Pb dates of accessory phases (1). However,
dispersion of the nominal dates produced by sanidine fusion analysis
is common and typically attributed to xenocrysts, nonradiogenic Ar,
or Ar loss. Filtering and pooling many low-precision dates may yield
a statistically valid weighted mean age (7, 8). However, the increased

sensitivity of multicollector noble gas mass spectrometers relative to
older, single-collector instruments now yields dates that are nearly
an order of magnitude more precise. These high-precision dates
reveal intracrystal and intercrystal heterogeneities that require in-
terpretation and complicate the assignment of an eruption age (9–
11). However, the relative contributions of the sources of these
perturbations and their implications for magma dynamics are not
commonly explored.
This enhanced analytical resolution also allows for the incremental

heating of single young sanidine crystals that can reduce the overall
dispersion of the dataset and discriminate between subpopulations of
dates that are convoluted by low-precision techniques (10–14). We
applied an incremental heating multicollector mass spectrometry
(IH-MCMS) procedure (11) (see Supporting Information for details)
to dating single sanidine from the Bishop Tuff (BT), an extensively
studied middle Pleistocene rhyolitic fall and ignimbrite deposit
erupted from Long Valley Caldera, CA (Fig. 1). The proximity of the
normally magnetized BT to the Matuyama−Brunhes magnetic po-
larity reversal makes it an important middle Pleistocene stratigraphic
marker in the western United States (15), and models of its mag-
matic evolution have shaped the current understanding of the dy-
namics of voluminous silicic magma systems (16).
The 40Ar/39Ar age of the BT eruption has recently been con-

troversial due to proposed ages, 776.4 ka to 780.0 ka (17, 18), that
are older than the youngest zircon dates (19, 20). Subsequent
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isotope dilution thermal ionization mass spectrometry (ID-
TIMS) and laser ablation inductively coupled plasma mass
spectrometry (LA-ICP-MS) studies of BT zircon show that the
geologic uncertainties of the initial zircon U-series disequilib-
rium are not sufficient to produce this discordance between the
40Ar/39Ar and U-Pb systems (21, 22). The older 40Ar/39Ar
ages for the BT are calculated relative to the age of the Alder
Creek sanidine standard (ACs) proposed by Renne et al. (17).
Several recent studies suggest the age of the ACs is >1% younger
than previous estimates (11, 23, 24), thereby bringing all recent
40Ar/39Ar and U-Pb BT ages into agreement.
However, all BT 40Ar/39Ar single-crystal fusion datasets exhibit

a significant range, 40 ky to 420 ky, between the oldest and
youngest dates (7, 8, 18). We present high-precision IH-MCMS
dates to better characterize the BT sanidine population and
thereby improve the accuracy and precision of the eruption age.
Moreover, these data provide leverage with which to investigate
the source and geologic significance of scattered 40Ar/39Ar sani-
dine dates that require a reassessment of analytical and statistical
procedures typically employed in 40Ar/39Ar geochronology.

Sanidine Incremental Heating Dates
IH-MCMS measurements yield plateau dates for 49 of 51 crys-
tals, with all but 8 comprising >70% of the 39Ar released. Only
one isochron intercept is distinguishable from the atmospheric
40Ar/36Ar ratio at the 95% confidence level; however, it and all
other crystals produced equivalent plateau and isochron dates,
and thus we favor the more precise plateau calculations. Pla-
teau dates range from 761.9 ka to 778.0 ka with a median 2σ
analytical uncertainty of 1.7 ka (Fig. 2); analytical uncertainties
reported throughout this paper include the uncertainty of the J
parameter. Median uncertainties of individual steps produced
by incremental heating of multicrystal aliquots and single-
collector mass spectrometry (7) are nearly double those now
achievable by IH-MCMS analysis of a single sanidine (Fig. 3A).
The smaller crystals of fall unit F2 compared with the other

samples (0.5 mm to 1 mm vs. >1 mm) did not produce a signifi-
cantly different age population, indicating there is no systematic

variation of sanidine 40Ar/39Ar age with crystal size. Similarly,
despite the well-documented compositional and thermal zoning of
the BT magma reservoir (16), there is no stratigraphic gradient in
sanidine incremental heating dates (Fig. 2). Each sample contains
a coeval population of dates at ca. 765 ka; however, crystals that
yield older plateau dates are more abundant in the ignimbrites
than in the fall units.

