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ABSTRACT
Extracellular vesicles (EVs) are membrane-derived vesicles that are enriched with RNAs, proteins and other
functional molecules. We exploit the unique physical properties of EVs as a promising and advantageous
nanoplatform for the delivery of therapeutic drugs and genetic materials. Early successes in the discovery of
various disease-related characteristics of EVs have driven a new wave of innovation in developing nanoscale
drug-delivery systems (DDSs). Nevertheless, there are several issues that need to be considered during the
development of these alternative DDSs, such as standardized isolation and preservation methods, efficient
drug encapsulation, mechanisms of drug release and so on. In this mini-review, we summarize the current
status and progress of EV-based DDSs as an efficient nanoplatform for therapeutics delivery, followed by a
discussion on their challenges and future prospects for clinical translation and applications.
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Introduction

Various drug-delivery systems (DDSs) have been extensively
explored to improve the efficacy of drugs and reduce their side
effects. The development of DDSs involves improving drug sol-
ubility,1-4 activity,5,6 bioavailability,4,7-11 targeting12 and dosing
regimen13 as well as reducing toxicity.14,15 Conventional DDSs,
including liposomes, polymeric nanoparticles, inorganic nano-
particles, etc.,16-18 are widely used. Despite considerable prog-
ress in developing advanced DDSs, efforts are urgently needed
to develop a clinically adequate therapeutic delivery platform.19

Conventional nanoparticles are multipurpose and have great
potential in therapeutic drug delivery applications, but they
also have considerable defects (e.g., their xenobiotic origin),
which often result in unexpected immune reactions and toxic-
ity in organisms.20-24 Inherent toxicity and side effects of drug
nanocarriers are significant obstacles in the development of a
high-performance and clinically safe nano-delivery plat-
forms.25-27

In light of the obstacles associated with current nano-DDSs,
significant efforts have been made to determine revolutionary
nanomaterials with biological origins. Very recently, scientists
have been attracted by a group of cell-derived endogenous
nanovesicles called extracellular vesicles (EVs).28 EVs are mem-
brane vesicles formed from the endosomal system that are
released by nearly all types of cells to the extracellular space
and thus play an important role in the intercellular communi-
cation.29 The capability of EVs to transport molecules between
cells indicates that they might serve as a natural DDS.30 In
recent years, EVs have been investigated as promising DDSs to
target cells or tissues for nanomedicine.31-33 Compared with
conventional DDSs (e.g., liposome), EVs demonstrate attractive
advantages and features such as natural biological effects,

favorable pharmacokinetics and targeting specificities. How-
ever, therapeutic applications of EVs as DDSs are still in early
stages of research, and further investigation are expected for
their scalable isolation methods, high-efficient encapsulations
as well as intrinsic cell targeting properties.

In this review, we summarize the progress in EV-based
DDSs with emphasis on the challenges and hurdles in the
development of EVs as DDSs. Although EV-based DDSs are
not fully optimized for manufacturing scale-up and clinical
translation, they provide alternative DDS models for delivering
therapeutic drugs.

Biogenesis of EVs

Extracellular vesicles are membrane vesicles released from
nearly all cell types in mammalian species, they display versatile
physiological functions and are involved in the maintenance of
homeostasis, and the regulation of signaling and intercellular
communication between different cell types.29 EVs play impor-
tant roles in many pathological and physiological processes
including inflammation,34 angiogenesis,35 immune response,36

