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ABSTRACT
Therapeutic cancer vaccines have gained significant popularity in recent years as new approaches for
specific oncologic indications emerge. Three therapeutic cancer vaccines are FDA approved and one is
currently approved by the EMA as monotherapy with modest treatment effects. Combining therapeutic
cancer vaccines with other treatment modalities like radiotherapy (RT), hormone therapy, immunotherapy,
and/or chemotherapy have been investigated as a means to enhance immune response and treatment
efficacy. There is growing preclinical and clinical data that combination of checkpoint inhibitors and
vaccines can induce immunogenic intensification with favorable outcomes. Additionally, novel methods
for identifying targetable neoantigens hold promise for personalized vaccine development. In this article,
we review the rationale for various therapeutic combinations, clinical trial experiences, and future
directions. We also highlight the most promising developments that could lead to approval of novel
therapeutic cancer vaccines.
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Introduction

While vaccines have historically been a preventative measure
for infectious diseases and for prevention of virus-related can-
cers (i.e., hepatitis B virus [HBV] and human papilloma virus
[HPV] vaccines), therapeutic cancer vaccines have generated
significant interest within the medical and lay community as
they offer the potential to direct a host’s immune system
against a tumor. There are three therapeutic cancer vaccines
approved by the U.S. Food and Drug Administration (FDA):
(1) Bacillus Calmettle-Guerin (TheraCys�) – a live attenuated
strain of Mycobacterium bovis for non-muscle invasive bladder
carcinoma; (2) Sipuleucel-T (Provenge�) – a dendritic cell
(DC) vaccine for metastatic castration resistant prostate cancer
(mCRPC); and (3) talimogene laherparepvec (T-VEC or
Imlygic�) – an oncolytic viral-based vaccine for advanced mel-
anoma. Approval was based on modest improvements in
overall survival (sipuleucel-T and T-VEC), disease free survival
(TheraCys), and a durable response rate (T-VEC).1-3

In order to improve on these modest gains, tumor immune
escape caused by natural selection of tumor cell clones lacking
immunogenic antigens must be overcome.4 Successful tumor
clones can persist via acquired defects, epigenetic silencing of
various components involved in antigen processing, or by upre-
gulating inhibitory receptors leading to exhaustion of effector
T-cells.5

There are currently 369 open “cancer vaccine” studies on
clinicaltrials.gov with 232 studies in the United States alone (as
of 6/13/17). Numerous cancer vaccines have been tested in
multiple solid as monotherapy or in combination with chemo-
therapy, radiation, or other immunotherapy agents. In this

manuscript, we will first review experiences with combination
approaches and then discuss strategies that we believe have the
most promise.

Vaccine platforms

There are multiple therapeutic cancer vaccine platforms
including peptide-based, protein-based, viral-based, recombi-
nant vector including yeast-based and bacterial-based, whole
tumor cell and pulsed dendritic cells(6-12 Generally, most
vaccines are well tolerated and have minimal side effects.
Given the unique biology of different tumors types and the
distinct variables that exist within an individual immune sys-
tem, a discussion of optimal vaccine platform is beyond the
scope of this review.

FDA approved cancer vaccines

The first FDA approved cancer vaccine was the intravesical
BCG vaccine (TheraCys) in 1990 for the treatment and prophy-
laxis of primary or recurrent non-muscle invasive urothelial
carcinoma following transuretheral resection.3 TheraCys pro-
longed disease-free survival (DFS) to 30 months in patients
with bladder carcinoma in situ (CIS) and to 22.5 months in
patients with Ta/T1 urothelial carcinoma, compared to
4.9 months DFS in CIS and 10.5 months in Ta/T1 patients
treated with topical doxorubicin.3,13

Sipuleucel-T (Provenge), an autologous DC vaccine contain-
ing a recombinant fusion protein, PA2024, that consists of
prostate acid phosphatase (PAP) and granulocyte-macrophage
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colony-stimulating factor (GM-CSF) was FDA approved for
patients with minimally symptomatic or asymptomatic
mCRPC in 2010.1 Sipuleucel-T has been shown to generate
anti-tumor immune responses including PAP-specific T-cells
and antigen cascade (immune response to antigens not con-
tained in the vaccine).14,15 A pivotal phase III study demon-
strated a statistically significant 4.1 month improvement in
median overall survival (OS); 25.8 months in the Sipuleucel-T
group compared to 21.7 months in the placebo group.1 Sipuleu-
cel-T was initially approved by the European Medicines Associ-
ation (EMA) in 2013 but was withdrawn in 2015 by the
manufacturing company (Dendreon UK Ltd) who cited com-
mercial reasons.

T-VEC (talimogene laherparepvec) is an oncolytic herpes
virus in which two viral genes are deleted and that is modified
to produce GM-CSF for enhancing immunogenicity. T-VEC
was approved by the FDA and the EMA in 2015 for treatment
of advanced melanoma based on data from the phase III
OPTiM trial. The vaccine virus infects both cancer and normal
cells but can only replicate within a cancer cell. Injected intrale-
sionally, the vaccine is designed to produce a systemic anti-
tumor effect.16 The OPTiM trial showed a higher durable
response rate with T-VEC compared to GM-CSF alone (DRR;
16.3% vs 2.1%; p <0.001), as well as a higher overall response
rate (ORR; 26.4% vs 5.7%, respectively) and a longer median
OS (23.3 vs 18.9 months, p D 0.051) in patients with Stage IIIB,
IIIC or IV M1a melanoma.2