Sources of Age Dispersion
The 16-ky spread in the IH-MCMS plateau dates exceeds that
predicted by the analytical uncertainties. A weighted mean of all
49 plateau dates has a mean square weighted deviation (MSWD;
i.e., reduced χ2 statistic) of 12.5. However, this 16-ky dispersion is
2.5 to 25 times less than that of recent, “high-precision” single-
crystal fusion datasets (7, 8, 18). Moreover, the youngest 70% of
the plateau dates comprise a range of only 5.4 ky, indicating most
of the 16 ky spread is produced by a subordinate crystal population.
The accuracy of a 40Ar/39Ar eruption age depends on isolating

the radiogenic 40Ar (40Ar*) component, derived from the in situ
radioactive decay of 40K, produced since the eruption. Sanidine
crystals also contain trapped Ar comprising atmospheric Ar
(Aratm) and excess 40Ar (40Arxs). Excess

40Ar is derived from
neither in situ radioactive decay nor the atmosphere (25) and
may be hosted in melt or mineral inclusions or the sanidine
crystal itself. The 40Arxs may originate from within mantle
magma sources or incorporation of melts from ancient wall rock
into a magma system (25, 26). The Aratm component is routinely
corrected for, based on the 36Ar abundance. However, the 40Ar*
content of a crystal may be perturbed by the presence of 40Arxs or
Ar loss.
The more precise age spectra achieved by IH-MCMS resolves

and allows for the exclusion of these compromised intracrystal
domains. For example, Fig. 3C illustrates how this approach
identifies sanidine domains which likely contain a small amount
of 40Arxs. An integrated gas date (the mean of the dates pro-
duced by each heating step, weighted by the proportion of 39Ar re-
leased; the result is equivalent to a crystal fusion date) including
these steps is 9 ky older than the plateau date. This approach reveals
that the integrated gas dates of 17 of 49 crystals are either older or
younger than the plateau dates (Fig. 3B). The IH-MCMS procedure
therefore eliminates age bias that reflects subtle quantities of
either 40Arxs or loss of Ar that would affect dates produced by
crystal fusion analysis.
These coupled improvements in analytical precision and aggre-

gate dispersion counterintuitively result in greater relative scatter,
i.e., a higher MSWD, of the incremental heating data compared
with the lower-precision fusion datasets. This does not imply the
introduction of an analytical artifact by the IH-MCMS procedure,
but rather that the less precise crystal fusion analyses are unable to
resolve the isotopic heterogeneity either within individual crystals
or in the aggregate population analyzed. Additionally, 10 sanidine
crystals yield plateaux comprising 100% of the released 39Ar and
isochrons with atmospheric y-axis intercepts. The plateau dates of
these crystals range from 763.8 ± 4.2 to 771.1 ± 1.6 ka, a spread
that cannot be attributed to ambiguity about which steps should be
included in the plateau or isochron calculation.
Whereas IH-MCMS can identify some compromised crystal

domains, plateau dates that predate the eruption age require the
presence of 40Arxs or

40Ar* accumulated before eruption. Biotite
that contains these Ar components can produce spurious ages up
to 105 y older than eruption (27); however, both are thought to be
minor in sanidine due to its low closure temperature for Ar dif-
fusion and low affinity for Ar during crystallization (25, 26). The
precision of the IH-MCMS dates offer the opportunity to evaluate
the relative importance of these sources of bias and the potential
impact of magmatic processes on the 40Ar/39Ar system. The oc-
currence of a continuous distribution of older sanidine dates
throughout the BT reflects a pervasive source in the BT magma
reservoir able to produce a differential effect for various sanidine
crystals rather than mixing between two distinct populations. To
explain this population of dates, we first consider the potential
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presence of 40Arxs, then the magmatic processes required for
sanidine to retain 40Ar* produced by preeruption decay.