autophagy,37 cell survival,38,39 and cancer drug resistance.40,41

Based on their morphology, formation pathway and content,
EVs can be classified as exosomes, microvesicles (MVs) and
apoptotic bodies.42,43 Exosomes are the smallest membrane-
bound vesicles with sizes varying from 40–100 nm,44 and were
first reported by Johnstone et al. as small vesicles released by
reticulocytes.45 They are produced from multivesicular bodies
(MVBs) during endosomal maturation and are secreted via the
fusion of MVBs with the cytomembrane. Exosomes are full of
various biomolecules including mRNAs, miRNAs, lipid mole-
cules (cholesterol, sphingomyelin, ceramide, etc.)46,47 and
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proteins such as heat-shock proteins, glyceraldehyde-3-phos-
phate dehydrogenase (GAPDH),48 endosomal sorting complex
required for transport (ESCRT) machinery42,43 and tetraspanin
family molecules. In contrast, MVs also referred to as ecto-
somes, shedding vesicles or microparticles, and are directly
formed from the cell membrane outward budding; they are
more heterogeneous in diameter compared with exosomes
(50–1000 nm).49,50 Besides, microvesicles also contain a large
number of biological molecules such as integrins, CD40 ligand,
selectins and phosphatidylserine.51,52 However, apoptotic bod-
ies are significantly different from the other two types of EVs,
as they are small vesicles formed in cells that suffered from
programmed cell death (namely apoptosis) and exhibit a het-
erogeneous range of sizes and different morphologies
(50–5000 nm).53,54

In the intercellular environment, all three types of cellular
vesicles—designated “early endosomes,” “late endosomes” and
“recycling endosomes”—are successively formed during endo-
somal maturation. First, incoming cargos are generated from
the internalized plasma membrane and then sorted into diverse
intracellular destinations by early endosomes.55 When early
endosomes transform into late endosomes, intraluminal
vesicles (ILVs) are formed. These late endosomes contain ILVs
called MVBs. Subsequently, some MVBs fuse with lysosomes
by degrading the cargos. Moreover, other MVBs fuse with the
plasma membrane, resulting in the formation of exosomes in
the extracellular space. Several studies have demonstrated that
tetraspanins and endosomal-sorting complexes are essential to
the formation of the intraluminal vesicles in the cell, and this
special superfamily of membrane proteins noted mentioned is
often used as exosome biomarkers.56

Endosomal sorting complexes required for transport
(ESCRT) work together with accessory proteins relating to the
formation of ILVs, and exosome biogenesis relies on both
ESCRT-dependent and ESCRT-independent mechanisms.57

Recently, Colombo et al. analyzed the function of ESCRT com-
ponents in EVs biogenesis using RNA interference. It was
found that various ESCRT components such as vacuolar pro-
tein sorting-associated protein 4B and tumor susceptibility
gene 101 were related to the composition, size and productivity
of secreted EVs.58 The existence of ESCRT-independent mech-
anisms have been corroborated by Stuffers et al., they demon-
strated that CD63-positive EVs were secreted from cells that
lack of four subunits of the ESCRT complex.59

Exosome biogenesis occurs in MVBs, and MVs are
formed by direct budding from the plasma membrane
(Fig. 1). MVs are larger than exosomes and more heteroge-
neous in size and morphology.43 The activation of MVs
varies from cell to cell. For example, MVs are released by
endothelial cells and circulating blood cells in response to
complement, whereas monocytes, platelets and fibroblasts
budding are released in response to bacterial cell wall com-
ponents, thrombin, and stress relaxation, respectively.60,61 As
proteins express procedurally, the production of MVs that
occurs throughout the cell cycle and under various culture
conditions may not be consistent.41 MVs could reflect the
antigenic content of the cells that they originate, providing a
new strategy for natural vaccine delivery systems. However,
exosomes are known to relate to intercellular

communications and offer distinct advantages as highly
effective drug carriers for future clinical translation.61

Extracellular vesicles as novel DDSs

The structural characteristics of EVs are analogous to lipo-
somes, which renders EVs attractive for drug delivery.62 Since
liposomes are constructed of phospholipids, they are similar to
the plasma membranes, and have been widely used for efficient
drug delivery.63 Thus far, several commercialized liposome-
based products such as DaunoXome (a liposomal for the deliv-
ery of daunorubicin (DNR), approved for the management of
advanced HIV-associated Kaposi’s sarcoma), Myocet (a non-
pegylated liposomal doxorubicin, approved for treatment of
metastatic breast cancer) and Depocyt (a cytarabine liposome
injection, approved for treatment of lymphomatous meningitis)
have been put into the market.64 Liposome research lays the
foundation for investigations of the physicochemical character-
istics, stability and drug loading of EVs.65-67 Moreover, com-
pared with liposomes, EVs are produced by the cells
themselves, which make them more advantageous than
liposomes in mimicking the cell membrane. These superior
properties of EVs indicates the possibility of utilizing EVs from
the body’s own cells to deliver drugs, even across blood-brain
barrier (BBB).68