The makings of an effective vaccine

Much has changed since 2009 when the NCI ranked 75 anti-
gens thought to be important for an effective cancer vaccine
antigen which included criteria such as good therapeutic func-
tion, ability to elicit T-cell and/or antibody responses and asso-
ciation with an oncogenic process.17 Broadly speaking, tumor
antigens can be divided into tumor associated (TAA) or tumor
specific (TSA) antigens. Since TAAs are expressed on both can-
cer and normal cells, it was thought their use would be ham-
pered by generation of tolerance to high avidity TAA-specific
T-cells.18 However, multiple studies have demonstrated that
TAA-based vaccines can produce anti-tumor immune
responses, albeit with only modest clinical benefit. Nonetheless,
clinical experiences with PROSTVAC,19,20 a PSA-targeted vac-
cine for prostate cancer, and Sipuleucel-T14,15 which was dis-
cussed above, have shown that these TAA-based vaccines can
generate an anti-tumor immune response and tumor-specific
T-cells. A Phase III trial of PROSTVAC has completed accrual
with results expected by the end of 2017 (NCT01322490).

Another promising TAA-based vaccine is NeuVax, which is
desiged to prevent clinical recurrence in high risk, disease free
patients with HER2C breast cancer.21,22 The NeuVax contains
an immunogenic peptide called Nelipepimut-S (aka E75) from
the HER2 protein and is combined with GM-CSF. Early phase
trials have demonstrated clinical benefit in women with node-
positive or high-risk node-negative HER2C breast cancer.22 A
Phase III study with NeuVax is currently ongoing
(NCT01479244).

Use of TSA-targeted vaccines is attractive because such vac-
cines target antigens found only on tumor cells, and should

theoretically limit issues with tolerance and toxicity. Identifying
immunogenic tumor specific neoantigens is challenging and
increasingly complicated since neoantigens are dynamic and
change in response to various stimuli (i.e., treatment effects,
immune infiltration, tumor mutations).23,24 Furthermore, not
every protein product of tumor-exclusive mutations will yield
an immunogenic peptide antigen i.e. an epitope that will be
presented on MHC and recognized by T-cells, making screen-
ing for T-cell epitopes labor intensive.

Yadav et al. reported a novel method for identifying immu-
nogenic neoantigens.25 Briefly, whole exome sequencing was
performed on MC-38 and TRAMP-C1 murine tumor cell lines,
followed by selection for high-confidence mutations based on
overlap with RNA-Seq transcriptome analysis. Out of over
1,300 candidate amino acid mutations, 7 (all in MC-38) were
confirmed by mass spectroscopy to be expressed on MHC class
I. Manual verification with synthetic peptides narrowed to 6
epitopes. After peptide vaccination with adjuvant, tumor
infiltrating lymphocytes (TILs) specific for the 3 out of 6 of the
peptide’s associated neoantigens were detected in MC-38
tumor-bearing mice. Compared to other TILs, they displayed
an activated phenotype (PD-1 and TIM-3 high). In vivo, most
mice vaccinated with the more immunogenic mutant peptides
had no tumor growth following challenge with MC-38 inocula-
tion, compared to controls. This approach provides an innova-
tive pathway for developing personalized cancers vaccines, by
selecting only target antigens from one’s own tumor that are
predicted to be immunogenic26 and then incorporating into
any of the various available vaccine platforms.

In addition to choosing a viable vaccine platform, selection
of the appropriate patient population is also vital to
effective therapeutic cancer vaccine design. In 2007 the Cancer
Vaccine Consortium outlined recommendations for therapeu-
tic vaccine trial design based on review of prior trials.27,28 This
group recommended using early stage disease and/or low vol-
ume disease. While many trials have evaluated therapeutic can-
cer vaccines in the advanced disease setting, it is worth noting
that the only approved FDA therapeutic cancer vaccines are
approved in the limited disease setting.1-3

Vaccine combination strategies

Vaccination can induce antigen-specific T-cells;19 however,
vaccines alone are seldom sufficient to induce a strong enough
immune response for tumor eradication. The pharmaceutical
pipeline continues to release a variety of investigational agents
that modulate the immune response. Checkpoint inhibitors,
immunoagonists and immunocytokines can induce a spectrum
of alterations upon cancer and/or immune cells that can
enhance immune destruction of tumor cells.29-31 Additionally,
there is evidence that combining therapeutic cancer vaccines
with traditional modalities such as radiation, immunotherapy,
hormone therapy and/or chemotherapy may be synergistic.
(Table 2).

Vaccine plus cytokines

Tumors often secrete their own immunosuppressive cytokines
including TGF-ß, IL-4, IL-6 and IL-10. Co-administration of
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immunostimulatory cytokines with vaccines offers a potential
means to augment the effect of vaccine derived effector T-cells.
While data from large trials are still lacking, smaller clinical tri-
als have investigated multiple cytokines in combination with
vaccines, at varying schedules, in several malignancies.

Vaccines plus GM-CSF
Granulocyte-macrophage colony-stimulating factor (GM-CSF)
is a pro-inflammatory cytokine that stimulates humoral and
cellular immunity.32,33 Interestingly, two of the FDA-approved
therapeutic cancer vaccines (Sipuleucel-T and T-VEC) are
engineered to secrete GM-CSF. Hypothetically GM-CSF aug-
ments DC activity and thus enhances the immune response in
each of these different platforms. However, its role, or lack
thereof, in achieving the improved clinical outcomes seen with
these agents is unclear. While GM-CSF is important for matu-
ration of DC, activation and proliferation of T-cells, it also acts
as a chemoattractant for myeloid-derived suppressor cells
(MDSCs).34,35 Since MDSCs contribute to the inhibitory milieu
of the tumor micro environment (TME),36,37 it is unclear how
GM-CSF splays the balance between activation and inhibition
in vivo.

