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Abstract

Zebrafish have been extensively used for studying vertebrate development and modeling human 

diseases such as cancer. In the last two decades, they have also emerged as an important model for 

developmental toxicology research and, more recently, for studying the developmental origins of 

health and disease (DOHaD). It is widely recognized that epigenetic mechanisms mediate the 

persistent effects of exposure to chemicals during sensitive windows of development. There is 

considerable interest in understanding the epigenetic mechanisms associated with DOHaD using 

zebrafish as a model system. This review summarizes our current knowledge on the effects of 

environmental chemicals on DNA methylation, histone modifications and noncoding RNAs in the 

context of DOHaD, and suggest some key considerations in designing experiments for 

characterizating the mechanisms of action.
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1. Introduction

There is growing evidence from epidemiological and experimental studies that exposure to 

environmental stressors during critical windows of susceptibility can have long-term 

consequences [1,2]. Examples of association between exposure to environmental stressors 

during critical periods of fetal development and increased risk for cardiovascular diseases, 

obesity and neurological disorders are well documented [3,4]. This is a growing field of 

research and is collectively termed as the developmental origins of health and disease 

(DOHaD) [5,6]. The DOHaD hypothesis postulates that early life stressors can cause 

developmental reprogramming, inducing long-term changes in normal development and 

physiology [6]. Several studies have demonstrated that developmental exposure to 

environmental chemicals can cause long-term changes in physiology and behavior of the 

adults [7]. Some of these effects are shown to be inherited by subsequent generations. The 

mechanisms involved in developmental reprogramming by toxicants are not thoroughly 

understood; however, effects on epigenetic landscape during cellular and tissue 

differentiation are considered to be a potential mechanism of toxicant action [8]. Epigenetic 

modifications are defined as persistent changes in gene expression that occur without a 

change in the nucleotide sequence.

In the past two decades, there has been intense research on the impacts of environmental 

chemicals on various epigenetic factors using a variety of model systems [9,10]. The 

majority of the studies were conducted using mammalian models and to a lesser extent in 

non-mammalian models [11–13]. Agouti mouse is one of the well known model systems 

used to study epigenetic mechanisms of toxicant action [14]. Even though research in 

mammalian models can be easily translated to humans, conducting in vivo studies on a 

rapidly growing list of chemicals is time consuming and not cost-effective. In addition, 

studying the mechanisms of developmental reprogramming in embryos during in utero 
development is difficult. Hence, it is increasingly recognized that alternate vertebrate model 

systems could provide unique advantages in accelerating research in screening toxicants as 

well as understanding the mechanisms of action. One such model is zebrafish (Danio rerio), 

an established model in toxicology [15], developmental biology and human disease research 

[16]. More recently, it has been widely used as a model system for DOHaD studies and for 

understanding the underlying genetic and epigenetic mechanisms of action [17]. This review 

summarizes our current knowledge on the epigenetic effects of toxicants using zebrafish as a 

model organism and highlights the challenges and opportunities zebrafish offers for 

investigating the epigenetic mechanisms of action. Studies conducted so far have mostly 

focused on the impact of toxicants on the epigenetic machinery and very little is known 

about the mechanisms by which toxicants alter the epigenetic patterns. As zebrafish are 

increasingly used as an alternative model for DOHaD studies, this review summarizes the 

important factors to consider while conducting studies to characterize the epigenetic basis of 

DOHaD effects.

Zebrafish as a model for DOHaD and epigenetic toxicology

Zebrafish have become an attractive model for DOHaD and transgenerational studies 

because of high fecundity, short generation time (embryo to adult in 3–4 months), external 
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fertilization and development, and easy maintenance and breeding [16](Figure 1). In contrast 

to murine models where embryonic development occurs in utero, in zebrafish it occurs 

externally. This enables exposure of embryos to stressors immediately after fertilization (2–4 

cell stage), in the absence of any maternal influence. Transparent zebrafish embryos allow 

visualization of any developmental abnormalities associated with exposure. Zebrafish are 

highly fecund and each female can lay hundreds of eggs at a time. This makes it possible to 

have relatively high sample size for each experimental condition. There are a number of 

larval and adult behavioral assays developed to assess the later life effects of developmental 

exposure to toxicants [18]. Compared to rodent models, rearing and maintenance costs for 

zebrafish are inexpensive. This is an important consideration for DOHaD and 

transgenerational studies, because costs associated with raising multiple animals from each 

treatment condition over a long time period, sometimes over multiple generations, can be 

expensive. Furthermore, in mammals transgenerational transmission of a phenotype requires 

assessment of the F3 generation for embryonic exposure because primordial germ cells of 

the F2 generation are exposed in pregnant dams [19]. In contrast, due to external 

development in zebrafish, studies in the F2 generation are considered to be transgenerational 

[17].