Contribution of Excess Ar to Plateau Dates
Excess 40Ar is among the most pervasive sources of inaccuracy in
the 40Ar/39Ar method (27, 28), and is clear in a number of BT
sanidines. Discordant low- and high-temperature heating steps
yield ages significantly older than the plateau; this concave-up
geometry is a classic indicator of the presence of 40Arxs (25)
(Fig. 3C). Inverse isochron analysis is typically employed to assess
the presence of 40Arxs in the plateau steps and calculate a date
that is free from its effects (Fig. 3D). The y intercept of the iso-
chron is an estimate of the isotopic composition of the trapped
component. An isochron intercept indicating a 40Ar/36Ar ratio
within uncertainty of the atmospheric ratio of 298.56 ± 0.31 (29)
indicates the crystal does not contain resolvable 40Arxs. However,
sanidine commonly contains little Aratm, and the y intercept of the
isochrons for some crystals are imprecisely constrained owing to
clustering of the data near the x axis (Fig. 3D). Thus, the imprecise
estimate of the trapped 40Ar/36Ar ratio can potentially mask the
presence of small amounts of 40Arxs that could bias a plateau date.

To evaluate the sensitivity of the BT isochrons to 40Arxs, we
calculated the expected isochron intercept for sanidine containing
0.5 to 20% Aratm and 40Arxs sufficient to produce a 3- to 12-ky
increase in the apparent age (see Supporting Information for de-
tails). The 39Ar-weighted mean of the percent Aratm of the plateau
steps and the upper bound of the isochron intercept 2σ un-
certainty envelope for each crystal are then compared with these
models to estimate the maximum potential age offset due to Arxs
that is not resolvable by the isochron calculation (Fig. 4A). Most
isochrons are sufficiently precise to resolve 40Arxs that could
produce an age difference of 3 ky or less. The less precise isochron
intercepts could allow for potential age offsets of up to 12 ky.
However, these crystals did not preferentially produce older pla-
teau dates (Fig. 4). Thus, unresolvable 40Arxs may affect a minority
of crystals, but it is not the primary source of dispersion.

Accumulation of 40Ar* in Cold Storage
Large, long-lived intermediate to silicic volcanic systems have
complex thermal histories involving protracted periods of magma
accumulation and crystallization punctuated by magma recharge
events that produce prograde temperature excursions, magma
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mixing, and melting of previously emplaced magma batches (16,
30–33). The BT is an archetypal example of the progressive ex-
traction of rhyolite melt from a highly crystalline magma mush
(16). Ion probe dating of zircon indicates the BT magma body
accumulated over ca. 80 ky (20, 21, 34), during which time no
eruptions occurred within Long Valley (35). The precaldera Glass
Mountain rhyolites erupted in Long Valley between ∼2.2 and
0.84 Ma (20, 36), yet crystals inherited from this earlier magmatic
episode or the wall rock are rare in the BT. Accordingly, the
dominant sanidine population of the BT crystallized from the
growing BT magma body (16, 20, 37, 38). Crystals that yield pre-
eruption ages were most likely segregated along the magma res-
ervoir margins, cooled sufficiently to retain 40Ar* produced by in
situ decay, and remobilized before the BT eruption.
The 40Ar* produced before and after eruption should be dis-

tributed similarly within a sanidine crystal and, in contrast to
trapped Ar, are not associated with 36Ar. Consequently, suffi-
ciently precise isochron calculations will detect 40Arxs, but are
unable to distinguish preeruptive and posteruptive 40Ar*. We use
a model of simultaneous 40Ar volume diffusion and 40K decay to
place specific constraints on the temperature history and
timescales of sanidine remobilization required to retain pre-
eruptive 40Ar*. The model assumes an initial concentration of
40Ar* produced by 10 to 80 ky of in situ decay and calculates
the effect of storage at temperatures of 425 °C to 785 °C (see
Supporting Information for details). Production of 40Ar* out-
paces diffusive loss at temperatures less than 475 °C. Crystals
stored at 600 °C could retain preeruption ages for several
millennia; however, residence at temperatures of >700 °C,
consistent with the BT mineral thermometry (16, 39, 40), would
reset sanidine in no more than several centuries (Fig. 4C).
Thus, for preeruption in situ decay to yield the tail of older
ages, sanidine must cool to subsolidus temperatures, then be
rapidly remobilized before eruption.
Whereas ion probe dating indicates 80 ky of zircon crystalliza-