Extracellular vesicles for cancer treatments

More and more evidence has shown that EVs have splendid
prospects in therapeutic delivery of small interfering RNAs and
synthetic molecules.69 Several studies have revealed the poten-
tial of EVs as therapeutic DDSs in various animal models of
diseases.70 Furthermore, EVs are being widely studied as anti-
tumor DDSs due to their passive targeting ability to tumor tis-
sues via enhanced permeation and retention effect.71 More
importantly, EVs could be genetically engineered as targeted

Figure 1. Illustration of extracellular vesicles secreted from cells. Exosomes are
formed from multivesicular bodies (MVBs) during endosomal maturation and are
secreted by fusion of MVBs with the cytomembrane. Microvesicles (MVs) are
directly releasing from the cell membrane outward budding.
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DDSs, offering a versatile platform for delivering drugs to spe-
cific targets with significantly promoted improved therapeutic
effects. For example, Alvarez-Erviti et al. developed a DDS to
deliver siRNA to the central nervous system using modified
EVs from self-derived dendritic cells (DCs).68 The DCs were
isolated from mice and transfected with a plasmid encoding an
exosomal membrane protein lysosome-associated membrane
glycoprotein 2b (Lamp2b), genetically fused to a rabies viral
glycoprotein (RVG), a peptide that binds to the acetylcholine
receptor. The DC-derived EVs loaded with GAPDH siRNA
exhibited specific brain-targeting gene knockdown, demon-
strating the potential of EVs to act as targeted DDSs. As
expected, both proteins and genes could be effectively delivered
by EVs, which serve as cell-derived liposome-like nanoplat-
forms for the treatment of diseases such as cancer.42-46 Interest-
ingly, Bolukbasi et al. demonstrated that a zipcode-like 25-nt
sequence promoted package miRNAs into EVs, demonstrating
great potential for high-yielding EVs loaded with various
RNAs.77 Moreover, Gujrati et al. employed bacterial outer
membrane vesicles (OMVs) to deliver siRNA for anticancer
treatments. These results revealed that bacteria are a potential
producer of biological nanovesicles for drug delivery.78

In addition to delivering biomolecule-based drugs, EVs have
also been exploited to deliver chemotherapeutic agents, with
the goal of increasing their efficacy and reducing side effects.
For example, EVs encapsulated with doxorubicin and curcumin
both effectively inhibit the progression and deterioration of
colon and mammary cancer.79,80 These research results indicate
that EVs have the capability to availably deliver chemothera-
peutics drugs to suppress malignant tumors. Tian et al.
engineered immature mouse DCs (imDCs) to express Lamp2b-
iRGD peptide and used exosomes derived from these cells to
deliver the chemotherapeutic drug doxorubicin to av integrin-
positive breast cancer cells in nude mice after i.v. injection.79

These authors found that therapeutic exosomes caused less car-
diac damage and more effectively inhibited tumor growth.

Moreover, excellent delivery effects of therapeutic chemothera-
peutic drugs in EVs have been validated with a variety of tumor
models, including hepatocarcinoma81, prostate cancer82, lym-
phocytic leukemia83 and pancreatic tumors.84 Table 1 summa-
rizes some recent studies using EVs as therapeutic delivery
tools for cancer treatment.