In addition to these advantages, zebrafish are also ideal for studying the epigenetic 

mechanisms of action. The availability of numerous transgenic fish strains enables 

characterization of cell and tissue-specific effects. Zebrafish are also amenable for genetic 

manipulation, and targeted gene-editing with CRISPR-Cas9 is widely used [20]. The 

availability of genomic resources [21] and the sequencing methods needed to conduct 

transcriptomic and epigenomic profiling have garnered enormous attention in the use of 

zebrafish as a model species in DOHaD studies. In the past few years, there have been 

several studies characterizing the developmental profiles of DNA methylation [22,23], 

histone modifications [24] and noncoding RNAs [25–27] providing base line information on 

the dynamics of epigenetic regulation during embryogenesis. Several studies have 

demonstrated the long-term effects of developmental exposure to toxicants. Most of these 

studies have reported later-life effects and in some cases intergenerational or 

transgenerational effects (Table 1). However, studies aimed at understanding the 

mechanisms behind DOHaD and multigenerational studies are still in their infancy.

Despite the unique advantages zebrafish offer, there are some distinct differences between 

zebrafish and mammals in epigenetic programming. Mammals undergo two rounds of 

reprogramming of DNA methylation, first at the time of fertilization in the zygote, and then 

in primordial germ cells (PGCs). In zebrafish the second wave of reprogramming has not yet 

been demonstrated. In addition, the methylomes of sperm and oocytes are significantly 

different and the paternal genome is resistant to demethylation in zebrafish [22,23]. 

Furthermore, zebrafish do not have genomic imprinting making them unsuitable for studying 

parent-of-origin effects.

DNA methylation

Similar to mammals, DNA methylation is one of the most well studied epigenetic 

modifications in zebrafish. Methylation of cytosine residues in CpG islands are generally 
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considered to cause stable silencing of gene expression. Recently, Long et al; [28] 

empirically demonstrated that CpG islands in gene promoters are conserved among all 

vertebrates, including zebrafish. DNA methyltransferases (DNMTs) are responsible for the 

addition of the methyl groups on CpG dinucleotides. Zebrafish possess orthologs of both 

maintenance and de novo DNMTs [29]. Maintenance DNA methyltransferase, dnmtl, 
ensures inheritance of methylation patterns during cell division by preferentially methylating 

hemimethylated CG dinucleotides, whereas de novo methyltransferases are involved in 

establishing new methylation patterns. In contrast to two de novo DNMTs (DNMT3A and 

DNMT3B) in mammals, zebrafish possess multiple homologs. These include two DNMT3A 

(dnmt3aa and dnmt3ab) and four DNMT3B (dnmt3ba, 3bb1, 3bb2 and 3bb3) genes[30]. In 

general, due to genome duplication in the fish lineage, there are two or more orthologues of 

many mammalian genes. This often leads to subfunction partitioning among the duplicated 

genes, providing a unique opportunity for obtaining new mechanistic insights into the 

multiple functions of a single human gene [31]. For example, DNMT3A knockout mice die 

postnatally at 4–8 weeks and DNMT3B knockouts die embryonically at 14.5 days making it 

difficult to study their roles beyond early embryonic development [32]. In contrast, we 

observed that dnmt3aa and dnmt3ab (DNMT3A homologs) knockout zebrafish generated 

using TALEN technology develop normally, making it possible to study their roles beyond 

development. Previous studies using morpholino oligonucleotide knock down approach and 

TALEN knockouts have demonstrated that proper expression of DNMT3 genes is critical for 

cellular and tissue differentiation such as hematopoiesis [33]. The results from these studies 

suggest that toxicants affecting the expression of DNMTs could have long-term 

consequences by altering DNA methylation. Several studies have investigated the effect of 

environmental chemicals on DNMT gene expression in zebrafish exposed during early 

development (Table 2). These studies have shown that altered DNMT gene expression 

patterns are developmental stage-specific, but whether these changes alter genome wide 

DNA methylation remains to be determined. So far most of these studies have used gene-

specific DNA methylation profiling targeting early developmental genes or those targeting 

specific pathways and determined alterations to DNA methylation at specific time points 

[11,34]. Even though these results demonstrate the fact that altered DNMT expression could 

affect DNA methylation patterns, the prevalence of these changes genomewide are just 

beginning to be understood. In addition, the persistence of DNA methylation changes 

observed after developmental exposure remains to be determined. With the availability of 

high throughput bisulfite sequencing methods, it is feasible to investigate genomewide 

changes in differential methylation and persistence of these effects over developmental time 

post-exposure. One recent study demonstrated genomewide transgenerational changes in 

DNA methylation following developmental exposure to mono (2-ethylhexyl) phthalate in 

zebrafish [35]. Similar studies needs to be conducted with other toxicants to determine the 

role of DNA methylation in toxicant-induced phenotypes.