Clinical studies have incorporated GM-CSF with the hope
that it would be immune activating. Correlative studies in
melanoma, breast and prostate cancer have not demon-
strated a clear role for GM-CSF in antitumor immunity.38-40

The E4697 phase III, double-blinded, placebo-controlled
trial evaluated a peptide vaccine C/¡ GM-CSF (or placebo)
in patients with completely resected stage IV or high-risk
stage III melanoma did not show a survival benefit.41

Furthermore, a systematic review of 26 studies which evalu-
ated the addition of GM-CSF to various treatment

modalities including chemotherapy, surgery and peptide
vaccines in patients with advanced melanoma did not show
a significant improvement in outcomes with the addition of
GM-CSF to peptide vaccines.42 The impact of GM-CSF’s co-
administration with the PROSTVAC vaccine in a completed
Phase III study (NCT01322490) is under analysis. However,
current evidence suggests GM-CSF is an inert companion
for vaccines.

Vaccine plus IL-2
Interleukin-2 (IL-2) promotes differentiation of immature
T-cells into both Tregs and effector T-cells.43 Despite known
activating effects on Tregs, high dose recombinant human IL-2
has produced durable remissions in select metastatic melanoma
and metastatic renal cell carcinoma (mRCC) patients leading to
FDA approval.44-46 Studies of various vaccine platforms plus
both low- and high-dose IL-2 have shown mixed results in
recent years. The severe toxicity seen with higher doses has lim-
ited its use to select patients.45

A phase I/II trial of DC vaccine plus low-dose IL-2 in
patients with mRCC or breast cancer showed that the combina-
tion was well tolerated but there were no observed clinical
responses.47 A phase III trial randomized 185 patients with
locally advanced stage III and stage IV cutaneous melanoma to
gp100 peptide vaccine plus high-dose IL-2 vs high-dose IL-2
alone.48 The combination group had better overall clinical
response (16% vs. 6%, p D 0.03) and modest extension of PFS
(2.2 months vs. 1.6 months, p D 0.008). Given the negative
studies of low-dose IL-2 and high toxicities seen with high-dose
IL-2, a future role for IL-2 in vaccine formulations does not
appear likely as agents targeting downstream targets with less
toxicity become available.

Table 2. Rationale for therapeutic cancer vaccine combinations.

Rationale References

Cytokines (IL, INF, TGF-b) � Stimulate humoral and cellular immunity 32-37, 49, 50
� Promote epithelial to mesenchymal transition
� Promote differentiation of immature T-cells into Tregs and effectors T-cells
� Promote dendritic cell maturation
� Chemoattractant for neutrophils and MDSCs

Radiotherapy (External beam and
radiopharmaceuticals)

� Enhance destruction of tumor cells via 29, 55-57, 61
� upregulation of MHC, Fas, ICAM-1 and TAAs
� Enhance vaccine-mediated tumor lysis
� Increased inflammation and secretion of immunomodulatory cytokines
� Sensitize tumor cells to immune-mediated killing

Checkpoint inhibitors
(anti-CTLA-4/anti PD-1/PDL-1)

� Immunogenic intensification 77, 78, 93
� Increased inflammation within the tumor
� Reduction of Tumor burden
� Activation of different T-cell population

Small molecules (TKIs/ HDACi) � “Off-target” effects on immune cells (i.e., decreasing Tregs, decreasing MDSCs, increasing
INF-g producing T-cells, and decreasing IL-4 producing T-cells

103-105, 108, 112

� Sensitize cells to immune-mediated killing
� Increase the protein expression of antigen presenting machinery

Endocrine Therapy � Inducing thymic regeneration leading to increased production of naive T cells and CD4C
effector T cells.

115-118

� Decrease Tregs within the tumor
Chemotherapy (including low

dose CTX)
� Sensitize cells to immune-mediated killing 121-123,127,128,131,132,138,141
� Decrease MDSCs and Tregs
� Increase immune-supportive M1 macrophages, including CD4C and CD8C T-regs
� Reduction of tumor burden
� Induction of tumor immunsurveillance by NK cells
� Enhance immunity by inhibiting Tregs, by enhancing DC maturation and by promoting of
a durable T-cell memory response (low dose CTX)

2564 M. E. GATTI-MAYS ET AL.



Vaccine plus IL-7
Interleukin-7 (IL-7) is important for differentiation of hemato-
poietic stem cells into lymphoid progenitor cells and develop-
ment of CTL responses. Preclinical data show that PBMCs
subjected to two-step culturing involving neoantigens exposed
to GM-CSF followed by IL-7 produced selective and sustained
expansion of both CD4C and CD8C peptide-specific T-cells.49

Other cytokine combinations were initially proliferogenic, but
only IL-7 resulted in a sustained response.49 An ongoing phase
III trial is testing the combination of Sipuleucel-T plus subcuta-
neous IL-7 (CTY107), with the aim of augmenting proliferation
of T-cell clones (NCT01881867).

Vaccine plus TGF-b modulation
Transforming growth factor b (TGF-b) is an important regula-
tor of the cell cycle and is known to promote epithelial to mes-
enchymal transition (EMT).50 Parts of the TGF-b signaling
pathway are mutated in many malignancies, allowing invasion
and metastasis, while TGF-b stimulation increases recruitment
of MDSCs and Tregs.50,51

A neoadjuvant clinical trial of an allogeneic pancreatic ade-
nocarcinoma vaccine containing GM-CSF (GVAX) produced
tertiary lymphoid aggregates (TLAs) within TME. Microarray
studies of TLAs from patients who survived greater than 3 years
showed suppression of multiple portions of the TGF- b path-
way.52 Several small molecule TGF-b inhibitors are now under
investigation and offer a means to dampen the immunosup-
pressive milieu within the TME. Galunisertinib has a safe toxic-
ity profile based on two phase II trials in HCC and pancreatic
cancer with no cardiac toxicity, which was a concern with first-
generation TGF- b inhibitors.53,54 To the best of our knowl-
edge, no TGF-b inhibitors are currently being studied in
combination with cancer vaccines. However, a novel bifunc-
tional fusion protein called M7824 which consists of and
anti-PD-L1 antibody and the extracellular domain of TGF-b
receptor type two is currently being evaluated in a phase I trial
in solid tumors. The receptor portion of the molecule essen-
tially traps TGF-b and holds great promise as a companion to
vaccine therapy (NCT02517398).