Extracellular vesicles for other diseases

Recent studies have suggested that EVs are related to cardiovas-
cular diseases and that EV levels of blood circulates may be
associated with the onset and progression of disease severity.88-
91 Nevertheless, EVs also exhibit a cardioprotective effect.92

Chen et al. demonstrated protective benefits on the myocar-
dium from serious ischemia-reperfusion injury by treating
mice with EVs originating from cardiac progenitor cells.93 Gen-
erally, sonic hedgehog (SHH) signaling is critical for neovascu-
larization and angiogenesis, and SHH may be a therapeutic
target in the vascular repair process. Fleury et al. demonstrated
that SHH enriched EVs originating from T-lymphocytes and
that SSH signaling could correct Ang II-induced hypertension
and endothelial dysfunction in mouse models.94,96

Cerebral inflammation is the defense reaction of an organ-
ism to brain injury. Inflammation is a pathological process of
damage and resistance to damage. Macrophages play a signifi-
cant role in the inflammatory response, producing a variety of
cytokines and inflammatory mediators that are the internal
mechanism of the inflammatory response and its development.
A reasonable strategy to relief the disease is inhibiting the
inflammatory factors and decreasing the number of macro-
phages, which would accordingly inhibit the inflammatory
response. Nevertheless, the utilization of traditional medical
remedies is restricted by the BBB. Zhuang et al. demonstrated
that intranasal administration of curcumin-containing EVs effi-
caciously delivered curcumin to the brain. These results
revealed that curcumin-containing EVs apparently suppressed

Table 1. Application of EVs as therapeutic delivery tools for cancer treatments.

Type of EVs Therapeutic cargo EV source target tissue/cell Outcome Reference

MVs mRNA and/or protein HEK293T schwannoma tumor Effectively inhibit schwannoma tumor growth
in vitro and in vivo

Mizrak72

exosomes let-7a miRNA HEK293T breast tumors Tumor been restrained observably Ohno73

MVs transforming growth factor
b1(TGF-b1) siRNA

mouse fibroblast
L929 cell

murine sarcomas Significantly inhibited TGF-b1 expression and
suppressed primary tumor growth

Zhang74

exosomes miR-146b MSC glioma Significantly reduced glioma xenograft growth
in a rat model of primary brain tumor

Katakowski75

exosomes miR-9 MSC glioblastoma multiforme Showed a potential role for MSCs in the
functional delivery of synthetic anti-miR-9
to reverse the chemoresistance of GBM cells

Munoz76

exosomes doxorubicin immature mouse
dendritic cells

breast cancer Caused less cardiac damage, and more
effectively in inhibition of tumor growth

Tian79

MVs methotrexate (MTX) and
cisplatin

H22 hepatoma cells hepatocarcinoma Inhibited the growth of subcutaneous
hepatocarcinoma

Tang81

exosomes poly and cyclophosphamide DCs L1210 tumour Have a great capacity to resist tumor growth,
increase survival time of mouse and
stimulates DCs maturation

Guo83

MVs paclitaxel MSCs pancreatic tumors Effectively suppressed pancreatic tumors Pascucci84

exosomes tumor antigens TS/A cells breast cancer induce potent CD8C T-cell-dependent
antitumor effects

Wolfers85

exosomes CagA CagA- expressing cells gastric epithelial cells Delivering the CagA to gastric epithelial cells Shimoda86

exosomes Survivin melanoma pancreatic carcinoma cells Induced a significant increase in apoptotic cell
death

Aspe87
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brain diseases such as experimental autoimmune encephalitis
(EAE), LPS-induced brain inflammation and brain tumors,
providing a noninvasive treatment option for inflammatory
brain disease.97 In another study, Kalani et al. showed that cur-
cumin-primed EVs possess the ability to alleviate endothelial
dysfunction in a hyperhomocysteinemia mouse model.98 Simi-
larly, Sun et al. studied EVs as DDSs and found that EVs
ensured the stability and concentration of curcumin during
delivery, which was relevant to better bioavailability of drugs.
The authors administered curcumin-loaded EVs to a mouse
model of LPS-induced septic shock, and the results revealed
that EVs significantly suppressed inflammation.99 Recently,
anti-inflammatory EVs derived from gene-modified DCs have
attracted the attention of many researchers. Kim et al.
expressed the IL-10 gene in DCs. These authors injected puri-
fied EVs secreted from the DCs into mouse models of collagen-
induced arthritis. They detected inhibited inflammation pro-
gression. It has also been noted that EVs delivered either locally
or systemically efficaciously downregulate the immunological
reaction via the MHC II-dependent pathway. 100