Non-coding RNAs

The importance of non-protein coding RNAs (ncRNAs) in the regulation of various 

biological processes in eukaryotes is well documented. The number of known ncRNAs 

continues to grow and the most widely known regulatory ncRNAs include microRNAs 

(miRNAs), small interfering RNAs (siRNAs), Piwi-associated RNAs (piRNAs) and long 
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noncoding RNAs (lncRNAs). Zebrafish is widely used as a model to study developmental 

roles of ncRNAs and to determine the mechanisms of regulation of gene expression 

[26,27,36]. MiRNAs are the most widely studied group in developmental toxicology and a 

variety of environmental chemicals are shown to affect their expression. However, most of 

these studies in zebrafish have determined the expression patterns after acute developmental 

exposure to toxicants; very few studies have characterized the role of individual miRNAs in 

toxicant-induced phenotypic changes later in life [37–39]. As epigenetic changes are 

considered to mediate transgenerational effects, it is essential to determine persistent 

changes that are transmitted to subsequent generations. Recently, a few studies in mice have 

demonstrated that sperm miRNAs are involved in the transgenerational transmission of 

stress-induced phenotypes[40,41]. One recent study reported that prenatal exposure of mice 

to vinclozolin caused an upregulation of miRNA-23b and let-7 in the primordial germ cells 

of developing embryos [42]. These changes were shown to persist in three subsequent 

generations. Similar mechanistic studies with other chemicals are needed in order to 

conclusively demonstrate that miRNAs are a mediator of transgenerational effects. Another 

group of ncRNAs that are expressed in germ cells and could potentially play a role in 

transgenerational effects are piRNAs [43]. They originate from the intergenic repetitive 

elements in the genome and associate with the PIWI subfamily members of the Argonaute 

family of proteins [43]. Their role is to repress transposable elements in the germline and 

maintain genomic integrity [44]. The biogenesis of piRNAs in various model systems 

[45,46], including zebrafish is well known [47–49], but there are no studies on the effects of 

toxicants on piRNA expression. Recent studies in D. virilis and C. elegans have 

demonstrated that piRNA-mediated stable long-term gene silencing as a potential 

mechanism of transgenerational effects [50,51]. However, the hypothesis that ncRNAs act as 

a mediator of DOHaD and multigenerational effects needs further experimentation.

Histone modifications

Histone modifications play an important role in the regulation of chromatin structure. There 

is a growing list of these modifications and they exert their effects either by directly 

influencing the overall chromatin structure or by regulating the binding of effector 

molecules [52]. For example, methylation of histones can activate (e.g., histone H3 lysine4 

trimethylation; H3K4me3) or repress (e.g., histone H3 lysine 27 trimethylation; H3K27me3) 

gene expression. These histone modifications can alter the chromatin accessibility, thereby 

generating binding sites for RNA polymerase II or other epigenetic modifiers such as 

DNMTs and presumably fine-tuning the regulation of gene expression [52]. Similar to the 

effects on DNA methylation, environmental chemicals that alter the availability of methyl 

donors can disrupt histone modifications. In addition, histone and DNA demethylases are 

also shown to impact histone modifications [53]. For example, histone demethylases 

belonging to Jumonji family are affected by exposure to metals. This is hypothesized to be 

due to the displacement of iron (Fe), an essential cofactor in the catalytic activity of DNA 

and histone demethylases by heavy metals [53]. There is some evidence suggesting that 

altered histone modifications can have persistent effects on gene expression [54,55]. Similar 

studies are lacking in zebrafish despite considerable progress in characterizing the role of 

histone modifications during early development and in disease states.

Aluru Page 5

Curr Opin Toxicol. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Using genomewide approaches, recent studies have documented the patterns of histone 

modifications during zygotic genome activation (ZGA), a period of development 

characterized by major remodeling of chromatin [56]. These results suggest that the ZGA is 

accompanied by major changes in the patterns of zygotic histone methylation. Based on the 

evidence that environmental chemical exposures during ZGA affect gene expression 

patterns, it is conceivable that some of these changes are associated with altered histone 

modifications. In the past few years there has been significant progress in the development 

of genomewide profiling methods for analyzing histone modifications in zebrafish [56]. 