tion, the range of sanidine dates is conspicuously similar to the
shorter duration (14 to 33 ky) recorded by the more precise ID-
TIMS zircon dates (19, 21). The contrast between the ion probe
and ID-TIMS dates likely results primarily from the bias of the ID-
TIMS method toward the volumetrically dominant, later crystal-
lized material (1, 21) and the ID-TIMS studies not including zircons
from the later erupted ignimbrite units in which the oldest zircons
are found (20). Thus, the ID-TIMS dates likely capture a later
period of crystallization that was pervasive in the magma reservoir,
but not the earlier crystallization history recorded by the greater
spatial and stratigraphic resolution of the ion probe dates (1, 20,
21). Remobilization of sanidine from the magma reservoir margins
would favor the most recently crystallized material, consistent with
the similarity of the sanidine and ID-TIMS zircon age populations.
Physical evidence for incorporating this subsolidus rind is not

widespread. The BT is overall crystal-poor, <25% phenocrysts, and
sanidine is found as isolated crystals rather than in clots or with
adhering quartz as might be expected if it was remobilized following
cooling below the solidus (16). On the other hand, older sanidine is
more common in the crystal-rich ignimbrites than in crystal-poor fall
deposits, indicating that remobilized material, further disaggregated
by pyroclastic flow, could contribute to this distinction in crystallinity
despite the lack of crystal-scale textural evidence for this process.
Overgrowths on zircon, sanidine, and quartz crystals record the
remelting of crystal mush at the base of the magma system and the
intrusion of the resulting hotter, less evolved rhyolite into the main
BT magma body (20, 40, 41). Trace element diffusion timescales
and zircon crystallization ages indicate this intrusive episode may
have occurred over 10 ky but was most vigorous during the final
500 y before eruption (20, 40). The similar timescales of sanidine
remobilization and crystal residence following this magma recharge
event suggest the processes could be linked. However, the strati-
graphic distribution of crystal overgrowths shows the intruding
magma was restricted to the lower reaches of the reservoir (20, 40),
in contrast to the older 40Ar/39Ar plateau dates produced by crystals
throughout the BT stratigraphy (Fig. 2). Increasing pressure within
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the BT magma body in response to magma recharge could promote
fracturing, disaggregation along grain boundaries, and incorporation
of the subsolidus, crystalline reservoir margins (42, 43). Thus, the
well-documented incursion into the lower BT magma body leading
up to its eruption could also have catalyzed the reintroduction of
crystals held in cold storage throughout the reservoir margins (e.g.,
refs. 30 and 33).
Single-crystal incremental heating of sanidine has not yet been

widely applied, but existing data share features with the BT dates.
Fusion analysis of sanidine from the Huckleberry Ridge Tuff
(HRT) and Mesa Falls Tuff (MFT) produced ranges of 43 ky to
443 ky (2, 10, 44) and 50 ky (13), respectively. Incremental heating
dates are significantly less dispersed in both cases; however, the
MFT sanidine yields a uniform population of dates that is inter-
preted as the eruption age (13), whereas HRT sanidine possesses a
22-ky range, including 4 of 17 dates older than the eruption (10).
Sanidine incremental heating yields dates up to 19 ky older than
the 930 CE (Common Era) Millennium eruption of Tianchi Vol-
cano, China, similar to the range of 238U−230Th zircon dates (12,
45). Sanidine dates of Middle Holocene trachyte and comendite
Tianchi lavas yield a similar, several-kiloyear spread (12).
These examples illustrate the capability of IH-MCMS to resolve

intracrystal and age population complexities not accessible by crystal
fusion analysis. The similarity of the range of 40Ar/39Ar and zircon
dates and the contribution of magma rejuvenation and recycling to
the Yellowstone rhyolite (31, 46) suggest magmatic perturbations of
40Ar/39Ar systematics may be underappreciated. Moreover, IH-
MCMS is a promising tool for probing the thermochemical evolu-
tion of long-lived silicic systems that can be combined with in situ
compositional measurements and thermal modeling.