Vaccines plus radiotherapy

Rationale for combining radiotherapy (RT) with vaccines is
multifold. Preclinical data have demonstrated that the combi-
nation of vaccines and RT is additive, with enhanced destruc-
tion of tumor cells via upregulation of MHC, Fas, ICAM-1 and
TAAs, as well as by enhancing vaccine-mediated tumor lysis in
mouse models.55-57 Other studies have produced dramatic
reduction in tumor burden in mice with combination RT plus
vaccine, but not with either therapy alone, suggesting synergy.58

T-cells specific for antigens not included in vaccine were also
generated with combination, a phenomenon known as antigen
cascade or antigen spreading. Moreover, non-lethal doses of
radiation administered to tumor cell lines have also been shown
to induce such phenotypes.59,60 Lower doses of radiation can
induce changes in tumor cells that make them more susceptible
to T-cell killing through increased type I IFN secretion and
increased expression of surface calreticulin.29,61 The radiophar-
maceutical, samarium-223, has been shown to have similar

effects in vitro.62 Additionally, the abscopal effect, wherein
non-irradiated lesions regress following radiation to a distant
area, has also been reported in multiple malignancies,63-66

including melanoma67 and non-small cell lung cancer
(NSCLC).68

Since RT is a part of standard of care in many malignancies,
many ongoing trials combining radiation and vaccine are
designed to examine a vaccine’s role in enhancing responses
with RT as opposed to examining how RT may positively affect
response to vaccines. Below is a brief summary of clinical expe-
riences and ongoing trials.

Vaccines plus external beam radiotherapy
A phase I trial published in 2005 demonstrated increased PSA-
specific T-cells in patients with locally invasive prostate cancer
treated with RT plus a first generation fowlpox vaccine.30

Patients were randomized to recombinant vaccinia (rV) -PSA,
rV-B7.1 vaccine followed by monthly booster vaccines with
recombinant fowlpox (rF)-PSA plus standard of care RT (19
patients) or RT alone (11 patients). Of the 17 patients in the
combination arm who received all scheduled vaccinations, 13
had a � 3-fold increase in PSA-specific T-cells. There was no
such signal in the RT alone arm (p < 0.0005).

Several ongoing phase I studies are also evaluating the safety
and efficacy of this approach. Self-adjuvanting mRNA cancer
vaccine (RNActive�), called CV9202, targeting NY-ESO-1,
MAGEC1, MAGEC2, 5 T4, survivin, and MUC1 is being tested
in combination with RT for stage IV NSCLC
(NCT01915524).69 Preliminary data presented at the ASCO
2016 meeting demonstrated safety of CV9202 vaccine in com-
bination with RT.70 A personalized neoantigen vaccine for O6-
methylguanin-DNA-methyltransferase (MGMT) unmethylated
glioblastoma (GBM) in combination with RT is currently ongo-
ing (NCT02287428). G207 is an oncolytic herpes simplex virus-
1 engineered to contain mutations that enable it to selectively
replicate within and kill cancer cells, but not normal cells.71 A
phase I study indicated that G207 injected into recurrent high
grade gliomas alone, or in combination with a single dose RT is
well tolerated and active.72,73 Another phase I study in pediatric
patients with recurrent or progressive supratentorial tumors is
currently recruiting subjects and will test G207 as monotherapy
or combined with single dose RT (NCT02457845).

Another prostate cancer vaccine, aglatimagene besadenovec
(ProstAtak�), is being evaluated in combination with RT in a
phase III trial in patients with intermediate-high risk localized
prostate cancer (NCT01436968). ProstAtak� is a cytotoxic
immunotherapy derived from an adenovirus thymidine kinase
(AdV-tk) vector that delivers herpes simplex virus into tumor
cells when injected locally, creating a vaccine-like effect.74 It
utilizes valacyclovir as a prodrug. Patients receive three intra-
prostate ProstAtak� treatments administered via transrectal
ultrasound starting between 15 days and 8 weeks after begin-
ning standard of care RT. Results are pending.

Vaccines plus radiopharmaceuticals
Samarium-153 EDTMP (153Sm) is a radiopharmaceutical tar-
geted to osteoblastic lesions. A phase II trial randomized 44
mCRPC patients previously treated with docetaxel to 153Sm
with or without PSA-TRICOM. The median PFS was
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3.7 months for the combination vs 1.7 months for 153Sm alone
(HR 0.51; p D 0.041). Although the results were not statistically
significant, there was a trend of decreased RDP and increased
PFS.75,76 A phase II study in mCRPC with bone metastases is
currently recruiting patients who are randomized to Sipuleu-
cel-T with or without radium-223 (the FDA approved radio-
pharmaceutical which demonstrated improvements in OS in
mCRPC) (NCT02463799).

Vaccine plus checkpoint inhibitors

Vaccines plus anti-CTLA-4
CTLA-4 is expressed on T-cells and mediates inhibitory effects
on CD4 helper T-cells during interactions with antigen present-
ing cells, representing an important mechanism of autoregula-
tion.77 CTLA-4 signaling can also have activating effects on
Tregs.78 CTLA-4 blockade with monoclonal antibodies is a
potential strategy for converting vaccine-generated immune
responses into clinically significant ones.