Using these approaches to investigate the effect of environmental chemicals on histone 

modifications during early embryonic development and their persistence in later life stages 

is an exciting avenue of research. Furthermore, there is considerable crosstalk between 

different epigenetic factors. Conducting integrative analysis of gene expression, DNA 

methylation and histone modifications will be extremely useful to capture the influence of 

different epigenetic factors on gene expression and the phenotypes.

Considerations for conducting DOHaD studies

Zebrafish have become a popular vertebrate model for studying the long-term implications 

of exposure to toxicants during sensitive windows of development. Several studies have 

demonstrated morphological and behavioral phenotypes, but the experiments characterizing 

the underlying mechanisms are still lacking. Recently, Yamada and Chong [57] described 

strategies while designing experiments to investigate epigenetic mechanisms of action in 

DOHaD studies. Some of the factors to consider include the dynamic nature of the 

epigenome, the relationship between the epigenetic changes and gene expression patterns, 

cell and tissue-specific differences in the epigenome and the influence of the genome on the 

epigenetic landscape.

Similar to gene expression patterns, epigenetic changes are dynamic and differ with age. 

Studies in humans and rodent models have demonstrated that global DNA methylation 

declines with age [58]. As DOHaD studies investigate the effects a long time after the 

exposure, it is possible that the environmental factors during the rearing period can influence 

epigenetic changes. So far most DOHaD studies have investigated epigenetic changes at one 

time point, often weeks or months after the initial exposure. In order to determine the stable 

and persistent nature of epigenetic changes, future studies should consider measuring 

epigenetic changes at multiple time points.

It is also becoming increasingly clear from genomewide profiling studies that the 

relationship between gene expression and methylation patterns can be ambiguous. Recent 

studies using genomewide profiling of DNA methylation have shown that the inverse 

relationship between gene expression and DNA methylation in the promoter regions is not 

always true [59]. In addition, DNA methylation changes are seen in the intergenic regions 

far away from any known genes and the functional significance of these changes is yet to be 

determined.

Most of the DOHaD studies in zebrafish have used gene-specific methods such as 

quantitative PCR and bisulfite conversion PCR or pyrosequencing for measuring gene 

expression and DNA methylation, respectively. As the sequencing costs continue to 
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decrease, it is cost-effective to use RNAseq and RRBS (Reduced Representation Bisulfite 

Sequencing) methods to assess genomewide changes and identify the potential mechanisms. 

In addition to DNA methylation, other chromatin modifiers such as histones are important 

players in the regulation of gene expression. Furthermore, the overall chromatin structure is 

regulated at multiple levels. Determining the nucleosome positioning is a useful approach to 

initially identify the open and closed chromatin states before conducting targeted analysis of 

DNA methylation or specific histone modification. Recent development of methods such as 

Assay for Transposase Accessible Chromatin sequencing (ATAC-seq) have made it less 

labor intensive to identify regions of open and closed chromatin states, in comparison to 

Micrococcal Nuclease digestion followed by sequencing (MNase-seq) or DNase 

hypersensitivity assays [60].

Another important consideration in DOHaD studies is the tissue-specific analysis of 

epigenetic effects of toxicants. It is well established that despite having the same genome, 

each cell and tissue type have unique epigenomic patterns. Hence, the effects of toxicant 

exposure on epigenetic machinery may not be uniform across all tissues and cell types. For 

example, prenatal bisphenol A exposure in BALB/c mice caused hypermethylation in 

estrogen receptor 1 gene in the prefrontal cortex, but not in the hypothalamus in male 

offspring [61]. Therefore, it is important to consider investigating the tissue-specific 

differences in epigenetic patterns. This may not be possible while working with samples 

containing heterogenous cell types, such as developing embryos because it is difficult to 

assign the cellular origin to the sequencing data. However, this problem can be overcome by 

generating transgenic strains expressing fluorescent proteins in any specific cell type and 

conducting FACS prior to sequencing. This is particularly feasible in zebrafish where tissue-

specific transgenic strains are readily available and methods for FACS are established.

Finally, the most important and poorly understood factor is the role of genetic variation on 

epigenetic responses. There are widespread associations between single nucleotide 

polymorphisms (SNPs), the most common source of genetic variation, and DNA 

methylation in humans [62], but the consequences are poorly understood. It is recently 

demonstrated that SNPs at CpG sites can impact transcription factor binding [63]. The other 

well known cause of genomic variation is polymorphisms in the genes involved in the 

regulation of epigenetic machinery. The effect of genomic variation can be minimized by 

using inbred strains in DOHaD studies. Even though zebrafish has been used as a laboratory 

model organism for several decades, the degree of genetic variation among different strains 

is still quite high [64]. The development of inbred zebrafish lines is necessary in order to 

reduce confounding effects of genetic variability not only on the epigenome but also on 

other physiological traits [65].