Extracellular vesicle-based vaccines are potential candidates
for infectious disease vaccines. Toxoplasmosis, caused by toxo-
plasma gondii, is widespread in humans and warm-blooded
animals. Recently, Aline et al. demonstrated that EVs originat-
ing from DCs loaded with toxoplasma gondii antigens induced
a potent protective immune reaction that inhibited toxoplasma
gondii infection.101 Severe acute respiratory syndrome (SARS),
also called atypical pneumonia, is characterized by progressive
respiratory failure and death in approximately 10% of cases. 102

In 2007, Kuate et al. showed that EVs originating from
HEK293T expressed SARS proteins and induced high levels of
SARS-specific neutralizing antibodies titers in mice.103 More-
over, after vaccinated patients with EV vaccines and adenoviral
vector boosters, the serum-neutralizing antibody titer were
even higher than that of recovering SARS patients.

Altogether, EVs are promising candidate drug carriers for
the delivery of therapeutics (Table 1). Specifically, EVs can load
with different drugs and maintain their nature biological prop-
erties during the encapsulation process for personalized medi-
cine. The researchers mentioned above highlight the wider
potential of EVs, beyond biomolecule-based drugs delivery, for
the transfer of various other chemotherapeutic cargoes. In addi-
tion, EVs are superior biocompatibility with the lowest

cytotoxicity, and more compatible with the host immune sys-
tem than other nano-carriers.

Clinical trials: Progress and challenges

Various EVs have been investigated as therapeutic agents in
clinical trials based on their superior performances in preclini-
cal studies (Table 2).104,105 Dendritic cell-derived EVs as anti-
tumor therapies have been widely investigated in preclinical
and clinical trials, and two trials entered phase I clinical trails.
One trial focused on melanoma and the other trial focused on
non-small cell lung cancer.106,107 In addition, a phase II clinical
trial was performed to treat non-small-cell lung carcinoma
patients.108 Feasibility and safety were demonstrated and the
activation of natural killer (NK) cells was still detectable in later
therapy. Following the same method, DC-derived EVs might
be effective for treating other diseases such as angiocardiop-
athy, inflammation, nervous system diseases and infectious dis-
eases. In a phase I clinical trial, EVs from ascites fluid were
used for immunotherapy against colorectal cancer.109 Preclini-
cal EV-based antitumor studies have indicated that the thera-
peutic strategies are promising.

Outer membrane vesicles have also been studied widely as
anti-bacterial vaccines due to they are secreted naturally by bac-
teria.110,111 Outer membrane vesicle-based vaccines signifi-
cantly suppressed bacterial infection in a phase I trial.110,112 A
phase II trial revealed that OMV combined with a recombinant
vaccine displayed a better immunogenicity than recombinant
vaccine alone.112 Another phase I trial demonstrated that OMV
vaccines from a FetA modified strain conferred protective effect
against N. meningitides.113 The phase I clinical trial results
showed an excellent immune response and mild side effects
induced by OMV-based vaccines. These findings indicate that
further exploration is essential before using OMVs as vaccines
or DDSs.

Plant-based exosomes (plexosomes) used for DDSs are char-
acterized by more advantages than conventional DDSs due to
their being minimally toxic and low in immunogenicity. They
are additionally unlimited in source. In two phase I clinical tri-
als, plexosomes were loaded with curcumin for treating muco-
sitis and colon cancers, respectively.114,115 Results showed the
possibility to avoided contact between chemoradiation and oral
mucosa in the treatment of head and neck cancer. Inspired by

Table 2. Therapeutic applications of EVs in clinical trials.