Ipilimumab and tremelimumab are anti-CTLA-4 antagonist
monoclonal antibodies. Single agent use of ipilimumab has pro-
duced dramatic improvement in OS in advanced melanoma
and is now FDA approved. However, ipilimumab has failed to
achieve comparable clinical results in other solid tumors. For
example, two phase III trials using ipilimumab in mCRPC
failed to improve OS.79,80 Both ipilimumab and tremelimumab
are at various stages of clinical investigation alone or in combi-
nation with cancer vaccines.

In a phase I dose-escalation trial, a fixed dose of PROST-
VAC was tested with escalating doses (1, 3, 5, and 10 mg/kg) of
ipilimumab in mCRPC patients.81 There were no increases in
immune-mediated AEs with combination. Fourteen of the 24
chemotherapy-na€ıve patients had a PSA decline with 6 patients
having a PSA decrease > 50%. The median OS chemotherapy-
na€ıve patients was 31.3 months, which was longer than histori-
cal controls of PROSTVAC alone.38 There was a trend toward
improved OS and the presence of certain immune cell subsets
in peripheral blood.82 A trial testing tremelimumab in combi-
nation with several other agents, including a vaccine, is cur-
rently recruiting patients with mCRPC (NCT02616185).

Ipilimumab may also prove effective in a host of other
malignancies and/or with other vaccine platforms, as illustrated
by a study in 30 previously treated pancreatic adenocarcinoma
randomized patients 1:1 to ipilimumab or ipilimumab plus
GVAX.83 No patients in the ipilimumab alone arm had a bio-
chemical CA19–9 response, and two patients had stable disease
(7 and 22 weeks). However, in the combination arm, 3 patients
had prolonged stable disease (31, 71, and 81 weeks) and seven
patients had a decline in CA-19–9. One year OS also favored
combination (7 vs. 27%).84 A phase III study showed that
patients with advanced melanoma who received ipilimumab
with or without the gp100 peptide vaccine (HLA-A�0201–
restricted peptides derived from the melanosomal protein,
glyco- protein 100) had OS of 10 months compared to patients
who only received the gp100 vaccine (6.4 months).85

As mentioned above, CTLA-4 mediates inhibitory effects on
CD4 helper T-cells during interactions with antigen presenting
cells.77 For this reason, combining CTLA-4 blockade with anti-
gen presenting cell administration i.e. DC vaccines is an

exciting strategy. In a phase II trial, 39 pretreated advanced
melanoma patients were given TriMixDC-MEL (autologous
DC melanoma vaccine) intravenously and subcutaneously plus
ipilimumab 10mg/kg every 3 weeks for four treatments.
Patients who remained progression-free received maintenance
therapy every 12 weeks.86 The primary endpoint was met with
a disease control rate of 51% at 6 months. Seven complete
responses (CR) and 1 partial response (PR) were observed. The
TriMixDC-MEL plus Ipilimumab ORR of 38% was better than
monotherapy with ipilimumab in this population (10–15%)
and was comparable to the ORR seen with anti-PD-1 mono-
therapy (ORR 25–43%) but not as high as seen in patients with
dual anti-CTLA-4 plus anti-PD-1 therapy (ORR 57–61%).87-90

Vaccines plus PD-1/PD-L1 inhibitors
Programmed cell death protein 1 (PD-1) is expressed on
T-cells, as well as some B cells and NK cells, and binds to PD-
L1 and PD-L2.77 Antagonist antibodies that target the PD-1/
PD-L1 axis have also achieved impressive and durable results
in many solid tumors. Since 2015, multiple PD-1/PD-L1 inhibi-
tors have received FDA approval for use in metastatic squa-
mous NSCLC (nivolumab, pembrolizumab and atezolizumab),
mRCC (nivolumab) unresectable/metastatic melanoma (pem-
brolizumab, nivolumab), locally advanced/metastatic urothelial
carcinoma (atezolizumab, nivolumab, pembrolizuman, avelu-
mab and durvalumab), recurrent/metastatic head and neck
squamous cell carcinoma (pembrolizumab, nivolumab) meta-
static merkel cell carcinoma (avelumab).91

Preclinical data shows that combination of an anti-PD-1
antibody and a multi-peptide vaccine (immunogenic peptides
derived from breast cancer antigens, neu, legumain, and b-cate-
nin) prolonged PFS in mice with breast tumors.92 There are
several immune cell interactions that can be affected by
PD-1/PD-L1 axis inhibition. Blockade of either of these targets
can prevent PD-1/PD-L1 interaction-mediated inhibition of
cytotoxicity at the effector cell:tumor cell synapse. Exerting a
negative effect on each of these interactions with PD-1/PD-L1
blockade is promising as a means to enhance clinical activity of
anti-tumor vaccines.93

The gp100 peptide vaccine failed to enhance the clinical benefit
produced by nivolumab in advanced melanoma patients.94 How-
ever, nivolumab plus a multipeptide vaccine produced promising
DFS data in the adjuvant setting for patients with high-risk resected
melanoma. Median relapse-free survival (RFS) was 47.1 months
with this combinationwhich was highly favorable compared to his-
toricalmedian RFS (5 to 7.2months) with other approaches.95 Cor-
relative studies were consistent with antigen-specific immune
responses, and a trend towards lower levels of MDSC and Tregs
was seen in non-relapsing patients. Tumor PD-L1 expression did
not correlate with outcomes.