Conclusions and Future directions

So far most of the DOHaD research using zebrafish as a model system has been focused on 

identifying the latent effects of developmental exposures. Based on the emerging evidence 

from mammalian model systems, there is growing recognition that the latent effects of early 

life exposure could be due to the altered epigenome. In the last few years, there has been a 

sudden spurt in the number of studies characterizing developmental profiles of various 
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epigenetic factors in zebrafish. These studies suggest that the majority of the epigenetic 

machinery is highly conserved among vertebrates. In addition, the progress in the 

development of sequencing techniques and the availability of open source bioinformatic 

analysis software have made it possible to quantify genomewide epigenetic changes in 

zebrafish. The next steps in characterizing the epigenetic mechanisms associated with 

DOHaD include designing experiments that will allow us to identify the developmental basis 

of persistent changes, and functionally characterizing the genes using forward and/or reverse 

genetic approaches. Genome editing and transgenesis tools are well established and 

straightforward, providing unique opportunities to conduct physiological as well as 

functional studies in an in vivo model system.
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Highlights

• Epigenetic mechanisms are highly conserved among all vertebrates.

• Zebrafish is an ideal in vivo model for investigating epigenetic mechanisms 

associated with the developmental origins of adult health and disease.

• Among key considerations in conducting DOHaD studies are examination of 

multiple time-points and tissues, as well as integration of gene expression and 

methylation analyses.
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Figure 1. 
Zebrafish is an ideal model for DOHaD studies. Because of its short life cycle and rapid 

development they are ideal for conducting long-term studies including multi- and 

transgenerational studies. Similar to mammals, zebrafish undergo zygotic genome activation 

as well as epigenetic reprogramming. Exposure to environmental chemicals during sensitive 

windows of development can have later life consequences.
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Table 1

List of published studies investigating the long-term effects of developmental exposure to toxicants in 

zebrafish.

Chemical Exposure Effects Reference

TCDD Developmental and juvenile 
exposure

Decrease in spermatozoa and germinal epithelium 
thickness;
Increase in spermatogonia

[66]

TCDD Developmental and juvenile 
exposure

Increased female to male ratio in all three generations.
Scoliosis like phenotype, reduced egg production and 
fertilization success in F1 and F2 generations.

[17]

TCDD Developmental exposure Egg production and fertilization success were reduced
Increased mortality of F1 embryos, Reduced egg 
production and fertility

[67]

Bisphenol A Adult exposure Heart defects in F1 and F2 generation [68]

PCB126 Developmental exposure Altered adult behavior (lack of habituation)
Altered gene expression in the brain

[69]
[70]

PAH mixture Chronic dietary exposure Altered locomotory activity in F1 and F2 larvae [71]

Testosterone and Dihydrotestosterone Developmental and juvenile 
exposure

Global hypomethylation in the ovary (F0) and in F1 
larvae.
Altered glucose homeostasis

[72]

Atrazine Developmental exposure Reduction in 5-hydroxyindoleacetic acid (5-HIAA) 
levels and serotonin turnover.
Reproductive dysfunction in adults

[71]
[73,74]

Cadmium Developmental exposure Adults displayed anxiety like behavior in novel tank 
assay Altered antioxidant levels

[75]

Vinclozolin Juvenile exposure Shift in sex ratios towards females, and affected 
gonadal maturation.

[76]

PFOS Chronic exposure Effects on adult behavior (F0) and larval survival, 
morphology and behavior in F1 generation.

[77]

Organophosphate flame retardants Developmental exposure Impaired larval and adult behavior [78]
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Table 2

Summary of published studies in zebrafish demonstrating the effects of toxicants on epigenetic mechanisms.

Chemical Epigenetic alteration Developmental stage References

Estrogen Aromatase gene promoter DNA methylation Adults brain and liver [79]

TCDD DNMT expression Gene-specific DNA methylation Embryos [34]

BaP DNMT expression Gene-specific DNA methylation Embryos [11,80]

Depleted Uranium Global DNA methylation Adults [81,82]

TDCPP Global DNA methylation Embryos [83]

Lead Global DNA methylation Embryos [84]

TCDD miRA-451, 23a, 23b, 24, 27e Embryos [85]

Ethanol miR-9/9*, 153c Embryos [86]

Ethanol miR-153a, miR-725, miR-30d, let-7k, miR-100, miR-738, and miR-732 Embryos [87]

Ethanol miR-9 Embryos [39]

Valproic acid miR-16a, 18c, 122, 132, 457b, and 724 Embryos [88]
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