Country EV source Disease Drug phase

USA dendritic cells non-small cell lung cancer MAGE peptides I105

glioma malignant glioma EVsC AS-ODN I125

fruit colon cancer curcumin I114

fruit mucositis curcumin I115

France dendritic cells Metastatic melanoma melanoma peptide antigens I106

dendritic cells non-small cell lung cancer IFN-g , MAGE peptides II108

UK FetA modified strain 44/76 neningitis vaccine I113

B:4:P1.7–2,4 strains meningitis rMenB vaccine, NadA/fHBP/NHBA II112

China ascites fluid colorectal cancer EVs, EVs C GM-CSF I109

Egypt umbilical cord-blood derived MSC type I diabetes mellitus EVs I126

Germany MSC GVHD EVs I116

Norway B:4:P1.7–2,4 strains meningitis vaccine I110

IFN-g: interferon gamma; NadA: Neisserial adhesin A; fHBP: factor H binding protein; NHBA: Neisserial heparin binding antigen; GM-CSF: granulocyte-macrophage colony-
stimulating factor; MSC: Mesenchymal stem cell; GVHD: Graft-versus-host disease.
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the fact that mesenchymal stem cells (MSCs) possess an immu-
nological suppression ability against specific immune and non-
specific immune responses, a phase I clinical trial has been
conducted to explore the inhibitive effect of MSC-based EVs
for graft-versus-host disease (GVHD).116

However, it should be noted that many issues still need to be
addressed to bridge laboratory EVs experimentation with prac-
tical clinical settings. For instance, it is very important to select
a suitable producer cell type. Besides, the consistency of the
quality and quantity of EV production upon scale-up is
required for developing an EV-based product, some mamma-
lian primary cells have been widely investigated but are not
suitable for large-scale production due to their low EV yield.117

Therefore, it is urgent to find other alternative EV sources. Iso-
lation techniques are key issues that need to be improved, along
with the lack of reliable isolation methods, which hinder the
translation of EVs into clinical applications.118 At the present,
ultracentrifugation is the most commonly used method to iso-
late EVs, but it is difficult to avoid undesirable co-isolation of
contaminants.119 Not only the scheme but the technology
requires a breakthrough in non-destructive, contamination-
free isolation methods that are characterized by a short process-
ing time. In addition, the optimization of storage conditions of
EVs is also of great importance. Such work involves the selec-
tion of isotonic buffers, storage temperatures and container
materials. However, there are no standard EV storage condi-
tions thus far. The methods for characterization of EVs have
much room for improvement, and conventional methods—
including flow cytometry, fluorescence microscopy, nanoparti-
cle tracking analysis and transmission electron microscopy—
have many limitations.120 Techniques need to be developed to
define the degree of heterogeneity of scaled-up EV preparations
and the acceptable limits on this variability that does not com-
promise the safety, efficacy and stability of the product. Deeper
fundamental research about the biological and pharmacological
functions of EVs is also essential. Dose, immunization route,
immune response, cytotoxicity and tumorigenic effects all
require intensive study for therapeutic applications. Another
major problem for EV translational applications is the lack of
an existing legislation for regulating EV-based therapies; it nec-
essary that both adequate infrastructure and quality manage-
ment systems be developed. Before using EVs in clinics, it is
necessary to standardize their isolation, storage and characteri-
zation and establish criteria for a quality-control system.

One possible solution is EV-mimetic nanovesicles. Lunavat
et al. have generated EV-mimetic vesicles via serial extrusions of
cells through filters, and this production method resulted in a
100-fold increase in the yield of naturally produced extracellular
vesicles.121 In addition, EV-mimetic nanovesicles loaded with
siRNA could effectively inhibit the expression of targeted genes.
A similar method to generate EV-mimetic nanovesicles was
applied by Jang et al.80 Drug-loaded EV-mimetic nanovesicles
were produced by serial extrusion in the presence of doxorubicin.
The results revealed that nanovesicles were effectively accumu-
lated within tumor-inhibiting cancer cell growth after intrave-
nous injection in mice, and no side effects were observed. These
studies demonstrated that EV-mimetic nanovesicles have a
capacity for RNA and chemotherapeutics delivery. Viral antigen-
loaded EV-mimetic nanovesicles (i.e., virus-mimetic vesicles),

have been recently developed in a bioinspired manner for vac-
cines by maintaining the natural conformation of epitopes.122