Preliminary clinical data combining a DNA vaccine encoding
PAP in combination or in sequence with pembrolizumab were
presented in November 2016 and showed promising results
(NCT02499835).96 Four out of six mCRPC patients treated with
combination showed a decline in PSA, and imaging in 3 of 6
patients showed decreased tumor volume at 12 weeks.96

Combination of vaccines and anti-PD-1 treatment are also
underway in NSCLC. Viagenpumatucel-L is a cell based vac-
cine derived from a gp96-Ig secreting NSCLC tumor cell line
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selected for its ability to induce antigen specific T-cells.97 A
phase II study stratifying patients by high or low volume of
TILs is currently enrolling patients and will test the vaccine in
combination with nivolumab (NCT02439450). As seen with
anti-CTLA-4 monoclonal antibodies, anti-PD-1 and anti-PD-
L1 agents are also being tested in combination with different
vaccine platforms for many malignancies (clinicaltrials.gov).
Results are pending.

Vaccines plus small molecules

Tyrosine kinase inhibitors
Tyrosine kinase inhibitors (TKIs) are utilized in the treatment
of several malignancies. VEGF-targeting TKIs (sunitinib, pazo-
panib, axitinib), multi-targeted TKI cabozantinib, and lenvati-
nib plus everolimus are FDA approved for treatment of mRCC.
While these agents can improve outcomes, and produce objec-
tive responses, TKI’s have not produced the durable CRs that
have been observed in some mRCC patients treated with high-
dose IL-2 therapy.98-102

Growing preclinical and clinical data suggest that these
agents often have “off target” effects on immune cells that
enhance and/or damper the antitumor response.103,104 For
example sunitinib (inhibits KIT, PDGFR, KDR kinases, FLT3
kinase) decreases Tregs, decreases MDSCs, increases inter-
feron-g producing T-cells, and decreases IL-4 producing T-
cells – all of which are important for an effective anti-tumor
immune response.105 Complicating the picture, sunitinib has
also been found to inhibit activation of peripheral T-cells.106 In
a mouse model, sunitinib plus CEA-TRICOM vaccine
decreased the angiogenesis in central areas of tumor whereas
sunitinib alone only decreases angiogenesis in the periphery.107

Furthermore, the combination of sunitinib or sorafenib plus
CEA-TRICOM decreased tumor volume and intratumoral
pressure. These effects on tumor vasculature appear to enhance
migration of effector T-cells into the TME.104

Another TKI, cabozantinib (inhibits c-MET, VEGFR2) also
appears to have anti-tumor immune effects based on preclinical
studies. It sensitizes murine tumor cells to immune-mediated
killing, and when combined with CEA-TRICOM vaccine,
reduces Treg and MDSC infiltration of the TME. As with sora-
fenib and sunitinib, cabozantinib plus CEA-TRICOM appears
to normalize tumor vascularity favoring immune migration.108

For these reasons, and their effectiveness as monotherapy, com-
bining vaccines with standard of care TKIs is an attractive
potential means to enhance their activity.

AGS-003 is a dendritic cell vaccine derived by co-electropo-
ration of DCs with the patient’s amplified tumor RNA and syn-
thetic CD40L RNA. A phase II study treated 22 mRCC patients
with AGS-003 plus sunitinib.109 The vaccine was well tolerated.
Out of 21 evaluable patients, 9/21 (43%) had a PR and 4/21
(19%) had SD. Median OS was 30.2 months, comparing favor-
ably to historical data for mRCC patients treated with bevacizu-
mab (22 months).110 A randomized phase III trial of AGS-003
plus sunitinib vs sunitinib alone is in progress (NCT01582672).

Vaccines with HDACi
Epigenetic silencing of genes involved in the immune-response,
is one mode of immune escape utilized by tumor.111 Histone

deacetylase 1 inhibitors (HDACi) such as vorinostat and enti-
nostat have been shown to sensitize tumor cells to antigen-spe-
cific T-cell mediated lysis and to increase the protein
expression of antigen presenting machinery in breast cancer
and prostate cancer cell lines.112 While HDACi are promising,
researchers have demonstrated enhanced cell migration and
metastasis with use of HDACi in some human cancer cell lines
and in mice.113 HDACi have little activity as single agents but
have demonstrated efficacy when combined with cytotoxic and
non-cytotoxic chemotherapy agents.114 Due to the immuno-
modulatory properties of HDACi there is growing interest
using HDACi in combination with various drugs including
checkpoint inhibitors and vaccines.

Vaccines plus endocrine therapy

In hormonally-driven tumors such as prostate cancer and
breast cancer, the hormonal milieu is important in cancer
development and progression. Breast cancer patients who
received the aromatase inhibitor letrozole were found to have
fewer Tregs within the TME.115 Furthermore, androgen depri-
vation in prostate cancer creates an immunostimulatory atmo-
sphere, induces thymic regeneration and increases the number
of effector T-cells.116-118

The E9802 phase II trial tested the PROSTVAC vaccine fol-
lowed by anti-androgen therapy in non-metastatic prostate
cancer patients with biochemical recurrence (BCR). The com-
bination was well tolerated. An increase in PSA doubling time
between pre- and post-vaccine administration was observed
(5.3 to 7.3 months).119 Notably, timing of vaccine treatment
appears to be important. The survival data from a phase II trial
suggested clinical benefit if vaccine was given prior to ADT.
Survival analyses revealed a median OS advantage for the
patients initially randomized to the vaccine arm who later
received nilutamide compared to patients who received niluta-
mide first followed by vaccine (6.2 versus 3.7 years;
p D 0.045).120

Two phase II trials studying the androgen receptor antago-
nist, enzalutamide, with and without PROSTVAC in early and
metastatic prostate cancer are ongoing. (NCT01867333,
NCT01875250). The combination of vaccine with hormonal
therapy in breast and prostate cancer is attractive since vaccines
are minimally toxic and can easily be incorporated in standard
of care regimens.