Eruption Age of the BT and Implications for 40Ar/39Ar
Geochronology
IH-MCMS analysis identifies crystal domains compromised by Ar
loss, the primary source of spuriously young crystal fusion dates, to
be excluded from age calculations. Consequently, preeruption
40Ar* accumulation, and possibly 40Arxs, are the most sub-
stantial sources of age bias, and thus the youngest dates of the BT
population are likely most representative of the eruption age. Typi-
cally applied data filtering methods that assume the mean or median
of the aggregate population is the best estimate of the eruption age
are inappropriate for the IH-MCMS dataset; accordingly, we propose
an alternative set of criterion for calculating an eruption age from IH-
MCMS data. The youngest group of sanidine plateau dates in all five
BT subunits is defined as that for which the difference between the
weighted mean of the youngest group and the next oldest date is
greater than zero with 95% confidence. This group comprises 25 of
the 49 dates and yields an inverse variance-weighted mean age of

764.8 ± 0.3/0.6 ka (analytical/full 2σ uncertainties; MSWD = 1.1; Fig.
5). The statistical coherence of the youngest population indicates
either that these crystals contain minimal preeruptive 40Ar* or that
more than half of the sanidine population fortuitously retained sim-
ilar amounts. We prefer the former explanation and interpret the
weighted mean as the eruption age; however, the presence of small
amounts of preeruptive 40Ar* cannot be strictly ruled out, in which
case this age would be an upper bound.
The IH-MCMS age is equivalent within 2σ analytical un-

certainty to the eruption ages derived from 40Ar/39Ar single
crystal fusion analyses of 765.1 ± 0.8 ka (7), 768 ± 4 ka (18),
767.3 ± 3.0 ka (8), and 766.9 ± 6.4 ka (15), and is younger than a
multicrystal fusion age of 768.9 ± 2.1 ka (47)—all calculated
relative to an ACs age of 1.1864 Ma (11, 23) and the decay
constants of ref. 48 (Fig. 5). Our preferred age is consistent with
the youngest BT ID-TIMS U-Pb zircon dates (19, 21), the mean
of 167 ion probe zircon rim analyses (20), and the astronomical
age proposed by Zeeden et al. (8). The Matuyama−Brunhes
geomagnetic polarity reversal has been dated using astrochro-
nologic and U-Pb zircon methods in globally distributed marine
sediments at 773 ka to 772 ka (49–52). Our IH-MCMS age of
764.8 ± 0.6 ka indicates that the eruption of the normally mag-
netized BT took place only 7 ky to 8 ky later.
Whereas comparison of the BT datasets indicates fusion analysis

can produce accurate estimates of eruption age despite geologic
complexities, their accuracy is dependent on a fortuitous balance of
crystals biased older or younger by Ar loss, 40Arxs, or preer-
uption 40Ar* accumulation. However, there is no method to test
whether this criterion has been met. Moreover, to achieve an ac-
ceptable MSWD, several of the typically sized (n ≈ 50) fusion
datasets (8, 18) required data filtering based on a median or mean
without any indication that these values are representative of the
eruption age, and only the unusually large dataset (n = 314) of Mark
et al. (7) approaches the precision of the IH-MCMS age. In contrast,
the BT incremental heating results demonstrate the capability to
explicitly identify and address geologic complexities that are masked
by less precise crystal fusion dates. This technique can recognize
crystals compromised by 40Arxs, Ar loss, melt and mineral inclusions,
or petrologic processes and thus permits a more robust assessment of
which dates are most representative of the eruption. Pooling large sets
of relatively imprecise 40Ar/39Ar dates is a problematic approach to
high-precision geochronology because it retains these sources of bias.
Whereas rapid acquisition of single-crystal fusion dates remains useful
for a variety of geologic problems, we recommend that single sanidine
incremental heating be considered “best practice” for those studies
that require the highest precision and accuracy.
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Fig. 5. Comparison of our preferred eruption age,
764.8 ± 0.3/0.6 ka (2σ; analytical/full uncertainties),
with the weighted mean eruption age (light blue
fields showing 2σ analytical uncertainties) produced
by 40Ar/39Ar single and multicrystal fusion analysis (7,
8, 15, 18, 47), zircon ages produced by U-Pb ID-TIMS
(19, 21) and SIMS (20), and an astronomically tuned
age (8). Dates of individual crystals are plotted with
2σ analytical uncertainties; those excluded from the
weighted mean calculation are light gray. The two-
tone fields show the analytical and full uncertainties
for the weighted mean of the BT IH-MCMS dates and
the U-Pb ID-TIMS zircon dates of Crowley et al. (19).
All 40Ar/39Ar data are recalculated using an ACs age of
1.1864 Ma (11, 23) and the decay constants of Min
et al. (48). C2014, Chamberlain et al. (20); S-W2000,
Sarna-Wojcicki et al. (15); and Z2014, Zeeden et al. (8).
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