Viral antigen-loaded EV-mimetic nanovesicles can resemble nat-
ural viruses in morphology and immunogenicity, and may result
in a high level of antibody titers in response to the corresponding
antigen.122-124 Such EV-mimetic nanovesicles have significant
potential to deliver therapeutics with specific ligands on the sur-
face for targeted drug delivery and therapy.

Conclusions and future perspectives

Medical experts are constantly seeking to develop novel DDSs
and improve the targeting and bioavailability of drugs. These
professionals are also concerned with reducing drug toxicity and
improving therapeutic efficacy. Advantages such as a strong
packing capacity, a long half-life time, minimal undesirable
immunogenicity and limited side effect are requirements for a
perfect drug-delivery platform. In the past decade, thanks to
persistent endeavors by researchers, EVs have been exploited as
ideal drug-delivery platforms and have been widely used in pre-
clinical studies and clinical trials to efficiently transport biologi-
cal substances and chemotherapeutics to desired targets. The
outstanding advantages of EVs in drug transmission as a DDS
lie primarily in their biological origin, which is associated with
better biocompatibility with organism tissue. In addition, many
studies have shown that EVs as drug carriers possess excellent
performance at improving drug stability, prolonging blood cir-
culation time, reducing toxicity to healthy tissues and increasing
tumor targeting and tumor inhibition. Utilizing autologous EVs
for personalized nanomedicines is a promising therapy.

Although EVs play an important role and have exhibited
promise in preclinical studies, there are several issues that need
to be considered. These challenges include: the detailed mecha-
nisms of the formation and release of drug remain unarticu-
lated, distinct criteria for classification and nomenclature have
not been established, and suitable and standardized isolation,
separation, refinement and preservation methods are still
urgently needed. In addition, regulative biodistribution to accu-
mulate EVs at desired sites still necessitates further research. Of
course, challenges also include production scale-up and charac-
terization of the purified EV product, and the toxicological and
ADME profile of the EV product also needs to be defined. Fur-
thermore, EVs from aberrant cells or pathogens may carry
tumorigenic and pathogenic potential, this concern may be laid
to rest by selection of an appropriate benign cell type as source
of EVs. In summary, EVs-based DDSs open up new avenues for
the treatment of various diseases. However, it is imperative to
fully understand the basic principles involved in the EVs. The
future of EV-based DDSs mainly depends on cooperation
among biologists, physicists, nanomaterial scientists and clinical
specialists. With continuous efforts by multidisciplinary strate-
gies, the use of such nanoplatforms will shed new light on the
delivery of therapeutics to cancers and various other diseases.

Abbreviations

ADME absorption, distribution, metabolism, excretion
BBB blood-brain barrier
DDSs drug-delivery systems
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EAE experimental autoimmune encephalitis
ESCRT endosomal sorting complex required for

transport
EVs extracellular vesicles
fHBP factor H binding protein
GAPDH glyceraldehyde-3-phosphate dehydrogenase
GM-CSF granulocyte-macrophage

colony-stimulating factor
GVHD graft-versus-host disease
IFN-g interferon gamma
ILVs intraluminal vesicles
imDCs immature mouse DCs
Lamp2b lysosome-associated membrane

glycoprotein 2b
MHC major histocompatibility complex
MSCs mesenchymal stem cells
MVBs multivesicular bodies
MVs microvesicles
NadA neisserial adhesin A
NHBA neisserial heparin binding antigen
NK natural killer (NK) cells
OMVs outer membrane vesicles
plexosomes plant-based exosomes
RVG rabies viral glycoprotein
SARS severe acute respiratory syndrome
SHH sonic hedgehog
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