Vaccines plus chemotherapy

Many cytotoxic agents cause DNA damage or alter tumor phe-
notype, making the tumor more susceptible to CTL kill-
ing.121,122 Chemotherapy agents such as docetaxel may have
indirect effects on the immune system that improve their effi-
cacy.123 Chemotherapy dosing at maximum tolerated dosing
(MTD) results in depletion of T-cells with both CD4C and
CD8C cells effected but CD8C cells recover more quickly.124

In addition, NK cells are also impaired. Standard of care dosing
for most chemotherapies is often much lower than the MTD
and allows for a residual immune response.123 Several chemo-
therapeutic agents, including gemcitabine, taxanes, topoisomer-
ase inhibitors, platinum compounds, and 5-FU have been
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shown to produce immunomodulatory effects.121,123,125,126

These effects are discussed in more detail below.

Vaccine plus low dose cyclophosphamide (CTX)
Metronomic (low) dosing of CTX has been shown to inhibit
Tregs,127 enhance DC maturation, and promote memory T-cell
responses, making it a candidate for enhancing cancer immu-
notherapies.122,128 A single-arm feasibility study gave HER2C
metastatic breast cancer patients allogeneic HER2C GM-
CSF-secreting whole-cell breast cancer vaccine one day after
receiving CTX 300 mg/m2 and trastuzumab 2mg/kg
(NCT00399529). All patients were HER2C and 13 of 20
patients were hormone receptor positive. The clinical benefit
rate (CBR D CRC PRCSD) at 6 months was 55% (p D 0.013)
and at 12 months was 40%.129

Results from an international phase II/III study in metastatic
breast cancer patients testing CTX plus OPT-822, a vaccine tar-
geted to a glycolipid overexpressed in breast cancer, or placebo
were presented at ASCO 2016 (NCT01516307).130 Similar to
the above study, the vaccination plus CTX arm did not improve
PFS or OS. However, PFS and OS were higher in patients who
developed an immune response to the vaccination.130 There is
currently an ongoing phase II study is comparing viagenpuma-
tucel-L plus CTX to CTX alone in patients with advanced
NSCLC who have failed multiple prior therapies
(NCT02117024).

Vaccines plus gemcitabine
Preclinical studies have shown that gemcitabine can increase
antigen cross-presentation, decrease MDSC and Tregs, and
increase immune-supportive M1 macrophages, circulating
CD4C and CD8CT cells131,132 These effects were observed in
human in a phase I/II trial in ovarian cancer patients treated
with gemcitabine, Pegintron and p53 synthetic long peptide
(SLP) vaccine.133 However, effects on outcome in patients
treated with vaccine plus gemcitabine have been mixed. Results
from a phase II study of algenpantucel-L plus gemcitabine and
5-fluorouracil-based standard adjuvant chemoradiotherapy for
resected pancreatic cancer demonstrated 12-month PFS of 62%
and 12-month OS of 86%.134 While these compared favorably
to historical data,135 a phase III study randomized patients
1:1:1 to receive chemotherapy alone, chemotherapy followed by
a telomerase vaccine (GV1001), or concurrent chemotherapy
and vaccine in metastatic pancreatic cancer did not meet its
primary OS endpoint.136,137

Vaccines plus docetaxel
Combination of vaccine plus docetaxel has been shown to anti-
gen specific CD8 T-cells and decrease tumor burden in murine
models.138 Additionally, other preclinical data suggest docetaxel
can make tumor cells more susceptible to CD8 T-cell-mediated
cytotoxicity via enhanced calreticulin expression.31

A phase II trial evaluated docetaxel alone vs modified vac-
cinia Ankara vaccine (TroVax; targeted tumor antigen 5T4) fol-
lowed by docetaxel in patients with mCRPC. Although the
study was closed prematurely due to accrual issues with only 25
patients enrolled, a superior median PFS of 9.67 months was

observed in the TroVax C docetaxel compared to 5.1 months
in the docetaxel alone arm (p D 0.097).139

A phase II trial evaluated docetaxel alone verse docetaxel
combined with PANVAC (contains MUC-1, CEA and co-stim-
ulatory molecules B7.1, ICAM-1, LFA-3) in metastatic breast
cancer patients.40 Forty-eight patients were enrolled; 23 were
randomized to docetaxel alone and 25 were randomized to
combination arm. A significant increase in median PFS was
observed in the PANVAC plus docetaxel vs. the docetaxel only
arm (7.9 months vs 3.9 months; p D 0.09).40 Secondary analy-
ses demonstrated no correlation between generation of the T-
cell specific immune response and time to progression.40

Patients who received only docetaxel also developed T-cell
responses to the TAA supporting the hypothesized immuno-
modulatory properties of docetaxel.

Several ongoing studies are currently evaluating combina-
tion of docetaxel and different vaccines in prostate cancer:
PROSTVAC plus docetaxel in castration sensitive prostate can-
cer (phase II; NCT02649855) and docetaxel plus DCVAC/PCa
in metastatic castration resistant disease (phase III;
NCT02111577).

Vaccine plus irinotecan
Irinotecan blocks DNA repair and stimulates a complex
immune response including activation of tumor-suppressor
proteins and induction of tumor immunosurveillance by NK
cells and activated CD8C T-cells.121

A phase II multicenter study tested G17DT (a vaccine con-
sisting of the N-terminus of gastrin 17, a growth factor, conju-
gated to diptheroid toxin that elicits anti-gastrin 17 antibodies)
plus irinotecan in metastatic CRC patients who were progress-
ing on irinotecan. Of the 161 patients, PR was observed in 3%,
SD in 32% and PD in 65% of treated patients. Aside from
increased injection site reactions seen in 52% of patients, the
side effect profile was similar to irinotecan alone. Sixty-two per-
cent of patients had measurable anti-gastrin 17 antibodies,
which was associated with a survival benefit (9.0 vs. 5.6 months;
p < 0.001).140

Vaccine plus platinum-based chemotherapy
Carboplatin-paclitaxel combination also has immunomodula-
tory anti-tumor effects in preclinical studies.121 Recently
published work demonstrated that carboplatin-paclitaxel plus
HPV16 peptide vaccine increased survival in murine tumor
models, correlating with decreased number of myeloid cells in
tumor and peripheral blood.141 Additionally, carboplatin-pacli-
taxel increased ex vivo T-cell activity to recall antigens.

A phase 2b/3 trial in the first line setting for stage IV NSCLC
showed some benefit with TG4010 (modified Ankara vaccine
expressing MUC-1 and IL-2) added to platinum-based
chemotherapy.142 Patients were randomized to TG4010 plus che-
motherapy (n D 111) or placebo plus chemotherapy (n D 111).
The combination group had a longer median PFS (5.9 vs
5.1 months; p D 0.019) and more confirmed responses (40% vs
29%, respectively). Interestingly, there were delayed responses
and more durable responses observed in the TG4010 group
(median duration was 30.1 weeks in responders who received
TG4010 and 18.7 weeks in placebo group responders).143
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Expert opinion

As detailed above, there are many vaccine platforms and target
antigens to be tested in different malignancies and different
clinical settings. Despite intensive study during the past
20 years, it was not vaccines, but immune checkpoint inhibitors
that first revolutionized cancer therapy by altering the treat-
ment landscape in many cancers including melanoma, non-
small cell lung cancer, and urothelial carcinoma.85,144,145 The
three approved cancer vaccines have produced only modest
improvements in OS (sipuleucel-T, T-VEC), DFS (TheraCys)
and DRR (T-VEC) in patients with early stage or a limited dis-
ease burden. If there is to be an therapeutic role for vaccines
especially in more diverse clinical settings and in patients with
advanced or metastatic cancers, it will likely be as part of com-
bination therapy.26 While marveling at the successes of check-
point inhibitors, it is important to bear in mind that these
therapies to date have not worked in most malignancies or
even provide benefit for the majority of patients with malignan-
cies in which these agents are known to be active. The biology
of resistance to these therapies is far from being understood,
but one possible explanation is a lack of tumor-specific T-cells,
leaving the checkpoint inhibitors without any effector cells to
‘unleash.’ For the following reasons, vaccines may be able to
correct this deficit.

We know that various vaccine platforms are capable of gen-
erating tumor-specific T-cells, and in some cases, have been
shown to increase tumor infiltrating T-cells.146 Findings from
early phase studies support the hypothesis that vaccines plus
checkpoint inhibitors can create a situation for success where
there may have been none with monotherapy. For example, in
mCRPC, ipilimumab plus PROSTVAC appears to have a sur-
vival benefit compared to historical controls of ipilimumab
alone.38,81 Ipilimumab plus GVAX produced periods of SD for
3 pancreatic adenocarcinoma patients (31, 71, and 81 weeks),
compared to SD for 2 patients (7 and 22 weeks) with ipilimu-
mab alone.83 The phase II TriMixDC-MEL plus ipilimumab in
melanoma also produced comparable or superior response
rates compared to phase II data of some checkpoint inhibi-
tors.86-90 Early phase data testing nivolumab plus vaccine in the
adjuvant setting for high risk melanoma compare favorably to
historical relapse free survival data.95 In making the argument
for the promise of vaccine plus checkpoint inhibitors, we have
intentionally included examples from different malignancies.
This highlights the need to consider available preclinical data,
relevant to an individual tumor type’s biology, when selecting
agents for combination with vaccine.

Furthermore, vaccines will be enhanced as antigen selection
is refined. The potential influence of neoantigen expression on
response to checkpoint inhibitors147 has been noted, however
the exact role(s), mechanism(s), and utility as target antigens
are yet unclear. Utilizing high throughput whole exome and
transcriptome sequencing techniques, as described by Yadav
et al.25 offers a means to identify highly immunogenic antigens
for incorporation into any number of the vaccine platforms
described above. As suggested by others, personalized tumor
vaccines, based on synthesized neoantigens derived from whole
tumor exome sequencing or use of autologous tumor for anti-
gen sourcing, should be a prioritized strategy.26 The potential

power of combining such ‘smart target’ vaccines with check-
point inhibitors remains untested but holds great promise.

Conclusion

Experience suggests that the therapeutic cancer vaccines cur-
rently in clinical development are unlikely to dramatically
impact cancer outcomes as single agents. Several combination
approaches including vaccine plus cytokines, checkpoint inhib-
itors, small molecule inhibitors, radiotherapy and chemother-
apy have been tested. Based on these findings, it appears that
combining therapeutic vaccines with immune checkpoint
inhibitors holds the greatest potential for improving clinical
outcomes. Addition of vaccines to various cancer treatment
modalities can augment immune responses with minimal addi-
tional toxicity. Additionally, optimizing target antigen selection
via novel high throughput sequencing is a developing technique
that has generated excitement. Traditional study endpoints and
assessment criteria may not be appropriate given the different
mechanisms of action and response patterns seen with immu-
notherapy agents. As we learn more about the mechanisms of
immune evasion, various therapies will be combined and per-
haps specific sequencing of this multi-modality approach will
prove to be superior for achieving durable responses. A one-
size-fits-all approach is not effective and our goal should be to
better understand the biology and to develop predictive bio-
markers. Cancer vaccines are here to stay, as evidenced by the
many ongoing clinical trials evaluating immunotherapy
combinations.
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